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Abstract—With the increased penetration of Renewable Ener-
gy Sources (RESs) and plug-and-play loads, MicroGrids (MGs)
bring direct challenges in energy management due to the un-
certainties in both supply and demand sides. In this paper,
we present a coordinated energy dispatch based on Distribut-
ed Model Predictive Control (DMPC), where the upper level
provides an optimal scheduling for energy exchange between
Distribution Network Operator (DNO) and MGs while the lower
level guarantees a satisfactory tracking between supply and
demand. With the proposed scheme, not only we maintain a
supply-demand balance in an economic way, but also improve
the renewable energy utilization of distributed microgrid sys-
tems. To describe the dynamic process of energy trading, a
novel conditional probability distribution model is introduced,
which can characterize randomness of charging/discharging and
uncertainties of energy dispatch. Moreover, we formulate a two-
layer optimization problem and the corresponding algorithm is
given. Finally, simulation results show the effectiveness of the
proposed method.

Index Terms—Autonomous Microgrids, Coordinated Energy
Dispatch, Distributed Model Predictive Control, Renewable En-
ergy Sources.

I. INTRODUCTION

M ICROGRIDS provide a promising solution to integrate
distributed Renewable Energy Sources (RESs), storage

devices and interconnected loads into a common distribution
network [1]. However, due to the intermittent and random-
ness characteristics of RESs and the load demand across
MicroGrids (MGs), there is an urgent need to coordinate
energy between each other to achieve a reliable supply-demand
balance in an economic way [2].

MGs can operate in an autonomous mode and are subject
to environmental and technical constraints, such as lack of
power supply from the utilities due to cascading failures or
offshore islands [3], etc. Research efforts have been made
to enhance system operation and guarantee the power supply
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security [4]. Some crucial issues related to Autonomous Mi-
croGrids (AMGs) include, but are not limited to, controllable
loads which may be curtailed without adequate power supply,
surplus energy which cannot be utilized by neighbouring MGs,
etc. To balance the demand-supply gap and improve the global
resource utilization efficiency, performing cooperative energy
management strategy within interconnected microgrids has
shown significant benefits [5].

A. Literature Review

Latest literature on coordinated energy management of
AMGs, includes centralized control [6]–[10], decentralized
control [11]–[14], hierarchical control [15]–[18] and distribut-
ed control [19]–[22]. The centralized control framework is
based on global optimization of interconnected MGs to main-
tain the energy balance and maximize the overall benefits.
However, it is vulnerable to single-point failures that can
compromise the operation of the system. On the other hand,
in a decentralized control, DNO and MGs are regarded as
different entities which are self-managed and operated with
distinct objectives to minimize their own operation costs [23],
[24]. Nevertheless, due to a higher penetration of demand
loads, there exists a conflict between price risks and cost
savings because of lacking of coordination among AMGs. This
means that each microgrid controls local appliance operations
to minimize its own cost without considering other microgrids’
surplus renewable energy. To this regard, the control of AMGs
is needed to achieve system-level objectives.

Hierarchical control and distributed control have attracted
much attention recently. Xu et al. [15] propose a hierarchical
energy management strategy in order to save generation cost
and maintain the system in sustainable operation. A hier-
archical iterative control algorithm is presented to balance
grid load while meeting consumers’ power demand in smart
grids [16]. Most of existing works focus on uncertainties either
from supply-side or load-side. Recently, distributed control
has become a trend in the development of AMGs energy
management. In [19] an energy dispatch solution through a
DMPC technique is presented to improve the optimal utiliza-
tion of RESs and to reduce the operation cost. A networked
and distributed control model for isolated MGs is proposed
in [20], which can obtain a near-optimal dispatch of active
and reactive power. The coordinated DMPC algorithm has
also been applied to smart electrical grids, which use the
“price-driven” decomposition-coordination method to adjust
the system operation [25]–[27]. The aforementioned studies
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Fig. 1. Schematic of microgrid system considered in this work.

are presented with the assumption that the AMGs can com-
municate directly, namely, in a distributed manner. Each AMG
is directly connected to the common bus in practical scenarios,
allowing the power to be traded with neighbours. Individual
interconnected power lines among AMGs are not required.
That stimulates our energy management scheme through a
coordinated DMPC technique.

