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Abstract— This paper proposes a model predictive torque
control strategy for spark-ignition engines with external exhaust
gas recirculation. The proposed economic nonlinear model pre-
dictive controller (E-NMPC) tries to minimize fuel consumption,
given an indicated mean effective pressure (IMEP) tracking
reference and abnormal combustion constraints such as knock
and combustion variabilities. A nonlinear optimization problem
is formulated and solved in real time using sequential quadratic
programming (SQP) to obtain the desired control actions. The
SQP utilizes active set quadratic programming (QP) algorithms,
with warm-start techniques that exploit the structural similarities
between successive sub-QPs along the SQP sequence. This process
reduces QP iterations by approximately 60% for each SQP
update. Simulation results demonstrate that the proposed model
predictive controller can track the IMEP reference with an
rms error of 1.1% for engine cycles without active combustion
constraints. When the IMEP reference conflicts with constraints,
the SQP E-NMPC can efficiently find close-to-optimal control
actions that are similar to those from off-line feed-forward
calibration. The proposed algorithm is validated on an engine
dynamometer. The algorithm executes in a prototype engine
controller with a mean computation time of 1.07 ms, proving
its feasibility for future engine control unit implementation.

Index Terms— Combustion constraints, economic nonlinear
model predictive control (MPC), exhaust gas recirculation (EGR),
experimental results, indicated mean effective pressure (IMEP)
tracking, sequential quadratic programming (SQP), spark-
ignition (SI) engine, suboptimal solution.

NOMENCLATURE

Ae Effective area.
A f low Effective flow area during valve overlap.
AF R Air-to-fuel ratio.
C A50 Crank angle of 50% mass fraction burned.
C D Discharge coefficient.
ceg Cylinder exhaust gas fraction.
cp Constant pressure heat capacity.
C OV Coefficient of variation.
C OV ub Upper bound of COV.
e Slope factor.
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ECU Engine control unit.
EG R Exhaust gas recirculation.
E − M PC Economic model predictive control.
E − N M PC Economic nonlinear model

predictive control.
EV C Exhaust valve closing.
ηV Volumetric efficiency.
γ Ratio of heat capacity.
IC Internal combustion.
I M E P Indicated mean effective pressure.
I V O Intake valve opening.
K I Knock intensity.
K I ub Upper bound of KI.
λ Lagrange multiplier.
L HV Low heating value.
L PV Linear parameter variant.
mα Total air mass flowing through the throttle

per engine cycle.
mβai r

Total air flow into the cylinder
per engine cycle.

mβeg
Total exhaust flow into the cylinder
per engine cycle.

mε Total flow through the EGR valve
per engine cycle.

M AF Mass air flow.
M AP Manifold absolute pressure.
M PC Model predictive control.
mm Intake manifold mass.
N L P Nonlinear programming.
N M PC Nonlinear MPC.
O D E Ordinary differential equation.
O LV Overlap volume between EVC and IVO.
ωe Engine speed.
P0 Pumping effective pressure.
Pa Ambient pressure.
Pexh Exhaust pressure.
P f Fuel effective pressure.
P i Orifice input pressure.
Pm Intake manifold pressure.
Po Orifice output pressure.
Q P Quadratic programming.
R Gas constant.
RGM Residual gas mass.
SI Spark ignition.
σ 0 Stoich AFR.

1063-6536 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

S P K T Spark timing.
S Q P Sequential QP.
T a Ambient temperature.
τ Time constant.
T DC Top dead center.
T exh Exhaust temperature.
T i Orifice input temperature.
θ EG R EGR valve angle.
θT Throttle angle.
ϑ Ratio of heat transfer to coolant.
T m Intake manifold temperature.
V c Cylinder clearance volume.
V d Engine displacement.
V m Intake manifold volume.

I. INTRODUCTION

THE control objectives of an IC engine management
system are to deliver demanded engine torque while mini-

mizing fuel consumption and preventing abnormal combustion
phenomena. These control objectives favor the application of
model-based optimal control strategies. While many articles
discuss the possibility of applying MPC to regulate engine
torque output [1]–[4], minimal focus has been given to the
minimization of fuel consumption and meeting combustion
constraints. The most important factor causing this dilemma
is that the engine models used for MPC torque control are
heavily simplified to allow reasonable computation time of
the optimal control actions. However, this model simplification
process affects optimality of the control actions obtained by
the MPC. This paper proposes an E-NMPC strategy for SI
engines with external EGR. The strategy is able to utilize
complex engine models to find the optimal control actions
while achieving target IMEP, reducing fuel consumption, and
meeting abnormal combustion constraints.

