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Abstract: This paper presents a new approach to life estimation for lithium-ion 
batteries used in plug-in hybrid electric vehicles (PHEVs) applications. A new 
framework for battery life estimation is developed which investigates the 
effects of two primary factors of battery life reduction in PHEVs applications, 
namely, depth of discharge (DOD) and temperature (Tbatt), under typical 
driving conditions, driving habits, and average commute time of typical user 
over a year. This framework, whose development is built upon a weighted 
ampere-hour throughput model of the battery, is based on the novel concept of 
severity factor map which captures and quantifies the battery damage caused by 
different operating conditions. The proposed methodology can be a suitable 
tool to estimate battery life in terms of miles/year on-board of the vehicle. 
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1 Introduction 

PLUG-IN hybrid electric vehicles (PHEVs) are regarded today as one of the most 
promising technologies for transportation petroleum displacement and greenhouse gas 
emission reduction (Markel et al., 2008). The achievement of PHEV energy economy 
comes not only from the PHEV energy management control strategies implemented on-
board of the vehicle, but also from PHEV design and extended energy storage (Tulpule et 
al., 2009). In this scenario, lithium-ion batteries are starting to play an important role in 
our mobility because of their advantages over other battery technologies and they are 
recognised as being best suited for fulfilling the requirements of this vehicle technology 
(Axen et al., 2008). Their high specific power and energy density content allow 
overcoming the limitations typical of Ni-MH batteries in meeting the power and energy 
demands of electric vehicles (EV) and hybrid electric vehicles (HEV) and, in addition, 
they withstand a wider range of temperatures. 

The current battery price of Li-Ion batteries is one of the major disadvantages, 
though, which prevents PHEV market penetration, as the current cost of lithium-ion 
batteries is estimated to be about $1,000/kWh, and the long term goal that would 
facilitate speedy introduction of PHEVs is $250/kWh (Shiau et al., 2009). Economies of 
scale could definitely reduce the cost of the batteries per kWh, but still this rechargeable 
energy storage system remains the most expensive component of the vehicle. 

Improvements are needed in order to make lithium-ion batteries more competitive, in 
particular, battery longevity, safety, reliability and lifetime prediction are key issues that 
need to be addressed fairly soon before assisting to a high market penetration of this 
technology, as they represent key barriers to commercialisation of PHEVs (Dubarry and 
Liaw, 2007; Pesaran et al., 2009; Wang et al., 2011). 

The problem of understanding how to assess battery life degradation and battery 
performance during vehicle operation is of primary importance in this context. In 
particular, the focus of this paper is to address the question: “how can we suitable 
quantify battery degradation under real-world operating conditions?” 

Knowing the battery useful life in automotive applications is crucial in order to 
guarantee performance and durability of the battery and limit the risks of premature 
failure. A successful battery lifetime prediction approach requires knowledge of the 
ageing processes, the factors which determine the ageing itself and their combined effects 
(Ruddell and Svoboda, n.d.). 

Performance degradation affecting electrochemical energy storage systems is due to 
factors such as current severity (or C-rate), elevate temperature, discharge rate, DOD, 
amount and frequency of overcharge (Wang et al., 2011; Serrao et al., 2005). Moreover, 
battery ageing can be accelerated by factors from the driver such as combination of 
cycling, irregular patterns of charge and discharge cycles (Sauer and Wenzl, 2008). Thus, 
in approaching life estimation methods design, requirements of the driver (power and 
energy demand) together with other external factors like the temperature distribution 
within the battery, DOD and SOC of the battery need to be accounted for. 

This paper focuses on developing a novel approach for battery life estimation in 
PHEV applications. The paper is organised as follows: in Section 2, methods for battery 
life estimation proposed in the open literature are reviewed. A framework for battery life 
prediction based on an accumulated ageing model (Serrao et al., 2009) is discussed in 
Section 3. Within this framework, a weighted Ah-throughput model for life estimation is 
presented with the new concept of severity factor map. Assessment analysis of the battery 
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life estimation method proposed is discussed in Section 4 for a PHEV case study. Finally, 
conclusions are given in Sections 5. 