B. Main Contributions

The main contributions of this paper are:
1) A coordinated energy management scheme for AMGs,

which is interfaced to the DNO at the point of common
coupling. Through the proposed infrastructure, each mi-
crogrid has the option to trade energy with DNO or a local
battery according to the profit.

2) A DMPC strategy to deal with the uncertainties in both sup-
ply and demand sides. Not only does the strategy improve
global distributed generation utilization efficiency, but also
enhances the supply-demand matching performance and
guarantees the overall benefit.

3) A conditional probability distribution model to describe
randomness of charging/discharging and uncertainties of
RESs scheduling, which can characterize the operation
status of each microgrid dynamically.

C. Outline

The paper is organized as follows. Section II introduces the
system structure and the energy dispatch scheme. Section III
presents the system modeling framework. Section IV proposes
coordinated distributed MPC-based energy management for
AMGs. In Section V, validation results are provided. Section
VI concludes the paper summarizing major findings.

II. PROPOSED ENERGY DISPATCH STRATEGY
OUTLINE

A. General Structure

A cooperative network of M AMGs is illustrated in Fig.
1. Each microgrid is equipped with RESs (PhotoVoltaic (PV)
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Fig. 2. Coordinated energy management scheme.

and Wind Turbines (WT)), Energy Storage Systems (ESSs)
and loads. In the case that each microgrid is operated in
autonomous mode, the load demand can only be supplied by
RESs and ES units. Through the advanced metering infras-
tructure, each microgrid can receive the published data from
the DNO, and have the options to share its own information
with DNO. It is assumed that all AMGs are connected to the
same DNO and the power exchange can take place in both
directions.

Figure 1 displays a distributed control architecture, where
each microgrid has its own controller and shares information
with other subsystems. Each AMG achieves energy coordi-
nation only through the DNO since there are no extra power
lines among AMGs in practical cases. Moreover, the power
generation in the network of AMGs is mainly based on RESs.

B. Proposed Energy Dispatch Strategy

In this paper, our main objective is to maintain the system-
wide supply and demand balance as well as minimizing the
operation cost. To achieve this target, a two-layer coordinated
energy dispatch among AMGs is considered as shown in Fig.
2. The upper layer generates suitable set points for power
exchanges among AMGs so that the total benefits of the
network are optimized. At the lower layer, the trajectory
of the optimal solution derived in upper DNO optimization
is executed within each AMG. It is easy to see that the
upper layer, namely DNO optimization, has higher priority
in dispatching surplus renewable energy than the lower layer,
on the other hand, which focuses more on tracking the derived
set points. MG component has its own objective and intends to
minimize its local cost through MicroGrid Central Controller
(MGCC) coordination. Each microgrid with users are served
by a load aggregator, which can compensate the disturbances
caused by variant elastic loads and reduce demand peak.
Moreover, there are demand-supply uncertainties, which not
only relate to offers/demands by any given MG, but also relate
to energy trading with DNO.

III. SYSTEM MODELLING

In this section, we provide the constraints of MG com-
ponents and the models of autonomous microgrid systems.
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Furthermore, we introduce a novel conditional probability
model to characterize the dynamic operation mode.

A. Dynamics and Constraints of MG Components

1) Load Demand: We classify loads into two cate-
gories [28]:

• Critical loads: Refers to be always met because demand
levels are related to essential processes, e.g., refrigerator,
freezer and cooking, loads which are defined as PUL

i (k);
• Controllable loads: Let ∆PL

i (k) denote the type of loads
that can be flexibly scheduled in order to achieve peak
shaving and peak shifting, e.g., electric heating whose
power consumption can be changed if the resulting ther-
mal comfort is within a range specified by the consumer,
and Plug-in Hybrid Electric Vehicles (PHEV), whose bat-
tery charging rate can be adjusted as long as the charging
process is completed before the vehicle departure.

Let PL
i (k) denote the total users’ demand information in

the ith microgrid at time k, which is modelled as the follow:

PL
i (k) = PUL

i (k) + ∆PL
i (k) (1)

PL
i ≤ PL

i (k) ≤ P
L

i , ∀i ∈M (2)

0 ≤ ∆PL
i (k) ≤ ∆P

L

i , ∀i ∈M (3)

where PL
i is the minimum active power of total demand;

P
L

i and ∆P
L

i are the corresponding maximum active power
of total demand and energy dispatch of controllable loads,
respectively.

