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Control-oriented models based on electrochemistry have conventionally been evaluated and designed from the Doyle-Fuller-Newman
(DFN) macroscale model. However, the DFN model is susceptible in predicting battery response under certain operating conditions
since it is an approximate representation of pore-scale dynamics. This work shows the limitations of the DFN model in predicting
voltage response at high temperatures of cell operation. A full homogenized macroscale (FHM) model, developed in previous research,
is shown to overcome these limitations. Results indicate that the predictability of the DFN model deteriorates when trying to predict
the voltage response at low state of charge for high temperature of operation under 1 C-rate discharge. The influence of parameters on
the model states and output is investigated as a means to address parameter identifiability issues, for which, we formulate and resolve
sensitivity functions for the partial differential equations (PDEs) of the FHM model. Results show that parameter identifiability is
dependent on the battery state of charge.
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To address sustainable transportation concerns, the last decade
has seen enormous strides in battery technology and the adoption
of lithium-ion batteries in vehicular applications.1 Despite the de-
creasing cost of lithium-ion battery packs over the years,2 obstacles
to widespread adoption of electrified vehicles still remain in terms
of safety, performance degradation from aging, and lack of a com-
prehensive understanding of battery behavior under diverse operating
conditions.3 At the pore scale, lithium transport is modeled using first
principles of mass and charge conservation.4 However, their numerical
complexity renders them impractical as a predictive tool at the system
level. On the other hand, macroscopic models that describe lithium
transport using averaged mass and charge transport equations are par-
ticularly appealing for developing control and estimation strategies.

The Doyle-Fuller-Newman (DFN) macroscale model5 has been at
the forefront for the electrochemical models used today. The inception
of this model came at a time when lithium-ion technology was at a
nascent phase and primarily targeted for portable electronic applica-
tions. Gradually, lithium-ion batteries demonstrated the potential for
enhancing electrification in the transportation sector6 due to lower-
ing costs and energy density higher than other energy storage devices.
For small-scale consumer electronics applications, battery degradation
does not constitute a significant concern due to the short device lifetime
and reasonable costs associated with battery replacement. However,
understanding these mechanisms has become very crucial in large-
scale, cost-intensive battery systems for long-term applications such
as electric vehicles (8-10 years) and even more so for grid energy
storage (20-30 years).

There has been sufficient evidence7–11 to indicate a lack of pre-
dictability of the DFN model at high temperatures, low state-of-charge
(SOC), over battery aging, and at high C-rates of operation. These are
very important aspects to address in automotive lithium-ion batteries.
Simplified12,13 and reduced-order14,15 formulations of the DFN model
are conducive for state estimation and control development. However,
these models factor a certain loss of physical intuition due to their
diminished complexity. Their predictability, at best, is limited to the
accuracy of the DFN model. Different studies16–18 that validate the
performance of such models restrict the battery operation to moder-
ate temperatures, moderate to high C-rates, and low current rates of
charge/discharge. As a result, the performance of such control-oriented
models very likely won’t reflect real-world battery response.

In Ref. 19, we compared the performance of the DFN model and
a full homogenized macroscale (FHM) model which was rigorously
derived using mathematical homogenization.20 The parameters of the
two models were independently identified, and averaged values of the
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common model parameters were used during the comparison stud-
ies. In this publication, we perform a simultaneous identification of
the common model parameters using a combined cost function. This
study is conducted on 18650 cylindrical lithium-ion cells with graphite
anode and nickel manganese cobalt oxide (NMC) cathode.

Further, we formulate partial differential sensitivity equations for
the FHM model and resolve them to obtain sensitivity functions. These
functions provide first-order estimates of the impact of variation of
effective diffusion (De f f

s, j ), reaction rate (k∗
j ), and electrode saturation

concentration (cs,max, j) parameters on the concentration states, c̄s and
c̄e, respectively and voltage output. The foundation of this approach
is based on a procedure in Ref. 21 that was originally designed for the
states of a model defined by ordinary differential equations. In Ref.
22, a similar approach was used to study the effect of the parameters
of an estimator, designed using a single particle model, on the system
estimates. The novel contribution of this work is to formulate and
resolve sensitivity equations for the states of a model defined by a
system of non-linear coupled partial differential equations (PDEs).

This work is motivated by the need to understand limitations of
two macroscale models and to provide an alternate modeling tool,
such as the FHM model, to overcome DFN model limitations when
design objectives require. This paper is structured as follows: DFN and
FHM Models: Finite Element Approach section reviews the governing
equations of the two models. Model Parameter Identification section
outlines the parameter identification studies using an integrated co-
simulation framework involving COMSOL Multiphysics and MAT-
LAB. Results from parameter identification and model validation us-
ing multiple experimental data sets are presented in Results section.
Investigation of the Arrhenius behavior of the diffusion and reaction
rate parameters section investigates whether the identified diffusion
and reaction rate transport parameters of the two models follow an
Arrrhenius-type of relationship with temperature. A sensitivity study
to assess the influence of model parameters on the output voltage is
elaborated in Sensitivity Analysis of the FHM Model section. Ap-
pendices A and B supplement the discussion provided in Sensitivity
Analysis of the FHM Model section. Finally, Conclusion section sum-
marizes the conclusions of this paper.

DFN and FHM Models: Finite Element Approach

The mass and charge transport equations of the DFN23 and the
FHM20 models are summarized in Table I. n, s, and p represent the
anode, separator, and cathode, respectively. This section summarizes
the governing equations, boundary conditions, and initial conditions
of the DFN and FHM models. We refer the reader to Ref. 24 for a
detailed comparison analysis of the transport equations of the two
models. There are two fundamental differences between the DFN and
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Table I. Transport equations of the DFN and FHM battery models.

DFN Model FHM Model

Electrode Mass Transport Equation; j = (n, p)
∂cs, j (x,r,t )

∂t = Ds, j

r2

(
r2 ∂cs, j (x,r,t )

∂r

)
∂ c̄s, j
∂t = De f f

s, j
∂2 c̄s, j

∂x2 − 1
F JLi, j (x, t )

Electrolyte Mass Transport Equation; j = (n, s, p)

ηe, j
∂ c̄e, j (x,t )

∂t = ∂
∂x

(
De f f

e, j
∂ c̄e, j (x,t )

∂x

)
+ (1−t+ )

F JLi, j (x, t ) ηe, j
∂ c̄e, j
∂t = De f f

e, j
∂2 c̄e, j

∂x2 + 1
F JLi, j (x, t ) + RT t2+

F 2 Ke f f
e, j

∂2 ln c̄e, j

∂x2 + t+
F Ke f f

e, j
∂2φ̄e, j

∂x2

Electrode Charge Transport Equation; j = (n, p)

Ke f f
s, j

∂2φ̄s, j (x,t )
∂x2 = JLi, j (x, t ) Ke f f

s, j
∂2φ̄s, j

∂x2 = JLi, j (x, t )