Control-oriented engine air path and torque generation
models are well established (see [5]). Most of these models
are constructed in the time domain, making them favorable
for controllers with fixed sampling time. The most important
drawback of this approach is that the IC engines are inherently
discrete event systems with cyclic operational characteristics.
The SI engine system is modeled and controlled in the engine
cycle domain for this paper. While this approach agrees with
the discrete nature of both MPC and IC engines, it also
benefits from the fact that most control-oriented combustion
models were constructed in the engine cycle domain [6]–[8].
This makes it convenient to impose abnormal combustion
constraints such as knock and combustion stabilities during
the calculation of optimal control actions.

This paper reveals that the nonlinear optimization problem
is not convex for IMEP control of SI engines with exter-
nal EGR, leading to the challenge of dealing with multiple
local minima issues. Global NLP solvers, such as dynamic
programming and particle swarm, can be employed for MPC
applications [9], [10]. Stability of tracking and E-MPC with
global optimal solutions was shown in [11] and [12]. However,
these global NLP solvers require numerous evaluations of the
system model, which are not feasible for engine control appli-
cations with fast update frequencies. Most model predictive

engine control researchers have selected suboptimal strategies
to reduce the computational demand [13]–[16]. LPV MPC is a
widely adopted suboptimal predictive controller for nonlinear
systems tracking problems [17], [18]. The validity of LPV
MPC is based upon the assumption that the system behavior
remains linear like if the system states are in the neighborhood
of the nominal point of linearization. For SI engines, the COV
of IMEP and knock constraints are highly nonlinear, which
causes significant error if approximated linearly. Finding the
nominal point of linearization requires high calibration effort
to ensure that they are equilibrium points and economically
optimal. Although closed-loop stability was established for
some types of E-MPC [19], [20], a general stability criterion
for suboptimal E-NMPC has not yet been developed. This
paper identifies a Lyapunov function for the proposed subop-
timal E-NMPC application, proving the closed-loop stability
of the investigated engine control system.

SQP is a continuous NLP algorithm based on Newton’s
method. Previous research investigated the possibility of
applying SQP to NMPC [15], [21], [22]. The most important
advantage of SQP is that it transforms complex NLP problems
into a sequence of sublevel QP problems (hence the name).
The sub-QP problems can be solved efficiently with algorithms
based on active set methods. As a result, the original nonlinear
objective and constraint functions are only evaluated before
the sub-QP (to compute the Hessian and Jacobian of the NLP
problem), saving significant computation time compared to
other NLP solvers. This characteristic is advantageous for
engine control applications since the evaluation of most high-
fidelity models requires a significant amount of time due
to their complex structure with multiple calibration maps
and ODEs.

Conventional SQP algorithms designed for general opti-
mization purposes (see [27]) may not be favorable for specific
real-time MPC applications due to the heavy computational
load in computing the Hessian matrix for complex or implicit
system models. In this case, numerical differentiation methods
are necessary (e.g., algorithmic differentiation and finite differ-
ence). In practice, the Hessian is often approximated with the
first-order derivatives to reduce computational burden. Quasi–
Newton methods are well discussed in [23] and [25]. The
Broyden–Fletcher–Goldfarb–Shanno (BFGS) rank-two update
method is widely used in SQP applications [26]–[28]. The
computational load required to approximate the Hessian pre-
vents the BFGS method from being utilized for MPC with
fast sampling. Quirynen et al. [15] proposed an approach
based on algorithmic differentiation to calculate the exact
Hessian. This method significantly reduces the computation
effort compared with BFGS Hessian approximation. However,
the exact Hessian of the system is not necessarily semipositive
definite. This paper proposes to use the mirrored Hessian
instead of the exact Hessian for sub-QP formulation [15]. The
effect of using the mirrored Hessian on SQP convergence is
not theoretically addressed nor numerically discussed. The use
of nonconvex QP algorithms with nonpositive definite Hessian
SQP is discussed in [28], where it is shown to be not efficient
enough for most MPC applications. This paper exploits the
Gauss–Newton-like structure of the investigated E-NMPC to
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simplify the computation of Hessian and Jacobian matrices.
Although numerical real-time linearization of the nonlinear
engine model induces some round-off error, the SQP preserves
most of the nonlinearities of the system.