2) Energy Storage System: The storage system (such as
batteries) is key for all microgrids since it allows to s-
mooth intermittent RES power flow and provides peak power
load shaving. For a microgrid i, we let Ei(k), E

ch
i (k), and

Edch
i (k) denote the amount of electricity stored, charged, and

discharged at time k, respectively. Furthermore, the energy
charging and discharging amounts are bounded, and satisfy
the following constraints:

0 ≤ Ech
i (k) ≤ E

ch

i , ∀i ∈M (4)

Edch
i ≤ Edch

i (k) ≤ 0, ∀i ∈M (5)

where E
ch

i > 0 and Edch
i < 0 denote the maximum charging

and minimum discharging limits, respectively.
The battery’s life time event is heavily affected by repeated

charging and discharging events, which cause degradation
of energy storage devices over time. The depth-of-discharge
(DoD) is introduced as the maximum discharge to the capacity.
We denote DoDi as the DoD requirement for battery operation
in microgrid i, and have the following constraint for the energy
level:

(1−DoDi)Ei ≤ Ei(k) ≤ Ei, ∀i ∈M (6)

where (1−DoDi)Ei and Ei are lower and upper bounds for
the level of battery in microgrid i, respectively.

Finally, to account for charging/discharging losses, we de-
note ηchi ∈ (0, 1] and ηdchi ∈ (0, 1] as the charging and
discharging conversion efficiencies, respectively. Therefore,

we obtain the energy storage dynamics of microgrid i at time
k as

Ei(k + 1) =Ei(k) + (1− αi(k))η
ch
i Ech

i (k)

+ αi(k)E
dch
i (k)/ηdchi (7)

where
αi(k) =

{
1, discharging mode
0, charging mode

3) Renewable Supply: There are various types of renewable
energy technologies, such as a PV generator or a WT that
are not controllable and their output power is dependent on
the utilization of the nature sources (i.e., sun irradiance or
wind). Hence, their future profiles over a certain finite time
horizon interval can be obtained using forecasting methods.
The output of RESs is assumed to be not controllable but
predictable with noises and enough to cover all the power
usage in this paper. Assume that microgrid i has renewable
energy with total generation capacity PRES

i (k) and then the
following constraint for the RES supply holds:

PRES
i ≤ PRES

i (k) ≤ P
RES

i , ∀i ∈M (8)

where PRES
i and P

RES

i are the minimum and maximum
output power produced by the renewable source, respectively.

B. AMGs Prediction Model

Suppose there are a total of M microgrids in the investigated
system. At each time interval, the dynamic balance of each
microgrid under energy mismatch can be formulated as (7)
and

PUL
i (k)− PRES

i (k) =PB
i (k)− PS

i (k)− Edch
i (k)

−Ech
i (k)−∆PL

i (k), i = 1, 2, . . . ,M
(9)

where PB
i (k) and PS

i (k) are the energy purchased from DNO
and the energy sold back to DNO, respectively. Then the state
space model from (7) and (9) is expressed as

xi(k + 1|k) = aixi(k|k) + biui(k|k)
yi(k|k) = ciui(k|k) (10)

where

xi(k|k) = [Ei(k|k)],
ui(k|k) = [Edch

i (k|k) Ech
i (k|k) PB

i (k|k)
PS
i (k|k) ∆PL

i (k|k)]T ,
yi(k|k) = [PL

i (k|k)− PRES
i (k|k)],

ai = [1],

bi = [αi(k)/η
dch
i (1− αi(k))η

ch
i 0 0 0],

ci = [−1 − 1 1 − 1 0].