2 Review of battery life estimation methods 

Two different approaches to battery lifetime estimation and prediction modelling  
are found in the open literature, namely: performance-based models and weighted 
ampere-hour (Ah)-throughput models. The performance-based models account for the 
rate of change of battery parameters while the various ageing processes take place. These 
models are potentially very accurate for making technical and financial decisions. The 
weighted Ah-throughput models, on the other hand, relate the end of life of a battery to 
some parameters which can be easily determined, such as Ah-throughput, number of 
cycles and time since manufacturing. Although these models are inherently limited in 
their accuracy, they are the only available as planning tools which incorporate battery 
lifetime features. These two classes of modelling approaches are briefly reviewed in this 
section. 

2.1 Performance-based models 

The battery lifetime and the battery end-of-life (EoL) can be expressed as function of 
different performance parameters. These parameters, such as the battery voltage, current, 
uptake power, SOC, etc., can be modelled through various parameterised models 
(Pesaran et al., 2007). These models, though, suffer in managing the changes in 
performance values of the battery due to ageing processes (Wenzl, et al., 2005). The 
performance is usually characterised using battery models, such as: 

• electrochemical models 

• equivalent circuit models 

• analytical models with empirical data fitting 

• artificial neural networks. 

Electrochemical models provide detailed information on local conditions and 
performance (e.g., temperature, potential, current, electrolyte concentration etc.). On the 
other hand, they require specific knowledge of the chemical and physical interactions, 
e.g., porosity of the active materials, electrolyte volume and density, etc. Because of its 
intrinsic complexity the computational speed of the simulation is low (Smith et al., 2008). 

In equivalent circuit models the battery is represented by components of an equivalent 
electric circuit like voltage and current sources, resistors and capacitors. The ageing 
process is represented by the change of the values of the equivalent circuit components. 
This type of models is very common for predicting battery dynamic characteristics (Liaw 
et al., 2005; Dubarry and Liaw, 2007). A first study of an ageing model for predicting 
battery life, able to capture the slow variation of model parameters with ageing (and with 
factors contributing to ageing such as C-rate, DOD and temperature) is presented in 
(Serrao et al., 2009). 
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In analytical models, with empirical data fitting, the lifetime is predicted by means of 
interpolation and extrapolation from test results and field data, which, in turn, require a 
lot of data (Rong and Pedram, 2003). 

Artificial neural networks have a tremendous potential to discover relationships 
between inputs (operating conditions) and outputs (ageing processes and performance 
values). This approach to modelling does not rely on a detailed understanding of the 
mechanism which link input and output, but measurements are needed to derive the 
model (Yamazaki et al., 1998; Mukherjee, 2003). 

2.2 Weighted Ah-throughput models 

The second class of modelling framework for battery lifetime prediction uses models 
which relate the EoL of a battery to parameters such as Ah-throughput, number of cycles 
or time since manufacturing. Once a predetermined value of the parameter has been 
exceeded, the battery is considered to have reached its EoL. The overall Ah-throughput 
depends on the actual operating conditions. At the cell level, the severity of the charge 
transfer depends on the current severity relative to the battery size2 (C-rate), the battery 
temperature Tbatt and the DOD. The weighted Ah-throughput models are based on the 
assumption that under particular standard conditions (e.g., given C-rate, Tbatt and DOD) a 
battery can only achieve a given Ah-throughput until the EoL is reached. For automotive 
applications a battery is considered reaching its EoL when it shows a capacity loss of 
20% or more with respect to the original capacity (Wenzl et al., 2005). 

These models account for the fact that deviations from the standard operating 
conditions (in terms of C-rate, Tbatt, DOD) may increase or decrease the physical  
Ah-throughput a battery can give and consequently the rate of ageing. A measure of the 
effective Ah-throughput is given by: 

eff E E EAh w n Ah= ⋅ ⋅∑  (1) 

where 

Aheff weigthed Ah-throughput, i.e., effective Ah-throughput that the battery can achieve 
before reaching its EoL. 

E an event is characterised by a particular instance of current load of fixed 
magnitude under a given temperature, DOD and initial SOC. It is generated from 
the discretisation or segmentation of the current signal. The duration of an event, 
i.e., the step of discretisation, is decided in the implementation phase and can be 
either fixed or time varying. 

wE weigh or severity associated with an event E. 

nE number of events E. 

AhE Ah-throughput over an event E. 