Electrolyte Charge Transport Equation; j = (n, s, p)

−Ke f f
e, j

∂2φ̄e, j (x,t )
∂x2 − 2Ke f f

e, j (x,t )RT (1−t+ )

F
∂2 lnc̄e, j

∂x2 = JLi, j (x, t )
RT t+

F Ke f f
e, j

∂2 ln c̄e, j

∂x2 + Ke f f
e, j

∂2φ̄e, j

∂x2 = −JLi, j (x, t )

Intercalation Current Density; j = (n, p)

JLi, j (x, t ) = a jk j · √
cs,sur f , j ·

√(
cs,max, j − cs,sur f , j

) · √
c̄e, j (x, t )

·2 sinh
[

0.5F
RT

(
φ̄s, j − φ̄e, j − U0, j

)]; JLi,s(x, t ) = 0

JLi, j (x, t ) = k∗
j · √

c̄e, j · c̄s, j ·
√(

1 − c̄s, j
cs,max, j

)
·2 sinh

(
F

2RT

[
φ̄s, j − φ̄e, j − U0, j

]); JLi,s(x, t ) = 0

Figure 1. (a) The DFN model assumes that the electrodes are composed of spherical active particles. The effective ionic properties are determined empirically
without considering the particle morphology. (b) Electrode concentration cs is resolved in a pseudo radial direction, and the variables φ̄s, c̄e, and φ̄e are resolved
along the direction of electrode thickness.

the FHM models: a) the resolution of diffusion in the electrode using
an averaged mass transport equation in the FHM model as opposed
to a pseudo radial direction in the DFN model by assuming spherical
active particles, and b) incorporating the effect of electromigration and
diffusion in the electrolyte mass transport equation of the FHM model
as opposed to only diffusion in the DFN model.

The DFN Model.—As illustrated in Fig. 1, the DFN model is a
pseudo two-dimensional model since the electrolyte mass variable, c̄e,
the electrolyte charge variable, φ̄e, and the electrode charge variable,
φ̄s, are resolved in the direction perpendicular to the current collectors
(1-D model), x, while electrode mass variable, cs, is resolved in a
pseudo radial direction, r, from the center to the surface of each active
particle.

The boundary conditions of the variables φ̄s, φ̄e, and c̄e of the DFN
model are summarized in Table II. The variable cs is resolved in r and
x in the anode and the cathode, and its boundary conditions are:

∂cs, j

∂r

∣∣∣∣
r=0

= 0 and Ds, j
∂cs, j

∂r

∣∣∣∣
r=Rs, j

= − JLi, j

a j · F
, j = {n, p}. [1]

The initial conditions for the variables of the DFN model are sum-
marized in Table III. The non-linear PDEs of the model are coupled
through the intercalation current density. In addition to this coupling,
the charge conservation equation in the electrolyte consists of both the
electrolyte concentration and potential variables.

The FHM Model.—As illustrated in Fig. 2, the coupled non-linear
PDEs of the FHM model are resolved in the direction perpendicu-
lar to the current collectors. Both the mass and charge conservation

Table II. Boundary conditions of the DFN model variables φ̄s, φ̄e, and c̄e.

Variable Location: x = 0 Location: x = Ln Location: x = Ln + Ls Location: x = Lcell

φ̄s φ̄s,n = 0 ∂φ̄s,n
∂x = 0

∂φ̄s,p
∂x = 0 Ke f f

s,p
∂φ̄s,p
∂x = − Iapp

Acell

φ̄e
∂φ̄e,n
∂x = 0 Not required due to continuity Not required due to continuity

∂φ̄e,p
∂x = 0

c̄e
∂ c̄e,n
∂x = 0 Not required due to continuity Not required due to continuity

∂ c̄e,p
∂x = 0
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Table III. Initial conditions of the four variables of the DFN model.

Variable Anode Separator Cathode

φ̄s φ̄s,n = 0 Not applicable φ̄s,p (t = 0) = [
U0,p(xp,init ) − U0,n(xn,init )

]
φ̄e φ̄e,n (t = 0) = 0 φ̄e,sep (t = 0) = 0 φ̄e,p (t = 0) = 0
cs cs,n (t = 0) = xn,init · cs,max,n Not applicable cs,p (t = 0) = xp,init · cs,max,p

c̄e c̄e,n (t = 0) = ce,init c̄e,sep (t = 0) = ce,init c̄e,p (t = 0) = ce,init

Figure 2. (a) The FHM model assumes that the electrodes are composed of spatially periodic unit cells. The effective ionic properties are determined by resolving
a closure problem24 in the unit cell of the electrode microstructure. (b) The implementation of the FHM model in 1-D is presented in this work, where the variables
of the model are resolved along the direction of electrode thickness.

equations in the electrolyte phase consist of the electrolyte concentra-
tion and potential variables. The boundary and initial conditions of the
FHM model variables c̄s, φ̄s, c̄e, and φ̄e are summarized in Table IV
and Table V, respectively.

General remarks.—The equations of the DFN and FHM models
are resolved for an input current profile Iapp(t ). The model-predicted
voltage output, V (t ), is defined as:

V (t ) = φ̄s(Lcell , t ) − φ̄s(0, t ) − Rc · Iapp(t ) [2]

Pore-scale electrolyte diffusion (De, j) and conductivity (Ke, j) coef-
ficients as a function of concentration and temperature were obtained
from Ref. 25. Effective diffusion and conductivity for the DFN model
were obtained using the Bruggeman approach,26 and by resolving the
closure problem for the FHM model.24 The radius of the active parti-
cles in the anode and cathode were kept constant at a value of 5 μm
for both models. For the DFN model, a built-in fine mesh was utilized
for discretization in the 1-D direction of electrode thickness, while
a customized user-controlled mesh was utilized for the pseudo 2-D

domain. The mesh settings utilized by Plett et al.27 for the DFN model
have been retained as is without any modifications. Since the equations
of the FHM model are all resolved in 1-D, a built-in extremely fine
mesh was utilized for discretization along the direction of electrode
thickness.

Model Parameter Identification

In Ref. 28 the authors elaborate upon the implementation of the
FHM model using COMSOL Multiphysics. To facilitate the compar-
ison studies on the voltage prediction performance of the DFN and
FHM models, we adapted the DFN model developed in the same soft-
ware platform by Plett et al. This section details the identification
studies conducted to determine the parameters of the two models us-
ing an integrated Matlab and COMSOL Multiphysics co-simulation
framework.

For an elaborate description of the development and numerical im-
plementation of the FHM model, the reader is referred to Ref. 28. The
performance of both models were assessed using data acquired from

Table IV. Boundary conditions of FHM model variables c̄s, φ̄s, c̄e, and φ̄e.