Here the matrices ai, bi, ci are the state, input and out-
put matrices, respectively. Note that the energy mis-
match between supply and demand, PL

i (k|k) − PRES
i (k|k),

is the system output yi(k|k). The dispatchable sources
Edch

i (k), Ech
i (k), PB

i (k), PS
i (k) and ∆PL

i (k) are the control
inputs. For any subsystem i = 1, 2, . . . ,M , let the predicted
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state and input at time instant k + l, l ≥ 0, based on data at
time k, be denoted by xi(k + l|k) ∈ Θni and ui(k + l|k) ∈
Ωi ⊂ Θmi , respectively, where Ωi is the set of admissible
controls for subsystem i. Let N denote the control horizon.
Define Υi = Ωi ×Ωi × . . .×Ωi ⊂ ΘmiN . The finite horizon
predicted state and input trajectory vectors in distributed MPC
framework are given by:

xi(k) =[xi(k + 1|k), xi(k + 2|k), . . . , xi(k +N |k)]T

ui(k) =[ui(k|k), ui(k + 1|k), . . . , ui(k +N − 1|k)]T

The proposed energy management scheme is discussed in
Section IV, which is designed based on the above predictive
model.

C. Dynamic Modelling of Energy Trading

1) Power Price Mechanism: All MGs need to be connected
to the DNO, and can send or receive power from the DNO.
This means that buyer MGs may trade among sellers MGs
through the DNO in the electricity markets [29]. Depending
on the real pricing, it is expected that trading among AMGs
may obtain higher benefits for sellers through the DNO. The
average price of AMGs determined by the DNO over the
optimization horizon is defined as

λ(k) =

M∑
i=1

λi(k)

M
(11)

where λi(k) is the trading price of MG i at time k. Also, we
denote λE

i as the cost of charging/discharging of the storage
battery.

2) Conditional Probability Distribution Model: In our set-
ting, energy trading between any two microgrids has to be
achieved through DNO. By doing so, we can fully use
the existing distribution lines interacted with a common bus
for electric power. When the produced renewable power in
microgrid i is unable to meet their own demand at time k,
microgrid i will buy energy from DNO or using its own
battery. In this sense, we have four operation modes Ω: event
R (battery charging), event R (battery discharging), event W
(buying electricity from DNO) and event W (selling electricity
to DNO).

Each operation mode is adopted according to state con-
ditions. For example, when microgrid i has a surplus of
energy, we may charge the local battery or sell electricity to
DNO, depends on the average trading price and charging cost.
Similarly, when there is lack of electricity in the microgrid i,
the local battery can be sold or electricity can be bought from
DNO depending on average trading price, discharging cost
and surplus energy in the whole system. Hence, let {D,Pr}
be a probability space where D represents the event set of
state condition with size of 16 and Pr is the corresponding
conditional probability. The probability set is shown in Table
I, where each condition is explained in Table II.

Remark 1. Du. are energy-related modes, which evaluate the
algebraic sum of the overall system outputs and the output of
the local microgrid i, namely, energy required/provided by all

TABLE I
CONDITIONAL PROBABILITY DISTRIBUTION MODELLING.

Du.

Pri(Ω|Duv) D.v
D.1 D.2 D.3 D.4

D1. π11
i π12

i π13
i π14

i

D2. π21
i π22

i π23
i π24

i

D3. π31
i π32

i π33
i π34

i

D4. 0 π42
i 0 π44

i

TABLE II
DESCRIPTION OF SUBSETS Duv .

Events Mathematical Description

D1.

M∑
j=1

yj(k) < 0, yi(k) < 0

D2.

M∑
j=1

yj(k) < 0, yi(k) > 0

D3.

M∑
j=1

yj(k) > 0, yi(k) < 0

D4.

M∑
j=1

yj(k) > 0, yi(k) > 0

D.1 λE
i > λ(k), αi(k) = 0

D.2 λE
i > λ(k), αi(k) = 1

D.3 λE
i < λ(k), αi(k) = 0

D.4 λE
i < λ(k), αi(k) = 1

AMGs and energy required/provided by MG i. For example,
D1., means DNO has surplus energy from the overall system
outputs to dispatch, and microgrid i has also surplus energy.
So does the others in Du..

Remark 2. D.v are battery-related modes, which compare
average trading price, charging/discharging cost, and state of
storage battery αi(k). For example, D.1, indicates that the
battery is charging and charging price is higher than average
trading price. So does the others in D.v .