The battery is considered to fail and reach its EOL when the effective Ah-throughput, as 
obtained from the model of equation (1), is greater than the total Ah-throughput measured 
under nominal operating conditions (e.g., discharge/charge at fixed current rate and fixed 
DOD) as provided by the battery manufacturer. 
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If, from one hand, this type of models represent a good option for the lifetime 
estimation of batteries in PHEVs because of their easy structure which allows for very 
high computational speed and adaptation to different battery technologies, on the other 
hand, the determination of the parameters for the weighting factors remain an issue. In 
this paper we refer to the weighting factors as severity factors, which are responsible for 
reduced lifetime. Accurate values of these factors would require extensive data 
collection, not yet available. 

The approach to life estimation presented in this paper is based on the weighted  
Ah-throughput models. Generally, battery nominal life (20% loss in capacity) is 
measured by the manufacturers under 100% DOD cycles. Cycles with lower DOD have 
minor effects on performance degradation (in terms of loss in capacity, increase in 
resistance), thus resulting in a typical ‘throughput’ type model, where the total number of 
partial and full cycles are proportionally added together to find out how much of the life 
has been expended (a curve of expected cycle number vs. DOD of each cycle is found in 
(Chan et al., 2001). 

Battery life depends on the interaction of operating conditions or severity factors and 
ageing characteristics and it is, indeed, a highly non-linear process. 

At the pack (vehicle) level, the determining factor for pack ageing and life is going to 
be the most aged cell, strongly impacted by both electrical cell balancing/BMS and 
thermal design/management. Our focus here is on cell level and generalisation to the 
vehicle level under assumption of all cells equivalent. 

Battery requirements differ according to the specific application. High power is 
needed to provide adequate boost in HEV applications, while power density is less 
important in PHEV and EV applications due to their larger battery pack. On the other 
hand, as energy translates into vehicle range, high energy is needed to provide adequate 
mile range. This is more important for PHEVs and EVs rather than for HEVs. In fact, a 
HEV battery is operated in charge sustaining mode at intermediate SOC through shallow 
cycles and only uses a small portion of the available energy. Thus, HEV batteries differ 
from PHEV and EV batteries, in that they require higher power density than energy 
density. In this paper, in virtue of the application under consideration, the capacity is 
considered as the only ageing parameter that effects battery life and thus, life 
characteristics of the battery are defined based on its residual capacity. 

3 A severity factor map-based framework for battery lifetime estimation 

Prediction of battery life is achieved through an ageing model which expresses the ageing 
of the battery in terms of variation of damage variables, i.e., the physical or functional 
parameters of the battery whose value changes irreversibly because of ageing and modify 
the behaviour of the system. The approach to ageing modelling presented in Serrao et al. 
(2009) is briefly reviewed in this section. A generic dynamic system subject to ageing 
can be described by the following set of dynamics equations: 

( , , )

( , )

x f x u

g p
y C x D u v

ϑ

ϑ ε ϑ

=

= ⋅
= ⋅ + ⋅ +

 (2) 

where 
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x state variables associated to the fast dynamics 

ϑ damage variables associated with slow dynamics 

u external inputs 

p vector of internal/external ageing factors (including x and u) 

y is the set of system outputs, dependent on the constant matrices C and D and on the 
measurement error v 

ε positive scalar (<<1) representing the fact that the dynamics of the damage variables 
are much slower than the system dynamics 

Variation of damage variables (ϑ) implies slow changes in the system behaviour, hence 
ageing. 

To express the progression of the ageing process the normalised damage measure ξ is 
introduced as: 

0 0

0 0
( )

f f

S S
S S

ϑ ϑ
ξ ϑ

ϑ ϑ
− −

= =
− −

 (3) 

The damage measure ξ is a scalar index varying between 0 and 1. A value of ξ = 0 
indicates a new battery (ϑ = ϑ0 = known initial value of the ageing parameter) while  
ξ = 1 indicates a ‘dead’ battery (ϑ = ϑf = predefined value of the ageing parameter 
corresponding to battery EoL). Since we are assuming that the capacity is the only  
ageing parameter, equation (3) is also expressed in terms of the initial (S0) and final  
value (Sf) of the capacity S corresponding to a new and EoL battery, respectively. 
Rewriting the ageing equation ( , )g pϑ ε ϑ= ⋅  in equation (2) in terms of ξ and the 
number of cycles n, rather than ϑ and time, (with a simple rescaling of the variables) 
leads to the equation: 

( , )d p
dn
ξ ϕ ξ=  (4) 

The progression of ageing, i.e., the slope of the curve ξ as given by equation (4), depends 
on the value of the ageing factors p and the present age ξ. 