Variable Location: x = 0 Location: x = Ln Location: x = Ln + Ls Location: x = Lcell

c̄s
∂ c̄s,n
∂x = 0 De f f

s,n
c̄s,n
∂x = − JLi,n

F ·Ln
De f f

s,p
c̄s,p
∂x = − JLi,p

F ·Lp

∂ c̄s,p
∂x = 0

φ̄s φ̄s,n = 0 ∂φ̄s,n
∂x = 0

∂φ̄s,p
∂x = 0 Ke f f

s,p
∂φ̄s,p
∂x = − Iapp

Acell

c̄e
∂ c̄e,n
∂x = 0 Not required due to continuity Not required due to continuity

∂ c̄e,p
∂x = 0

φ̄e
∂φ̄e,n
∂x = 0 Not required due to continuity Not required due to continuity

∂φ̄e,p
∂x = 0

Table V. Initial conditions of the four variables of the FHM model.

Variable Anode Separator Cathode

φ̄s φ̄s,n = 0 Not applicable φ̄s,p (t = 0) = [
U0,p(xp,init ) − U0,n(xn,init )

]
φ̄e φ̄e,n (t = 0) = 0 φ̄e,sep (t = 0) = 0 φ̄e,p (t = 0) = 0
c̄s c̄s,n (t = 0) = xn,init · cs,max,p Not applicable c̄s,p (t = 0) = xp,init · cs,max,p

c̄e c̄e,n (t = 0) = ce,init c̄e,sep (t = 0) = ce,init c̄e,p (t = 0) = ce,init

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.12.92.131Downloaded on 2019-06-09 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 166 (8) A1380-A1392 (2019) A1383

experiments conducted on 18650 cylindrical lithium-ion cells com-
posed of graphite anode and NMC cathode. The specifications of the
cells used in the experiments can be obtained from Ref. 29. Due to the
lack of availability of information concerning the geometric thickness
of the electrodes from the cell manufacturer, these parameters have
also been included in the identification study. The details of the exper-
imental work conducted for acquiring the data sets used in this study
are elaborated in chapter 3 of Ref. 28.

The parameters of both models were identified using the particle
swarm optimization (PSO) algorithm.30 The vector of parameters for
the DFN model is:

θDFN = [
Ln Ls Lp Acell Ds,n Ds,p kn kp Rc xn,init xp,init

cs,max,n cs,max,p ηn ηp ηe,n ηe,s ηe,p

]T
, [3]

and the vector of parameters for the FHM model is:

θFHM = [
Ln Ls Lp Acell De f f

s,n De f f
s,p k∗

n k∗
p Rc xn,init xp,init

cs,max,n cs,max,n ηn ηp ηe,n ηe,s ηe,p

]T
[4]

Figure 3 summarizes the co-simulation flowchart for the parameter
identification study. Initial bounds for the model parameters were
based on the values reported in Ref. 31. While it is true that parameter
bounds can always be expanded to yield an optimum that neither co-
incides with their minimum (or) maximum values, these values may
not be physically meaningful. For example, solid phase volume frac-
tion cannot exceed 0.74, the maximum atomic packing factor possible.
Given the lack of parameter information from the manufacturer, we
have chosen to impose bounds that are physically meaningful rather
than maximize them to facilitate the convenience of the identification
process.

Experience15,16 dictates that the parameters of the two models can
be categorized into: a) geometric and stoichiometric parameters, and
b) temperature-dependent parameters. The former category character-
izes the design of a lithium-ion cell. Therefore, it is not justified to use
different values for these parameters for different models, since in prin-
ciple the should possess the same value. We propose a new improved
two-layer identification approach to determining these parameters.

The first step is to minimize the RMS error in the model-predicted
voltage response by identifying a common set of geometric and

Table VI. The identification bounds and the identified values of the
common DFN and FHM model parameters at the end of Step 1.

Parameter Identification Bounds Identified Value

Ln
[
45 × 10−6, 55 × 10−6

]
53.2 × 10−6

Ls
[
20 × 10−6, 32 × 10−6

]
24.7 × 10−6

Lp
[
35 × 10−6, 45 × 10−6

]
39.9 × 10−6

ηs,n [0.54, 0.66] 0.626
ηs,p [0.50, 0.60] 0.574
ηe,n [0.28, 0.36] 0.30
ηe,s [0.35, 0.45] 0.35
ηe,p [0.28, 0.36] 0.36
Acell [0.1006, 0.1120] 0.1037
Rc [0.024, 0.036] 0.027

xn,init [0.75, 0.80] 0.7916
xp,init [0.31, 0.36] 0.3494

cs,max,n [26000, 31500] 27088
cs,max,p [45000, 50000] 48700

stoichiometric parameters. The cost function for Step 1 is:

Mopt,1 =
{

1

N

N∑
i=1

(
Vm(i) − VFHM (θFHM; i)

)2

+ 1

N

N∑
i=1

(
Vm(i) − VDFN (θDFN ; i)

)2
}0.5

,

[5]

where Vm is the measured voltage, VFHM and VDFN are the model-
predicted voltages from the FHM and DFN models, N is the total data
samples, and i is the time index. The geometric and stoichiometric
parameters is defined by the vector:

θopt,1 = [
Ln Ls Lp Acell xn,init xp,init cs,max,n cs,max,n ηn ηp ηe,n ηe,s ηe,p

]T

[6]

The identified values of the common parameters of the two mod-
els are summarized in Table VI. The optimization bounds were for-
mulated based on prior values of the model parameters reported in
literature.31,32 It can be noted that the electrochemical parameter val-
ues reported are obtained from multiple sources, and are either as-
sumed or estimated values. To the best of our knowledge, there are
very rare instances where measured electrochemical parameters have

Figure 3. Flowchart describing the iterative process of model parameter identification of the FHM model in the co-simulation framework.
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been inferred. Based on Table VI, it can be observed that the identified
values of parameters ηe,s and ηe,p match their lower and upper bounds,
respectively. The main reason for this result is that the terminal voltage
is insensitive to changes in the values of such parameters, rendering
their identification process a challenging task. We chose to leave the
identified result rather than arbitrarily assigning a fixed value.

The identified values of the elements of the vector θopt,1 at the end
of Step 1 were used in both models without any further modifications
for subsequent simulations. The second step is to minimize the RMS
error in the model-predicted voltage response by identifying only the
temperature-dependent parameters. The other temperature data sets
were used, and the cost function for Step 2 is:

Mopt,2 =
{

1

N

N∑
i=1

(
Vm(i) − VFHM (θ5,FHM; i)

)2

+ 1

N

N∑
i=1

(
Vm(i) − VDFN (θ5,DFN ; i)

)2
}0.5

,

[7]

where

θ5,DFN = [
Ds,n Ds,p kn kp Rc

]T
and θ5,FHM = [

De f f
s,n De f f

s,p k∗
n k∗

p Rc

]T

for the DFN and FHM models, respectively.
The identification studies were setup using a population size of

200 swarms and 10 generations. The anode and cathode conductiv-
ity coefficients were maintained constant, since prior identification
studies33 deduced that they had no impact on the model-predicted
voltage. Their values are obtained from literature34 and kept the same
for all the identification studies. The identification study using the
co-simulation framework was conducted on a Dell Precision T5810
desktop computer with 32.0 GB RAM and Intel(R) Xeon(R) CPU
E5-1650 v3 3.50 GHz processor.