Note that the conditional probability in Table I is subject
to physical constraints. To better demonstrate the probabil-
ity set, Table III shows decision-making for randomness of
conditional probability distribution. For example, the event
D12 corresponding to π12

i , means that microgrid i has surplus
energy and has the option to sell it to DNO or charge the
local battery. But currently the price of charging is higher
than average trading price and the battery is in discharge mode.
Therefore, the microgrid i can only sell electricity to the DNO,
which means it belongs to W . Especially, given the event D41

corresponded to π41
i , it means microgrid i needs more power

for its load but no surplus energy can be provided by DNO and
the storage battery is operated in a charging mode. Therefore,
the case won’t exist, namely, π41

i = 0. So does other cases.
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TABLE III
DECISION-MAKING FOR CONDITIONAL PROBABILITY DISTRIBUTION.

Operation mode Conditional Probability
R (battery charging) π11

i , π31
i

R (battery discharging) π24
i , π42

i , π44
i

W (buying electricity) π21
i , π22

i , π23
i

W (selling electricity) π12
i , π13

i , π14
i , π32

i , π33
i , π34

i

Furthermore, we have the following definition:

Definition 1. Events D11, D12, . . . , Duv are jointly indepen-
dent if, for any 1 ≤ u ≤ 4, 1 ≤ v ≤ 4, the following properties
hold true:

0 < πuv
i < 1,

4∑
u=1

4∑
v=1

Pri(Duv) = 1. (12)

D. Main Assumptions

In the AMGs control structure, developed in this work,
two assumptions are needed, whose requirements involve
microgrid configuration.
1) AMG cannot simultaneously purchase and sell power

from/to other MGs. Moreover, local critical loads have
higher priority and their demand can always be met.

2) At any time instant, the battery can only be either charged
or discharged. This means αi(k) = 0 or 1 at time k.

IV. COORDINATED ENERGY DISPATCH SCHEME
In this section, the two-layer coordinated optimization prob-

lems are formulized.

A. Optimization Problem for DNO

As discussed in the previous sections, a MG can be either
a seller (surplus energy), a buyer (energy mismatch), or not
participating (balance equals to zero) at each time step. The
aim of upper level coordinated controller is to generate optimal
set points for each MG so that economically optimized power
dispatch is performed. The following Problem 1 is formulated
to guarantee global coordination of the energy between DNO
and AMGs with the conditional probability distribution.
Problem 1:

min
Ech

i (k+l|k),
Edch

i (k+l|k),
PB

i (k+l|k),
PS

i (k+l|k)

N∑
l=1

M∑
i=1

Pri(W |Duv)λ(k)P
B
i (k + l|k)

− Pri(R|Duv)λ
E
i E

ch
i (k + l|k)

− (Pri(R|Duv)λ
E
i E

dch
i (k + l|k)

− Pri(W |Duv)λ(k)P
S
i (k + l|k)) (13)

s.t.(2)− (5), (12)

PB
i (k + l|k) ≥ 0, PS

i (k + l|k) ≥ 0, (14)
M∑
i=1

PB
i (k + l|k) =

M∑
i=1

PS
i (k + l|k) (15)

In the objective function (13), the DNO controller is aimed
at minimizing the costs, while satisfying power balance, ESs
and energy exchange constraints. The first two terms in the ob-
jective function are related to the cost of the power purchased
from the DNO and the storage battery, while the second two
terms are related to the cost of the power sold to the DNO
and local storage. Constraints (2)-(5) and (12), discussed in
the previous section, include autonomous loads constraints,
RESs and batteries power limits. Inequality constraints (14)
guarantee that the amount of purchased and sold energy
is nonnegative. Equality constraints (15) guarantees that the
algebraic sum of the purchased energy is equal to the sold
energy between DNO and AMGs.

The optimal zi,ref (k + l|k) is determined as Ech
i (k +

l|k), Edch
i (k + l|k), PB

i (k + l|k), PS
i (k + l|k), as follows,

zi,ref (k + l|k) = PL
i (k + l|k)− PRES

i (k + l|k)
+ Edch

i (k + l|k) + Ech
i (k + l|k)

− PB
i (k + l|k) + PS

i (k + l|k) (16)

Here zi,ref (k+ l|k) < 0 means that the local microgrid has a
surplus of energy to supply, while zi,ref (k + l|k) > 0 means
there is no sufficient energy in local system. So we should
optimize at the lower layer, which is described in Section IV-
B. The detail of coordinated energy dispatch strategy is given
in Section IV-C.