Equation (4) can be used to predict the evolution of battery damage. 
In Serrao et al. (2009), it is shown that, if the capacity evolution is to be predicted, 

then the progression of ageing, described by the non-linear coupled equation (4) can be 
expressed as: 

1( , ) ( ) ( )d p p
dn
ξ ϕ ξ ϕ ξ σ= =  (5) 

Equation (5) expresses the progression of ageing as a decoupled function of the actual 
ageing and the actual operating conditions and allows for tracking the progression of 
ageing if the functions ϕ1(ξ) and σ(p) are known. These two functions are defined as 
‘ageing factor function’ and ‘severity factor function’, respectively. The ageing factor  
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function is a quantitative measure of the past ageing occurred at the battery at a given 
moment of its life, while the severity factor function expresses and quantifies the amount 
of damage due to the operating conditions (or severity factors) such as: Tbatt, DOD, 
current directionality, C-rate, driving patterns, etc. 

In this work, focus is given on the characterisation of the severity factor function σ(p) 
and its use for estimating battery life for PHEV applications. By knowing the map σ(p) 
under different operating conditions, a quantitative assessment of battery performance 
can be performed and used in the weighted Ah-throughput model previously described by 
equation (1) for life estimation. 

Ongoing research is devoted to develop models to incorporate the life estimation 
method presented in the paper (in the form of severity factor map) within a prognostics 
framework. The validation of the severity factor map, as well as the verification of the 
ageing model framework requires an extensive campaign of experiments which are 
ongoing at the Center for Automotive Research The Ohio State University (CAR-OSU). 

3.1 Severity factor map characterisation for PHEV applications 

As mentioned in the Introduction, at the cell level, among the ageing factors that affect 
the battery life in PHEV applications (Freedom Car Manual, 2008) the two most 
important considered in this study are: 

• battery temperature, Tbatt 

• DOD 

Notice that, while in HEV applications current C-rate ranges within ±15C, which 
contribute to significant severity and therefore ageing, the C-rate effect on battery ageing 
can be neglected in PHEV applications . In fact, being the battery oversized in PHEVs, 
typical current C-rates range between ±4C. An example of current profile corresponding 
to a charge-depleting PHEV on a US06 driving cycle is shown in Figure 1, and the 
statistical distribution of the C-rate is shown in Figure 2. 

Figure 1 Typical current (c-rate) profile for a PHEV (in charge-depleting mode) during an us06 
driving cycle 
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Figure 2 Current (C-rate) statistical distribution for a PHEV (in charge-depleting mode) during 
an us06 driving cycle 

 

This observation implies that the vector [Tbatt, DOD] represents the vector p of ageing 
factors used in the damage accumulation model of equation (6). 

Usually, battery manufacturers define battery life with respect to a nominal cycle 
(In(t)) with these characteristics: C-rate = 1, DOD = 100%, Tbatt = 25°C. Thus, battery life 
is defined as the overall Ah-throughput (in and out charge from 0 to EoL) when the 
battery is subject to cycle In(t): 

0
( )

EoL
nominal nAh throughput I t dt− = ∫  (6) 

The ageing effects caused to the battery by any other cycle are quantified by the relative 
severity factor σ when given with respect to the nominal cycle or ‘baseline’. In particular, 
the severity factor σ  at a given DOD DOD=  and batt battT T=  is defined as: 

( )
0

,
( )

nominal
batt EoL

Ah throughput
DOD T

I t dt
σ

−
=

∫
 (7) 

where the quantity 
0

( )
EoL

I t dt∫  indicates the overall Ah-throughput corresponding to 

cycle the battery at current I(t) under conditions DOD DOD=  and batt battT T= . The 
severity factor represents the relative ageing effect with respect to the baseline given by 
the nominal cycle. A severity factor σ greater than 1 represents conditions which are 
more severe than the baseline in terms of ageing. 