Results.—The result of the identification studies are presented in
Fig. 4. The percentage RMS error is given by:

RMS Error =
√√√√ 1

N

N∑
i=1

(
Vm(i) − Vmodel (θ; i)

)2
· 100

mean(Vm )
, [8]

Figure 4. Performance of the DFN and FHM
models against measured voltage from 1 C-
rate discharge tests conducted at (a) 5◦C, (b)
23◦C, (c) 40◦C, (d) 45◦C, and (e) 52◦C.
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Figure 5. System level diagram representing the percentage error in the DFN
and FHM model-predicted voltage with respect to experimental data as a func-
tion of SOC and temperature. The percentage voltage error was evaluated for
the 1 C-rate constant current discharge data sets presented in this work.

whereVmodel is eitherVDFN orVFHM . The accuracy of the DFN degrades
with increasing temperature, whereas the FHM model performs better
than the DFN model at elevated temperatures. The voltage modeling
error as a function of temperature and SOC for the identification data
sets is illustrated in Fig. 5, where the normalized absolute value of the
voltage error is calculated using the expression:

% Voltage Error = ∣∣Vm(i) − Vmodel (θ; i)
∣∣ · 100 · N∑N

i=1 Vexp(i)
. [9]

The SOC of the cell is calculated using coulomb counting. From
the measured cell current, the cell SOC, SOC(t ), is determined as
follows:

SOC(t ) = SOCini − 1

Qcell
·
∫ t f

t0

Iapp(t )dt , [10]

where SOCini is the initial cell SOC; t0 and t f denote the beginning
and end of cell discharge. For the capacity tests in discharge, SOCini =
100% and t0 = 0 s.

The performance of both models was validated against constant
current in discharge experimental data sets with C-rates of 1/20 and
15. The result of these validation studies are presented in Fig. 6, and
the RMS error in voltage prediction for the DFN and FHM models are
summarized in Table VII. An important assumption of the DFN model
is lithium solid phase diffusion based on perfectly spherical active
particles. Cell discharge is majorly dictated by anode concentration
dynamics. At high temperature of battery operation, the concentration
dynamics based on spherical particle diffusion likely over-predicts

Table VII. Percentage RMS error in the voltage prediction of the
FHM and DFN models with respect to experimental measurements.

RMS Error

Reference Data Set DFN Model FHM Model

Fig. C.4(a) 1 C-rate discharge at 5◦C 0.68% 0.66%
Fig. C.4(b) 1 C-rate discharge at 23◦C 0.55% 0.60%
Fig. C.4(c) 1 C-rate discharge at 40◦C 2.26% 0.56%
Fig. C.4(d) 1 C-rate discharge at 45◦C 2.59% 0.57%
Fig. C.4(e) 1 C-rate discharge at 52◦C 2.59% 0.51%
Fig. C.6(a) 1/20 C-rate discharge at 23◦C 0.88% 0.91%
Fig. C.6(b) 15 C-rate discharge at 23◦C 2.28% 1.27%

the rate of lithium depletion in the anode. This observation has been
discussed earlier in Section 4.6 of Ref. 28.

The effective ionic transport properties of the DFN model do not
consider information of the electrode morphology. Since we do not
consider any fitting of electrolyte transport parameters, a certain loss
of information can also affect the model accuracy. In Ref. 19,20, we
have presented electrolyte phase diagrams to compare the time-scales
associated with pore-scale transport processes: diffusion, electromi-
gration, and reaction. Elevated temperatures and high C-rates of oper-
ation can lead to a scenario where diffusion is no longer the dominant
transport mechanism. Under this scenario, the pore-scale is no longer
well-mixed due to the formation of localized gradients. Then the er-
ror in the predictability of macroscale DFN-type models is no longer
bounded with respect to its microscale counterpart.

Investigation of the Arrhenius behavior of the diffusion and re-
action rate parameters.—An Arrhenius curve fitting approach was
performed to determine the trend of behavior of the model parame-
ters such as diffusion and reaction rate with respect to temperature.
The results are shown for the DFN model in Fig. 7. The results from
curve-fitting based on an Arrhenius-type relationship of diffusion and
reaction rate of the two electrodes for the FHM model is shown in
Fig. 8. The results from these figures indicate that the electrode diffu-
sion coefficients of the two models follow the Arrhenius relationship
closely. This behavior is also observed in the cathode reaction rate
constants of both models. However, the same cannot be explicitly
states with respect to the anode reaction rates. Regardless, relatively
small changes in parameter values can influence the parameter varia-
tion trend toward an Arrhenius relationship. This will be investigated
further as part of future work.

To the best of the authors’ knowledge, there are no experimen-
tal measurements of reaction rates reported in literature. Studies35,36

Figure 6. Validation of the performance of the DFN and FHM models against experimentally measured cell terminal voltage for (a) 1/20 C-rate and (b) 15 C-rate.
These experiments were conducted at 23◦C.
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Figure 7. Comparison of the Arrhenius curve fit versus the identified DFN model parameters: (a) Ds,n, (b) Ds,p, (c) kn, and (d) kp.

Figure 8. Comparison of the Arrhenius curve fit versus the identified FHM model parameters: (a) De f f
s,n , (b) De f f

s,p , (c) k∗
n , and (d) k∗

p.
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Table VIII. Boundary conditions of the sensitivity variables
∂c̄s, j
∂θi, j

and
∂c̄e, j
∂θi, j

.