B. Optimization Problem for AMGs
The objectives of local microgrid include tracking zi,ref (k+

l|k) by adjusting local controllable load and battery, as well
as minimizing its own cost of charging and discharging. Thus,
the optimization index Ji(ui(k)) should include two parts as
follows:

Ji(ui(k)) =
N∑
l=1

(γ1
(
∆PL

i (k + l|k)− zi,ref (k + l|k)
)2

+ γ2λ
E
i

(
Ech

i (k + l|k)− Edch
i (k + l|k)

)2
)
(17)

where γ1 and γ2 are weighting coefficients. Note that at each
time instant, there is only one nonzero value between Ech

i (k+
l|k) and Edch

i (k + l|k).
For ease of notation, the time dependence in the state and

input vectors in the distributed MPC framework is dropped,
i.e. Ji(ui) ← Ji(ui(k)) and ui ← ui(k), ∀i = 1, 2, . . . ,M .
Let p(k) represent the number of allowable iterations for the
sampling interval at time k, which guarantees the terminate the
cooperation-based algorithm when system sampling interval
are in sufficient to derive the convergence of an iteration. Also,
the optimization of the local controller is affected by control
actions from other subsystems. Hence, denote the cooperation-
based cost function J(·) after p iterations as follows, which
measures the system wide impact of local control actions,

J(up
1, up

2, . . . , up
M ) =

M∑
i=1

wiJi(up
1,up

2, . . . , up
M ) (18)

Then we have the system wide objectives as follows, which is
a strict convex combination of each local controller objectives,
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Problem 2:

ℜi ,min
ui

M∑
i=1

wiJi(up−1
1 , . . . , up−1

i−1 , ui, up−1
i+1 , . . . , up−1

M )

s.t. (2)− (6), (8), (10),

wi > 0,
∑

i
wi = 1,

ui(k + l|k) ∈ Ωi, 0 ≤ l ≤ N − 1

ui(k + l|k) = 0, N ≤ l.
(19)

The solution to Problem 2 is denoted by u∗(p)
i . By definition

u∗(p)
i = [u

∗(p)
i (k|k), u∗(p)

i (k+1|k), . . . , u∗(p)
i (k+N − 1|k)]T

Remark 3. To achieve these local and global objectives, this
section presents two-layer coordinated dispatch scheme. At the
upper layer, a DNO controller is designed as global objectives
to determine an optimal trajectory. At the lower layer, to devel-
op a reliable distributed MPC framework, namely, feasibility
of the DMPC, we need to ensure that the AMGs cooperate
with each other in achieving system wide objectives.

C. DMPC Strategy for Coordinated Control

So far, both the DNO controller and the microgrid local
controllers have been designed. As discussed above, the upper
layer DNO solves its own optimization problem, and provides
references for the local microgrid. In this way, at the beginning
of each scheduling cycle, the DNO computes the scheduling
command by solving the Problem 1. The specific implemen-
tation of coordinated energy dispatch strategy is implemented
by the Algorithm 1 as follows

Algorithm 1 Coordinated Energy Dispatch
1: Initialization Ei(0), PRES

i (0), PL
i (0), Ech

i (0), Edch
i (0),

PB
i (0) and PS

i (0), ∀i = 1, . . . ,M
2: for k = 1 do
3: Get measure PRES

i (k), PL
i (k), Ei(k), Ech

i (k) and
Edch

i (k) at local MGCC; estimate PRES
i (k + l|k),

PL
i (k+ l|k), Ei(k+ l|k), Ech

i (k+ l|k), Edch
i (k+ l|k),

PB
i (k + l|k) and PS

i (k + l|k).
4: Exchange the information of yi(k+ l|k), and broadcast

its sequence to DNO.
5: Solve the upper layer optimization Problem 1.
6: until convergence
7: Send the reference control sequence zi,ref (k + l|k) to

local MGCC.
8: k ← k + 1 and go to step 3.
9: end for

In the following scheduling cycle, the computed zi,ref (k+
l|k) is sent to the lower layer microgrid controllers for
execution. Instances of Problem 2 are solved in a parallel
and iterative manner. Using this DMPC strategy, not only
does the local controller focus on their own local objectives,
but also cooperate with each other to achieve a system-level
optimization. The proposed DMPC strategy is illustrated in
Algorithm 2.