The determination of the relative severity factors to form the overall severity factor 
map (namely, the function σ (p) in equation (5) on the domain of interest (i.e., DOD and 
Tbatt) is typically difficult to obtain and is very dependent on the particular battery 
chemistry, anode and cathode composition and construction. Furthermore, all information 
related to ageing characteristics even for a given cell, requires extensive and very lengthy 
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(hence costly) data collection. For the purpose of this paper, a prototypical example of 
ageing severity factor map was extracted from battery manufacturer data, albeit with 
considerable difficulty as the tests were not necessarily conducted with our framework in 
mind. For the purpose of illustration of the methodology, an estimate of the value of 
severity factor as a function of operating temperature and DOD is given based on 
publically available data (Markel and Simpson, 2006; A123, 2007). This severity factor 
surface will be referred to as ‘estimated’ in the remainder of this paper. The topology of 
this ‘estimated’ severity factor map, while specific to a particular cell and very lengthy to 
determine experimentally, is generic enough in its overall shape. On a real vehicle 
application, though, the actual ageing conditions (wide range of temperature and low 
state of charge) are different from the ones considered to obtain those data. Hence, the 
need to carry out a campaign of ageing experiments meant to collect data reflecting actual 
operations of the battery on the vehicle is unquestionable. 

The ‘estimated’ or postulated severity factor map, ,battT DODσ  as a function of Tbatt and 

DOD, is shown in Figure 3. In the rest of the paper, the symbol ,battT DODσ  indicates the 

overall severity factor map (Figure 3) while ( , )battDOD Tσ  indicates the severity factor 

value as obtained when the battery is cycled at DOD = DOD  and Tbatt = battT . 
Two regions on the severity factor map are of main interest: a fringe spot and a sweet 

spot. If the battery is operating in a fringe spot the Ah-throughput will be weighted with a 
severity factor higher than the severity factor used when the battery is operating in the 
sweet spot, which, in turn, reflects the more severe operating conditions. In fact, working 
at high temperature (> 25°C) and wide DOD will result in an accelerated ageing of the 
battery. The severity factor as a function of the DOD, parameterised in temperature, is 
shown in Figure 4. 

Figure 3 Severity factor map for PHEV applications 
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Figure 4 Severity factor as function of DOD parameterised with respect to battery temperature 

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

DOD [%]

σ T ba
tt,D

O
D

 

 

Tbatt=25°C

Tbatt=30°C

Tbatt=35°C

Tbatt=40°C
Tbatt=45°C

Tbatt=50°C

Tbatt=55°C

Tbatt=60°C

increasing Tbatt

 

A targeted design of experiments is being conducted to validate the shape of the severity 
factor map over the battery operating domain. Not only will the verification of the 
severity factor map through experiments be a valid tool to assess battery life but also it 
can be used as a guideline to better design PHEV control strategies. In fact, it can be used 
to investigate the possibility of making the charge sustaining operation happen at lower 
SOC than the one effectively used in vehicle now (typically 30% SOC) by looking at 
what degradation level the battery will be reaching. In general, important insights can be 
derived from the qualitative behaviour of the severity factor map for more conscious 
control strategies concerning fuel consumption minimisation as well as battery life 
extension. 

4 Case study: preliminary simulation results 

In this section, simulation results coming from exploiting the severity factor map to 
estimate battery longevity using an energy-based model of a hybrid powertrain are 
presented. 

The simulator used in this study, is built upon the energy-based model of Cx-Sim 
(Tulpule et al., 2010), and adapted to PHEV applications. Table 1 describes the main 
vehicle characteristics. The vehicle is based on a series-parallel architecture, which 
includes a diesel engine coupled to a belted starter alternator (BSA) on the front axle and 
an electric motor (EM) on the rear axle. This configuration allows for a variety of modes 
such as pure electric drive, electric launch, engine load shifting, motor torque assist, and 
regenerative braking. 