Variable Location: x = {0, Lcell } Location: x = {Ln, Ln + Ls}
∂ c̄s, j

∂De f f
s, j

∂
∂x

(
∂ c̄s, j

∂De f f
s, j

)
= 0 De f f

s, j
∂
∂x

(
∂ c̄s, j

∂De f f
s, j

)
= − ∂ c̄s, j

∂x − L j
F · ∂ c̄s, j

∂De f f
s, j

· ∂JLi, j
∂ c̄s, j

− L j
F · ∂ c̄e, j

∂De f f
s, j

· ∂JLi, j
∂ c̄e, j

∂ c̄e, j

∂De f f
s, j

∂
∂x

(
∂ c̄e, j

∂De f f
s, j

)
= 0

(
∂φ̄e, j
∂ c̄e, j

+ RT t+
Fc̄e, j

)
· ∂

∂x

(
∂ c̄e, j

∂De f f
s, j

)
= RT t+

Fc̄2
e, j

· ∂ c̄e, j
∂x · ∂ c̄e, j

∂De f f
s, j

∂ c̄s, j
∂k∗

j

∂
∂x

(
∂ c̄s, j
∂k∗

j

)
= 0

De f f
s, j

∂
∂x

(
∂ c̄s, j
∂k∗

j

)
= − L j

F

[
∂ c̄s, j
∂k∗

j
· ∂JLi, j

∂ c̄s, j
+ ∂ c̄e, j

∂k∗
j

· ∂JLi, j
∂ c̄e, j

+ 2

√
c̄e, j c̄s, j

(
1 − c̄s, j

cs,max, j

)
· sinh

(
F

2RT

{
φ̄s, j − φ̄e, j − U0, j

(
c̄s, j

cs,max, j

)})]
∂ c̄e, j
∂k∗

j

∂
∂x

(
∂ c̄e, j
∂k∗

j

)
= 0

(
∂φ̄e, j
∂ c̄e, j

+ RT t+
Fc̄e, j

)
· ∂

∂x

(
∂ c̄e, j
∂k∗

j

)
= RT t+

Fc̄2
e, j

· ∂ c̄e, j
∂x · ∂ c̄e, j

∂k∗
j

∂ c̄s, j
∂cs,max, j

∂
∂x

(
∂ c̄s, j

∂cs,max, j

)
= 0

De f f
s, j

∂
∂x

(
∂ c̄s, j

∂cs,max, j

)
= − L j

F · ∂ c̄s, j
∂cs,max, j

· ∂JLi, j
∂ c̄s, j

−
L j
F

∂ c̄e, j
∂cs,max, j

· ∂JLi, j
∂ c̄e, j

+
√

c̄e, j c̄s, j

(
1 − c̄s, j

cs,max, j

)
· cosh

(
F

2RT

{
φ̄s, j − φ̄e, j − U0, j

(
c̄s, j

cs,max, j

)})
·
( L j k

∗
j

RT

)
· ∂U0, j

∂cs,max, j

∂ c̄e, j
∂cs,max, j

∂
∂x

(
∂ c̄e, j

∂cs,max, j

)
= 0

(
∂φ̄e, j
∂ c̄e, j

+ RT t+
Fc̄e, j

)
· ∂

∂x

(
∂ c̄e, j

∂cs,max, j

)
= RT t+

Fc̄2
e, j

· ∂ c̄e, j
∂x · ∂ c̄e, j

∂cs,max, j

mostly reported diffusion coefficients as a function of the stoichio-
metric (lithiation) coefficient for a single temperature. However,
temperature-based diffusion coefficients which were obtained from
experimental characterization of NMC electrodes were reported in
Refs. 37,38. These articles also reported that the diffusion coefficient
increases with temperature following an Arrhenius relationship. It can
be verified from Figures 7 and 8 that the values obtained from the iden-
tification studies in this work also exhibit the same trend as observed
in literature.

Sensitivity Analysis of the FHM Model

Sensitivity analysis is a useful tool to understand the relationship
between model parameters and model response. The information de-
rived from these studies provides insights on parameter identifiability.
Till date, there have been no studies reported in literature that examine
the impact of parameter variation on the states of an electrochemical
battery model.

Sensitivity information can be used to estimate which parameters
are the most influential in affecting the behavior of the simulated out-
put. Such information is crucial for experimental design and reduction
of complex PDE non-linear models to design control-oriented models.
In this section, we present this study for the FHM model by formu-
lating a system of partial differential sensitivity equations from the
governing PDEs, and resolve them along with the model equations.
This is elaborated in the following subsections.

Sensitivity equations of the electrode.—The sensitivity of the elec-
trode concentration states, z1, j = c̄s, j and z2, j = c̄e, j , j = {n, p}, is
investigated with respect to three parameters: a) solid phase diffusion
De f f

s, j , b) interface reaction rate constant k∗
j , and c) maximum lithium

storage concentration cs,max, j . The first two parameters are chosen be-
cause they represent the transport processes in the active particles.
The third parameter is chosen because it enables determination of the
electrode half cell potential.

cs,max, j is a fundamental property that is considered during the de-
sign of the battery electrode. The parameters De f f

s, j and k∗
j are also

important in the context of SOC estimation and state-of-health (SOH)
prognosis. The concentration dynamics which quantify the half cell
potential are strongly dictated by diffusion within the active parti-
cles. With aging, active particle diffusion can be affected by factors
such as electrode contamination and structural changes. The reaction-
rate constant can be impacted by aging mechanisms such as the
solid-electrolyte-interface layer growth. Therefore, as these parame-
ters change with aging, sensitivity studies are very valuable in assess-
ing how the output is manipulated by these factors. These parameters

are represented by the vector θi, j , where i = {1, 2, 3}:
[θ1, j θ2, j θ3, j]

T = [De f f
s, j k∗

j cs,max, j]
T [11]

The sensitivity functions are defined as:

S1,1, j = ∂z1, j

∂θ1, j
, S1,2, j = ∂z1, j

∂θ2, j
, S1,3, j = ∂z1, j

∂θ3, j
,

S2,1, j = ∂z2, j

∂θ1, j
, S2,2, j = ∂z2, j

∂θ2, j
, S2,3, j = ∂z2, j

∂θ3, j
,

[12]

where z1, j = z1, j (x, u, t, θ j ), and z2, j = z2, j (x, u, t, θ j ). The variable
u represents Iapp and the variable x represents the Cartesian direction
along the electrode thickness. The state equations are:

∂z1, j

∂t
= De f f

s, j

∂2z1, j

∂x2
− 1

F
JLi, j = f1, j ,

∂z2, j

∂t
= 1

ηe, j

(
De f f

e, j

∂2z2, j

∂x2
+ RT t2

+
F 2

Ke f f
e, j

∂2 ln z2, j

∂x2

+ t+
F

Ke f f
e, j

∂2φ̄e, j

∂x2
+ 1

F
JLi, j

)
= f2, j ,

[13]

where f1, j = f1, j (z1, j, z2, j, u, θ j ) and f2, j = f2, j (z1, j, z2, j, u, θ j ).
The sensitivity equations of z1, j and z2, j are formulated by taking

the partial derivative of the state equations with respect to θi, j :

∂

∂θi, j

(
∂z1, j

∂t

)
= ∂

∂t

(
∂z1, j

∂θi, j

)
= ∂ f1, j (z1, j, z2, j, u, θi, j )

∂θi, j

= ∂ f1, j

∂z1, j

∂z1, j

∂θi, j
+ ∂ f1, j

∂z2, j

∂z2, j

∂θi, j
+ ∂ f1, j

∂u

∂u

∂θi, j
+ ∂ f1, j

∂θi, j
,

∂

∂θi, j

(
∂z2, j

∂t

)
= ∂

∂t

(
∂z2, j

∂θi, j

)
= ∂ f2, j (z1, j, z2, j, u, θi, j )

∂θi, j

= ∂ f2, j

∂z1, j

∂z1, j

∂θi, j
+ ∂ f2, j

∂z2, j

∂z2, j

∂θi, j
+ ∂ f2, j

∂u

∂u

∂θi, j
+ ∂ f2, j

∂θi, j

[14]

Since u is an independent variable, its partial derivative with respect
to θi, j is equal to zero. Therefore, the sensitivity equations are reduced
to:

∂

∂t

(
∂z1, j

∂θi, j

)
= ∂ f1, j

∂z1, j

∂z1, j

∂θi, j
+ ∂ f1, j

∂z2, j

∂z2, j

∂θi, j
+ ∂ f1, j

∂θi, j
,

∂

∂t

(
∂z2, j

∂θi, j

)
= ∂ f2, j

∂z1, j

∂z1, j

∂θi, j
+ ∂ f2, j

∂z2, j

∂z2, j

∂θi, j
+ ∂ f2, j

∂θi, j

[15]
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Figure 9. Results from the sensitivity studies, quantifying the influence on the output voltage, V (t ), due to the: (a) anode and (b) cathode electrode diffusivity
coefficient, De f f

s, j , (c) anode and (d) cathode reaction rate constant, k∗
j , (e) anode and (f) cathode maximum lithium storage concentration, cs,max, j parameters.