Algorithm 2 Proposed DMPC Algorithm
1: Initialization ∆PL

i (0), ρi, p = 1, ∀i = 1, . . . ,M
2: Given pmax(k) ≥ 0 and ϵ > 0
3: Get measure of current loads; get the estimation of

Ech
i (k+l|k), Edch

i (k+l|k), PL
i (k+l|k) and ∆PL

i (k+l|k);
receive the reference control sequence zi,ref (k+l|k) from
DNO.

4: if zi,ref (k + l|k) > 0 then
5: if SOC > 20% then
6: Discharge the battery.
7: if zi,ref (k + l|k) + Edch

i (k + l|k) > 0 then
8: Set zi,ref (k+l|k) = zi,ref (k+l|k)+Edch

i (k+l|k)
and broadcast it to local controllers.

9: end if
10: else
11: Broadcast zi,ref (k + l|k) to local controllers.
12: end if
13: while ρi > ϵ for some i = 1, 2, . . . ,M and p ≤ pmax

do
14: u∗(p)

i = arg(ℜi), ∀i = 1, 2, . . . ,M , (Problem 2).
15: for each i = 1, 2, . . . ,M do
16: up

i ← wiu
∗(p)
i + (1− wi)up−1

i

17: ρi ← ∥up
i − up−1

i ∥.
18: end for
19: p← p+ 1
20: end while
21: Implement the first step of the optimal control sequence,

∆PL
i (k + l|k), shift the corresponding loads.

22: else if SOC < 80% then
23: Charge the battery.
24: end if

D. Convergence of DMPC Algorithm

Theorem 1. If Ji(ui) satisfies the form in (17), then Ji(ui)
is convex over the set Ωi .

Proof: From (17), we have Ji(ui) ≥ 0. Rewriting the
objective function in (17) based on the distributed discrete-
time system model (10), we have

Ji(ui) =
N∑
l=1

(ui(k + l|k)TS1ui(k + l|k)

− 2S2ui(k + l|k) + S3) ≥ 0

(20)

where

S1 =


γ2λ

E
i

γ2λ
E
i

0
0

γ1

 ≥ 0,

S2 =
[
0 0 0 0 γ1zi,ref (k + l|k)

]
,

S3 = γ1zi,ref (k + l|k)2 ≥ 0.

If we take the second derivative to the equation (20), then

J ′′
i (ui) = 2N(2γ2λ

E
i + γ1) ≥ 0
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Fig. 3. Schematic of the studied microgrids.

Thus, Ji(ui) is convex, the proof is completed.

Theorem 2. Given the distributed MPC formulation ℜi de-
fined in (19), ∀i = 1, 2, . . . ,M , the sequence of cost functions
J(up

1, up
2, . . . , up

M ) generated by Algorithm 2 is non-increasing
with iteration number p.

The detailed proof is similar to Lemma 1 in [30]. For
simplicity, the proof is omitted.

From Theorem 1, we know that Ji(u(i)) is convex and
bounded below. Using Theorem 2 assures non-increasing
with with iteration number p. Hence, the distributed MPC
formulation ℜi defined in (19) is convergent.

V. CASE STUDY
The microgrid systems considered in the simulations are

shown in Fig. 3; they are in an autonomous mode and comprise
of three microgrids with PV, WT, battery and local loads. To
simplify the expression, the power and energy were converted
to power unit (p.u.). We used an MPC optimization period
Np = 4, and control horizon Nu = 1. This corresponds to
one hour intervals over a 24 hour period and consisting of
typical horizon and time step for scheduling updates. Other
detailed parameters and settings of AMGs are discussed in
the following subsections.

A. Simulation Setup

Set the minimum active power of total demand PL
i to be

10 p.u., and P
L

i = 120 p.u., ∆P
L

i = 80 p.u., ∀i = 1, 2, 3.
The minimum and maximum power of RESs are 5 p.u. and
120 p.u., respectively. The initial value of the battery is set
to Ei(0) = 40 p.u., E

ch

i , E
dch

i , Ei are chosen to be 30
p.u., 30 p.u., 60 p.u., respectively, and ηchi = 0.7, ηdchi =
0.65, DoDi = 0.92, ∀i = 1, 2, 3. Let the cost weight
coefficients be γ1 = 1, γ2 = 0.5.