The considered vehicle requires approximately 370 Wh/mile for electric mode in 
UDDS cycle, thus resulting in about 11 kWh of stored energy required to run 30 miles in 
AER. To account for battery ageing and performance issues, the usable SOC has been 
assumed in the range 0.25–0.95; starting from this assumption the total storage capacity 
of the battery needs to be about 16 kWh. 
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Table 1 Basic vehicle modelling parameters 

Class SUV 
Mass 2130 kg 
Engine 1.9L Diesel 
Battery pack 16 kWh (50 Ah × 312V) 
Control strategy Charge depleting-charge sustaining mode 

The implemented control strategy is based on charge depleting-charge sustaining energy 
management policy. In charge depleting mode (or pure electric), the battery is used to 
drive the vehicle until the electric machine is able to supply required power and the 
battery SOC is greater than the designed lower limit. Once SOC reduces below the 
minimum allowable value (0.3), the vehicle is operated in charge sustaining mode for the 
remaining of the trip, where an equivalent consumption minimization strategy (ECMS) is 
implemented (Serrao et al., 2011; Tulpule et al., 2010). 
Table 2 Driving and charging events 

Driving/charging events 
T1 UDDS+US06 (trip to work after full charge). Initial SOC is 0.95 
T1b US06+UDDS (trip to home after work). Initial SOC is the final SOC of previous trip 
T1c US06+UDDS (trip to home after work). Initial SOC is 0.95 
T2 UDDS (errands). Initial SOC is the final SOC of previous trip 
T2b UDDS (errands). Initial SOC is 0.95 

UDDS+HWFET+HWFET+HWFET+HWFET+UDDS T3 
(this assumes the vehicle is only recharged at the end of the day). Initial SOC is 0.95 
Charging from SOC 0.25 to 0.95. C 
Charging capability: 6 kW (AC: 220V, 30A; DC: 20A CC/CV) 

In order to simulate statistically meaningful scenarios, driving and charging events 
characteristic of a typical user were used (Table 2) (Sikes et al., 2010) and then combined 
in a way to compose typical days of driving to reflect common driving habits, and 
average commute time over a year (Table 3). 
Table 3 Typical days 

Days Combination of events Frequency 

3 days/week, 48 weeks/year D1a T1-T1b-T2-C 

(tot. 144 days/year) 
D1b T1-C-T1c-C-T2b-C Alternative to D1a 

2 days/week, 48 weeks/year D2a T1-T1b-C 
(tot. 96 days/year) 

D2b T1-C-T1c-C Alternative to D2b 
D3 T3-C 2 days/week, 48 weeks/year + 7 days/week, 4 weeks/year  

(tot. 124 days/year) 
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Different charging availability is also considered. Two main scenarios have been 
inspected: controlled charging (once a day, overnight) and uncontrolled charging 
(charging is possible whenever the vehicle is parked). 

Simulation results show that through an uncontrolled charging a better fuel economy 
can be achieved, but at the price of reduced battery life. Other issues are related to the 
possible overload of the power grid, but this will not be discussed in this paper. 

The combination of the described events and typical days results in approximately 
15,000 miles/year. 

Figure 5 Speed profile of typical day D1a 

 

Note: This profile is the same as D1b (they only differ from the initial soc the battery is 
discharged from and the charging event). 

4.1 Weighted Ah-throughput calculation 

The approach used to estimate battery life is structured according to the schematic of 
Figure 6. The battery model used in this study takes the battery current, Ibatt, over a 
driving mission and the ambient temperature, Tamb, as inputs and gives the battery 
voltage, Vbatt and the battery temperature Tbatt as outputs (Muratori et al., 2011). Then, 

battT  and the DOD  (derived from the battery model and Ibatt) are given as inputs to the 
severity factor map which, once interrogated, returns the value of severity occurring to 
the battery under those particular conditions. The severity factor value is then used in the 
accumulated Ah-throughput model through the equation: 

( )
0

, ( )
T

eff batt battAh DOD T I t dtσ= ∫  (8) 

This gives the weighted Ah-throughput or accumulated weighted Ah that the battery  
has effectively experienced over a trip of length T. From an implementation point of 
view, the value of the severity factor can be extracted from the map either at each 
sampling time or over a more meaningful simulation window of seconds or minutes. In 
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this latter case, average values should be used. In this simulation study, a fixed window 
of two minutes was used to extract the information needed to interrogate the severity 
factor map. 

Figure 6 Schematic of model-based structure for battery life estimation 

 

The battery Ah-throughput or accumulated Ah, given as )
0

( ) ,
T

battAh I t dt= ∫  is also 

outputted by the model. 
Preliminary simulation results were obtained using the overall battery model  

(Figure 6) and data (electric power, and battery current) from the PHEV simulator 
presented earlier under statistically representative common driving/charging scenarios. 
Table 4 shows the two outputs of the model (Ah-throughput and weighted Ah-
throughput) for the series of driving/charging events of Table 2. The average C-rate and 
the total miles travelled over each events are also given in Table 4. 