If the nominal values of θi, j are represented by θi, j,0, then for values

of θi, j sufficiently close to θi, j,0, the sensitivity functions
∂z1, j

∂θi, j

∣∣∣∣
θi, j=θi, j,0

and
∂z2, j

∂θi, j

∣∣∣∣
θi, j=θi, j,0

are unique solutions of the following equations:

[
Ṡ1,i, j

Ṡ2,i, j

]
=

[ ∂ f1, j

∂z1, j

∂ f1, j

∂z2, j
∂ f2, j

∂z1, j

∂ f2, j

∂z2, j

]
θi, j,0

[
S1,i, j

S2,i, j

]
+

[ ∂ f1, j

∂θi, j
∂ f2, j

∂θi, j

]
; S1,i, j (t0) = 0

S2,i, j (t0) = 0 [16]

To solve the sensitivity equations, the Jacobian matrices

Aj (t, θi, j,0) = ∂ f j (z j, u, t, θi, j )

∂z j

∣∣∣∣
z j=z j (x,u,t,θi, j,0 ),θi, j=θi, j,0

[17]

and

Bj (t, θi, j,0) = ∂ f j (z j, u, t, θi, j )

∂θi, j

∣∣∣∣
z j=z j (x,u,t,θi, j,0 ),θi, j=θi, j,0

, [18]

where f j = [ f1, j f2, j]T and z j = [z1, j z2, j]T , must be first evaluated.
The system of sensitivity equations are:

[
Ṡ1,1, j Ṡ1,2, j Ṡ1,3, j

Ṡ2,1, j Ṡ2,2, j Ṡ2,3, j

]
=

[ ∂ f1, j

∂z1, j

∂ f1, j

∂z2, j
∂ f2, j

∂z1, j

∂ f2, j

∂z2, j

]
θi, j,0

[
S1,1, j S1,2, j S1,3, j

S2,1, j S2,2, j S2,3, j

]

+
[ ∂ f1, j

∂θ1, j

∂ f1, j

∂θ2, j

∂ f1, j

∂θ3, j
∂ f2, j

∂θ1, j

∂ f2, j

∂θ2, j

∂ f2, j

∂θ3, j

]
[19]

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.12.92.131Downloaded on 2019-06-09 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 166 (8) A1380-A1392 (2019) A1389

with initial conditions S1,i, j (t0) = 0 ; S2,i, j (t0) = 0. The sensitiv-
ity equations are resolved for the 23◦C 1 C-rate data. The identified
parameters at the end of Step 1 were used as nominal values. The
boundary conditions for the sensitivity functions are summarized in
Table VIII.

The sensitivity functions are used to determine the impact of pa-
rameters on V (t ):

∂V (t )

∂θi, j
= ∂φ̄s,p(t )

∂θi, j

∣∣∣∣
x=Lcell

− ∂φ̄s,n(t )

∂θi, j

∣∣∣∣
x=0

, i = 1, 2, 3 [20]

The parameters θi,n are defined only in the anode domain. The same
applies for the cathode parameters θi,p. Therefore, the partial deriva-

tives ∂φ̄s,p(t )
∂θi,n

∣∣∣∣
x=Lcell

and ∂φ̄s,n (t )
∂θi,p

∣∣∣∣
x=0

are equal to 0. The sensitivity of V (t )

is then equal to:

∂V (t )

∂θi,n
= −

(
∂φ̄s,n(t )

∂ c̄s,n

)
·
(

∂ c̄s,n

∂θi,n

)∣∣∣∣
x=0

, i = 1, 2, 3 [21]

with respect to the anode parameters and

∂V (t )

∂θi,p
=

(
∂φ̄s,p(t )

∂ c̄s,p

)
·
(

∂ c̄s,p

∂θi,p

)∣∣∣∣
x=Lcell

, i = 1, 2, 3 [22]

with respect to the cathode parameters. The partial derivative of φ̄s, j

with respect to c̄s, j is obtained by solving the following PDE in the
respective electrodes:

Ke f f
s, j · ∂2

∂x2

(
∂φ̄s, j

∂ c̄s, j

)
= ∂JLi, j

∂ c̄s, j
, [23]

subject to the boundary conditions:

∂

∂x

(
∂φ̄s, j

∂ c̄s, j

)∣∣∣∣
x={0,Ln,Ln+Ls,Lcell }

= 0 [24]

Results.—The results of the sensitivity studies are illustrated in
Fig. 9 in the cell SOC range of [0.1,1]. The sensitivity functions are
normalized in units of [V ] for comparison. The main inference deduced
from these plots are:

(1) Fig. 9a indicates that for a constant current discharge, the sen-
sitivity of V (t ) to De f f

s,n is the highest at SOC of 16%, which
can be categorized in the low SOC region. On the other hand, in
Fig. 9b, the overall output voltage sensitivity to De f f

s,p increases
with decreasing SOC in the cathode. This means that using a con-
stant current discharge input, the identification of the diffusion
parameters is most effective toward the end of discharge.

(2) Fig. 9c shows that V (t ) is most sensitive to k∗
n at around SOC

equals to 60%. This indicates that incorrect values of this param-
eter may result in higher prediction error in voltage at this SOC.
Fig. 9d shows that there is an increasing trend in the sensitivity
of V (t ) to k∗

p with decreasing SOC. Moreover, in the SOC range
of 50% to 30% this sensitivity function is almost flat, suggest-
ing a lack of sensitivity over this SOC range. As such, it is best
to identify this parameter either at high SOC (from 100% unitl
50%) or at low cell SOC.

(3) In Fig. 9e, V (t ) is most sensitive to cs,max,n at medium and
low SOC levels. This implies that for a constant current in-
put profile, these parameters are best identified at those two
critical SOC values. Fig. 9f reiterates the same observation
that we have made above for the other cathode sensitivity
functions.