In China, the “different duration with a different price”
strategy is adopted. It is specified in Fig. 4, where yellow
lines represent the average price among AMGs. In addition,
the cost of charging or discharging of the storage battery λE

i

is set to be 0.82 Yuan for each microgrid.
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Fig. 4. Trading price of each microgrid.
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Fig. 5. Forecasted and actual RES.

B. Forecasts

To implement DMPC and provide reference signal for the
optimization problem, renewable power and demand forecasts
are required to be computed at each time step over the
finite time horizon. The renewable power and demand data
series generally exhibit high-frequency fluctuations and peak
shifting as well as uncertainties. Therefore, we apply least-
square Support Vector Machines (SVMs) [31] for regression
with a moving time window to forecast the renewable power
generation and the demand for day ahead [32]–[34]. Note that
the day ahead forecast is based on the historical data and
the current real RES output has the uncertainties. Besides,
we use the conditional probability distribution to characterize
the randomness of decision-making which was affected by
the RES output with uncertainties. Examples of renewable
power production profiles and daily demand employed in the
optimization routine are shown in Fig. 5 and 6, respectively.
Although there is a small forecasting error due to the uncer-
tainties in demand and renewable generation amounts, it can
be seen that the predicted RESs and load demand at each time
step can track the actual value very well.

C. Results and Discussion

With the above initial conditions, operation mode dynamics
among AMGs during the whole time period are shown in Fig.
7. The values 1, 2, 3, 4 in the y-axis indicate battery charg-
ing, battery discharging, buying energy and selling energy,
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respectively. It can be observed that MG1 purchases the energy
while MG3 sells the energy to the DNO from 11am to 2pm.
The energy exchange between DNO and each microgrid is
reported in Fig. 8, where positive values represent the energy
purchased from the DNO, and negative values represent the
energy sold to the DNO. It should be noted that, in Fig. 8,
MG1 tends to trade energy when MG3 supplies the DNO with
the majority of their surplus energy from 11am to 2pm. The
battery working mode can be seen in Fig. 9, which illustrates
the power charge/discharge of the battery in each MG. As
a convention, positive values correspond to battery charging
while negative ones represent battery discharging. We can see
that there is no charging or discharging among MGs from
11am to 2pm. That is because the cost of charging/discharging
is higher than the average trading price during that time for
MG2 and MG3, while MG1 requires surplus energy, which can
be seen clearly in Fig. 4 and Fig. 8. Secondly, we evaluate
the proposed scheme in terms of reference trajectory tracking.
Figs. 10-11 show the results of this test. The optimal states of
different batteries are shown in Fig. 10. It is reported that local
storage systems show different behaviours. Their operation is
strongly affected by the capacity of each battery, the cost of
charging or discharging, and the optimal control strategies
of the lower layer in local MG. The energy of storage can
compensate partly the mismatch between RESs and loads. Fig.
11 shows the scheduling of shiftable loads by the aggregator
with proposed method. In order to follow the desired trajectory,
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Fig. 8. Buy/sell electricity between DNO and each microgrid.
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it is clear that an amount of loads needed to be curtailed
because renewable generation during night was much smaller,
which is shown in Fig. 5.

From an economic perspective, when coordinated DMPC is
employed, the average daily operating cost is reduced from
173.4 Yuan to 156.62 Yuan, compared with those achieved by
the no-cooperation scheme.

VI. CONCLUSION

In this paper, we exploited the potential benefits of the
cooperative framework for AMGs with RESs and energy
storage units through a coordinated DMPC strategy. With the
proposed scheme, the energy exchange between DNO and
AMGs is brought to an optimal trajectory, thereby making
local controller optimized actions based on the trajectory.
Meanwhile, by considering the uncertainties in RESs and
loads, a better trade-off between supply-demand balance and
economic performance is achieved in the whole system. Nu-
merical results confirm that the proposed coordinated control
approach can effectively deal with the uncertainties of micro-
grids operation.
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