It is worth observing that the C-rate results in a very shallow severity characteristic 
over all the events, which subsides the assumption to neglect it as primary ageing factor 
in this study. The same comparison is then performed over typical days and shown in 
Table 5. 
Table 4 Comparison between Ah and weighted Ah on different driving events 

 T1 T1b T1c T2 T2b T3 C 

Ah 33.98 6.65 33.98 2.47 9.6 50.62 35.0 
Weighted Ah 43.99 10.51 44.55 4.47 9.82 72.11 39.05 
Average C-rate [A/Ah] 1.66 0.32 1.66 0.23 0.8 0.68 0.4 
Total miles 15.45 15.45 15.45 8.0 8.0 57.0 - 
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Table 5 Comparison between Ah and weighted Ah on typical days 

 D1a D1b D2a D2b D3 

Ah 78.1 182.56 75.63 110.63 85.62 
Weighted Ah 98.02 215.51 93.55 166.64 111.16 
Total miles 38.9 38.9 30.9 30.9 57.0 

Figure 7 SOC profile (dot-dot) and comparison between Ah-throughput (solid) and weighted  
Ah-throughput (dashed-dot) for the day D1a (see online version for colours) 

 

Figure 8 SOC profile (dot-dot) and comparison between Ah-throughput (solid) and weighted  
Ah-throughput (dashed-dot) for a typical day D1b (see online version for colours) 
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Results showing the difference between accumulated Ah and accumulated weighted Ah 
are in Figure 7 and Figure 8. In Figure 7 it is shown a charge depleting-charge sustaining 
behaviour, which results in a battery DOD of 0.65 for more than half of the cycle, while 
in the case shown in Figure 8 the vehicle never operates in charge sustaining due to the 
repeated charges. 

Results show that there are significant differences between accumulated Ah and 
accumulated weighted Ah as a result of accounting for the cycle severity through the 
severity factor map, which considerably adjust the life battery expectation as a function 
of different usage patterns. 
Table 6 Expected life example 

 Uncontrolled charging 
(charge at home/work) 

Controlled charging 
(charge only at home) 

Ah 47,526 29,124 
Weighted Ah 60,814 36,879 
Total miles 15,636 
Total miles in electric 12,243 6,458 
% miles in pure electric mode 78.3 41.3 
Nominal capacity (Ah) 50 

Expected cycle life at 100% DOD ±1C 2,500 

Estimated life (years) 8.34 13.76 

The expected cycle life and estimated battery life are also assessed under two different 
charging scenarios as reported in Table 6. This case shows how different charging 
strategies (either controlled or uncontrolled), which would result in different DOD 
experienced in pure electric mode (the ability to charge the battery more frequently 
ensure lower excursion in the SOC) leads to considerably different expectation of battery 
life. 

5 Conclusions 

This paper has presented a novel framework to estimate life of Li-ion batteries in PHEV 
applications. The new concept of severity factor map has been introduced which is used 
to quantify the damage occurring to the battery under different driving scenarios, 
charging availability and usage patterns. Starting from data provided by battery 
manufacturer, the severity factor map has been designed and quantitatively postulated. 
This tool, framed within a battery model, is used to give an estimate of battery life in 
terms of effective Ah-throughput experienced by the battery when used in every day 
driving scenarios. Preliminary simulation results have shown that different battery 
usages, corresponding to different driving scenarios and charging events, have a different 
impact on battery life. Uncontrolled and widely available charging infrastructure would 
lead to better fuel economy (more miles in EV mode), but at the price of a strongly 
reduced life (results show a reduction of about 40% in terms of calendar life). The 
approach described in this paper is fairly generic and has the potential to be applicable to 
any classes of vehicles, with a fairly simple battery model, as long as the ambient 
temperature and the battery current are measured on-board of the vehicle. Ageing 
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experiments are currently underway to calibrate the severity factor map, through cycles 
representative of real driving characteristics. 
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Notes 
1 Piefrancesco Spagnol has conducted this work while he was a Visiting Scholar at Center for 

Automotive Research at The Ohio State University. 
2 The C-rate is a measure defined as the ratio of the current (in A) to the nominal charge 

capacity (in Ah): C-rate= I/S where S is the battery capacity. 