Conclusions

For the first time, we have provided an approach that correlates
the impact of key lithium transport parameters with the states of the
FHM model. Accurate identification of the diffusion and reaction rate
parameters is crucial since their variation influences model-based esti-
mation of SOC and SOH. Using the sensitivity functions, we determine
how the voltage is dependent on parameters as a function of SOC for
a constant current input profile. Since the parameter cs,max,n influences
the voltage at medium and low SOC, there is more confidence in re-
taining its identified value for reduced-order models formulated from
the FHM model. A reliable identification of the electrode diffusion
parameters is possible using experimental data that majorly retrieves
voltage information from low SOC operation. In future work, we will
investigate different current inputs, operating SOC range, and tem-
perature conditions to analyze the impact of parameters on the output
voltage. Using this information, we can create parameter subsets for
efficient identification.

This work also identifies that under high temperatures of battery
operation and a nominal discharge current,the DFN model suffers a
loss in its voltage predictability at low cell SOC. The model validation
results using different 23◦C discharge data sets infer an overall better
performance of the FHM model, and that caution must be exercised
while using the DFN model for applications where the battery operates
at low SOC regimes.

The effective ionic transport properties for all the results presented
in this work have been based on the standard Bruggeman relation-
ship for the DFN model, and the closure approach for the FHM
model. In this work, we considered the electrodes to be composed of
perfectly spherical active particles. However, recent publications39,40

Table AI. U0,n and its partial derivative with respect to c̄s,n.

Term Mathematical Expression

U0,n

−4.6 × 1010
(

c̄s,n
cs,max,n

)24 + 4.86 × 1011
(

c̄s,n
cs,max,n

)23 − 2.32 × 1012
(

c̄s,n
cs,max,n

)22 + 6.51 × 1012
(

c̄s,n
cs,max,n

)21−
1.15 × 1013

(
c̄s,n

cs,max,n

)20 + 1.16 × 1013
(

c̄s,n
cs,max,n

)19 − 1.37 × 1012
(

c̄s,n
cs,max,n

)18 − 1.72 × 1013
(

c̄s,n
cs,max,n

)17+
3.42 × 1013

(
c̄s,n

cs,max,n

)16 − 4 × 1013
(

c̄s,n
cs,max,n

)15 + 3.38 × 1013
(

c̄s,n
cs,max,n

)14 − 2.18 × 1013
(

c̄s,n
cs,max,n

)13+
1.1 × 1013

(
c̄s,n

cs,max,n

)12 − 4.41 × 1012
(

c̄s,n
cs,max,n

)11 + 1.4 × 1014
(

c̄s,n
cs,max,n

)10 − 3.52 × 1011
(

c̄s,n
cs,max,n

)9+
6.95 × 1010

(
c̄s,n

cs,max,n

)8 − 1.06 × 1010
(

c̄s,n
cs,max,n

)7 + 1.24 × 109
(

c̄s,n
cs,max,n

)6 − 1.06 × 108
(

c̄s,n
cs,max,n

)5

+6.57 × 106
(

c̄s,n
cs,max,n

)4 − 2.78 × 105
(

c̄s,n
cs,max,n

)3 + 7.67 × 103
(

c̄s,n
cs,max,n

)2 − 131.06
(

c̄s,n
cs,max,n

)
+ 1.4367

∂U0,n
∂ c̄s,n

− 1.1×1012

cs,max,n

(
c̄s,n

cs,max,n

)23 + 1.12×1013

cs,max,n

(
c̄s,n

cs,max,n

)22 − 5.11×1013

cs,max,n

(
c̄s,n

cs,max,n

)21 + 1.37×1014

cs,max,n

(
c̄s,n

cs,max,n

)20 − 2.29×1014

cs,max,n

(
c̄s,n

cs,max,n

)19 + 2.2×1014

cs,max,n

(
c̄s,n

cs,max,n

)18−
2.47×1013

cs,max,n

(
c̄s,n

cs,max,n

)17 − 2.92×1014

cs,max,n

(
c̄s,n

cs,max,n

)16 + 5.47×1014

cs,max,n

(
c̄s,n

cs,max,n

)15 − 6.01×1014

cs,max,n

(
c̄s,n

cs,max,n

)14 + 4.73×1014

cs,max,n

(
c̄s,n

cs,max,n

)13 − 2.83×1014

cs.max,n

(
c̄s,n

cs,max,n

)12+
1.32×1014

cs,max,n

(
c̄s,n

cs,max,n

)11 − 4.85×1013

cs,max,n

(
c̄s,n

cs,max,n

)10 + 1.4×1013

cs,max,n

(
c̄s,n

cs,max,n

)9 − 3.17×1012

cs,max,n

(
c̄s,n

cs,max,n

)8 + 5.56×1011

cs,max,n

(
c̄s,n

cs,max,n

)7 − 7.44×1010

cs,max,n

(
c̄s,n

cs,max,n

)6+
7.41×109

cs,max,n

(
c̄s,n

cs,max,n

)5 − 5.32×108

cs,max,n

(
c̄s,n

cs,max,n

)4 + 2.63×107

cs,max,n

(
c̄s,n

cs,max,n

)3 − 8.34×105

cs,max,n

(
c̄s,n

cs,max,n

)2 + 1.53×104

cs,max,n

(
c̄s,n

cs,max,n

)
− 131.06

cs,max,n

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.12.92.131Downloaded on 2019-06-09 to IP 

http://ecsdl.org/site/terms_use


A1390 Journal of The Electrochemical Society, 166 (8) A1380-A1392 (2019)

Table AII. The partial derivative of U0,n with respect to cs,max,n.

Term Mathematical Expression

∂U0,n
∂cs,max,n

1.1×1012

cs,max,n

(
c̄s,n

cs,max,n

)24 − 1.12×1013

cs,max,n

(
c̄s,n

cs,max,n

)23 + 5.11×1013

cs,max,n

(
c̄s,n

cs,max,n

)22 − 1.37×1014

cs,max,n

(
c̄s,n

cs,max,n

)21 + 2.29×1014

cs,max,n

(
c̄s,n

cs,max,n

)20 − 2.2×1014

cs,max,n

(
c̄s,n

cs,max,n

)19+
2.47×1013

cs,max,n

(
c̄s,n

cs,max,n

)18 + 2.92×1014

cs,max,n

(
c̄s,n

cs,max,n

)17 − 5.47×1014

cs,max,n

(
c̄s,n

cs,max,n

)16 + 6.01×1014

cs,max,n

(
c̄s,n

cs,max,n

)15 − 4.73×1014

cs,max,n

(
c̄s,n

cs,max,n

)14 + 2.83×1014

cs.max,n

(
c̄s,n

cs,max,n

)13−
1.32×1014

cs,max,n

(
c̄s,n

cs,max,n

)12 + 4.85×1013

cs,max,n

(
c̄s,n

cs,max,n

)11 − 1.4×1013

cs,max,n

(
c̄s,n

cs,max,n

)10 + 3.17×1012

cs,max,n

(
c̄s,n

cs,max,n

)9 − 5.56×1011

cs,max,n

(
c̄s,n

cs,max,n

)8 + 7.44×1010

cs,max,n

(
c̄s,n

cs,max,n

)7−
7.41×109

cs,max,n

(
c̄s,n

cs,max,n

)6 + 5.32×108

cs,max,n

(
c̄s,n

cs,max,n

)5 − 2.63×107

cs,max,n

(
c̄s,n

cs,max,n

)4 + 8.34×105

cs,max,n

(
c̄s,n

cs,max,n

)3 − 1.53×104

cs,max,n

(
c̄s,n

cs,max,n

)2 + 131.06
cs,max,n

(
c̄s,n

cs,max,n

)

have introduced approaches that extract effective transport parame-
ters for the DFN model based on microstructural images obtained
from the X-ray computed tomography technique. Model performance
can be enhanced by utilizing such pore-scale information. We are
currently investigating the extension of the closure approach for ob-
taining effective transport properties using scanning electron micro-
scopic images of the anode and cathode. Future work will involve
simulation and optimization studies on the DFN and FHM models
based on electrochemical properties obtained from realistic electrode
morphologies.
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Appendix A: Sensitivity Analysis: Anode Equations

The anode open circuit potential, U0,n , was obtained from experimental
measurements.41 To obtain a continuously partially differentiable expression for U0,n ,
a 24th order polynomial fit was applied to this data. The polynomial expression for U0,n ,
and the partial derivative of U0,n with respect to c̄s,n and cs,max,n obtained using this rela-
tionship, are presented in Tables AI and AII. The plot for U0,n as a function of c̄s,n

cs,max,n
,

and the plots for
∂U0,n
∂ c̄s,n

and
∂U0,n

∂cs,max,n
as a function of c̄s,n

cs,max,n
around the nominal value of

cs,max,n are illustrated in Fig. AI.

Appendix B: Sensitivity Analysis: Cathode Equations

A 4th order polynomial expression for the cathode open circuit potential,U0,p, obtained
by applying a fit to experimental measurements,43 has been provided in Ref. 42 The
polynomial expression for U0,p, and the partial derivative of U0,p with respect to c̄s,p and

cs,max,p are presented in Table BI. The plot for U0,p as a function of
c̄s,p

cs,max,p
, and the plots

for
∂U0,p
∂ c̄s,p

and
∂U0,p

∂cs,max,p
as a function of

c̄s,p
cs,max,p

around the nominal value of cs,max,p are
illustrated in Fig. BI.

Figure AI. U0,n and its partial derivatives
∂U0,n
∂ c̄s,n

and
∂U0,n

∂cs,max,n
as a function of c̄s,n

cs,max,n
. The partial derivatives are evaluated around the nominal value of cs,max,n. A

polynomial expression for U0,n was obtained by applying a fit to experimental measurements.41
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Figure BI. U0,p and its partial derivatives
∂U0,p
∂ c̄s,p

and
∂U0,p

∂cs,max,p
as a function of

c̄s,p
cs,max,p

. The partial derivatives are evaluated around the nominal value of cs,max,p.
The curve for U0,p is plotted using the polynomial expression provided in Ref. 42, which in turn was obtained by applying a polynomial fit to experimental
measurements.43

Table BI. U0,p and its partial derivatives with respect to c̄s,p and
cs,max,p.

Term Mathematical Expression

U0,p

−10.72 ·
(

c̄s,p
cs,max,p

)4 + 23.88 ·
(

c̄s,p
cs,max,p

)3 − 16.77

·
(

c̄s,p
cs,max,p

)2 + 2.595 ·
(

c̄s,p
cs,max,p

)
+ 4.563

∂U0,p
∂ c̄s,p

−42.88
cs,max,p

·
(

c̄s,p
cs,max,p

)3 + 71.64
cs,max,p

·
(

c̄s,p
cs,max,p

)2 − 33.54
cs,max,p

·
(

c̄s,p
cs,max,p

)
+ 2.595

cs,max,p

∂U0,p
∂cs,max,p

42.88
cs,max,p

·
(

c̄s,p
cs,max,p

)4 − 71.64
cs,max,p

·
(

c̄s,p
cs,max,p

)3 + 33.64
cs,max,p

·
(

c̄s,p
cs,max,p

)2 − 2.595
cs,max,p

·
(

c̄s,p
cs,max,p

)

List of Symbols

aj Electrode specific surface area, [1/m]
Acell Electrode cross-sectional area, [m2]
cs, j Electrode concentration in the DFN model, [mol/m3]
cs,max, j Electrode saturation concentration, [mol/m3]
cs,sur f , j Electrode surface concentration in the DFN model,

[mol/m3]

c̄e, j Electrolyte average concentration, [mol/m3]
c̄s, j Electrode average concentration in the FHM model,

[mol/m3]
De f f

e, j Effective electrolyte diffusion coefficient, [m2/s]
Ds, j Active material diffusion coefficient in the DFN model,

[m2/s]
De f f

s, j Effective electrode diffusion coefficient in the FHM model,
[m2/s]

F Faraday constant, [V s�−1mol−1]
Iapp Applied current, [A]
j This suffix represents a property of the anode n, the separa-

tor s, or the cathode p
JLi Intercalation current density, [A/m3]
k j Interface reaction rate constant in the DFN model,

[Am2.5mol−1.5]
k∗

j Interface reaction rate constant in the FHM model, [A/mol]

Ke f f
e, j Effective electrolyte conductivity coefficient, [S−1m−1]

Ke f f
s, j Effective electrode conductivity coefficient, [S−1m−1]

Lcell Cumulative sum of the thickness of the anode, separator,
and cathode, [m]

Ln Thickness of the anode, [m]
Lp Thickness of the cathode, [m]
Ls Thickness of the separator, [m]
Mopt Cost function
N Total number of data samples used to evaluate the cost

function, [−]
PSO particle swarm optimization
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Qcell Energy capacity of a lithium-ion cell, [As]
r Radial coordinate direction from the center to the surface

of each active particle, [m]
R Universal gas constant, [Jmol−1K−1]
Rc Contact resistance at the current collectors, [�]
RMS root mean square
t+ Transference number, [−]
T Cell temperature, [K]
x Cartesian coordinate direction along the thickness of the

electrodes, [m]
xn,init Initial anode stoichiometric coefficient, [−]
xp,init Initial cathode stoichiometric coefficient, [−]
U0, j Electrode open circuit potential, [V ]
Vm Experimentally measured cell terminal voltage, [V ]
Vmodel Model-predicted cell terminal voltage, [V ]

Greek

ηe, j Electrolyte volume fraction, [−]
ηs, j Active material volume fraction, [−]
θ Vector of identification parameters
φ̄s, j Averaged electrostatic potential in the active material phase

of an electrode, [V ]
φ̄e, j Averaged electrostatic potential in the electrolyte phase, [V ]
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