For NLP problems with multiple local optimal solutions,
the search step is computed by a standard SQP iteration
that can be very aggressive, making the SQP converge to
an undesirable local optimal solution. In some extreme cases,
the SQP cycles between local optima without converging (see
[27, pp. 292, 293]). For MPC applications, this behavior
increases computational load and causes undesirable control
chattering. A merit function-based approach can be applied
to enhance local convergence of the SQP [27], [29], [32].
This paper exploits this technique to ensure the SQP converges
to the first local optimal solution along the search direction.
This method also guarantees that the merit function is strictly
decreasing as the SQP progresses, which can be utilized to
prove the closed-loop stability of the proposed E-NMPC.

This paper expands the scope and details of [35]. The two-
layer supervision control structure is explained. Modeling of
IMEP generation is further discussed with some additional
details to enhance the derivation of the final nonlinear state-
space engine model. Convex analysis of the E-NMPC problem
shows the existence of multiple local optimal solutions of
the real-time NLP problem. While global optimization algo-
rithms are not considered feasible for the real-time application,
this paper utilizes a computationally efficient SQP algorithm,
which finds the local optimal solution of the NLP problems.
However, the existence of multiple local minima leads to
potential issues with control chattering and stability. Warm
start and merit function techniques are introduced to ensure
closed-loop stability and eliminate control chattering. Finally,
the experimental setup and validation results are provided to
substantiate the performance and computational efficiency of
the proposed E-NMPC engine controller. Effects of different
horizon lengths on performance and stability are investigated
and demonstrated in this paper. Discussion of E-NMPC per-
formance for a range of engine speeds is also presented.

This paper is organized as follows. Section II introduces
the control-oriented engine model. Section III formulates and
analyzes the NLP solver for desired control actions. Section IV
discusses the proposed SQP MPC strategy. Section V investi-
gates two active set QP algorithms with warm-start techniques
and Section VI provides simulation and experimental results.
Finally, Section VII concludes the contribution of this paper
highlighting possible future extensions.

II. CONTROL-ORIENTED NONLINEAR ENGINE MODEL

This paper focuses on IMEP control of SI engines with
external EGR. The fuel injection control is assumed to main-
tain a stoichiometric AFR, maximizing catalyst efficiency. The
manifold temperature is assumed to be constant since the EGR
is cooled with a heat exchanger. Finally, the air mass in the
air-path system is considered uncompressible. Fig. 1 shows
the engine configuration with labels of sensors, control, and
modeling variables.

In the engine cycle domain, cylinder air charge per cycle
can be computed according to intake manifold air density and

Fig. 1. Block diagram of the SI engine system with external EGR.

volumetric efficiency (for a given engine manifold pressure
and engine speed) as

mβair = mmair

Vm
VdηV (Pm, ωe) (1)

where

mmair air mass in the intake manifold;
ηV (Pm , ωe) volumetric efficiency;
Vd engine displacement;
Vm intake manifold volume;
Pm intake manifold pressure;
ωe engine speed, treated as a varying parameter

in this paper.

The air mass balance of the intake manifold can be
expressed as

mmair(k + 1) = mmair(k) + mα(k) − mβair (k). (2)

Rearranging (1), and substituting it into (2) yields

mβair (k + 1) = 1

K + 1
mβair (k) + K

K + 1
mα(k) (3)

where

K = ηV (Pm(k), ωe)Vd

Vm
.

The cylinder EGR flow can be modeled similar to the air
mass flow, as shown in the following:

mβeg(k + 1) = 1

K + 1
mβeg(k) + K

K + 1
mε(k). (4)

The manifold pressure can be computed by reversing the
speed density equation

Pm(k) = (mβair (k) + mβeg(k))RTm

ηV (Pm(k), ωe)Vd
. (5)

It can be observed from (3) to (5) that manifold dynamics
are independent of engine speed (excluding the slowly varying
volumetric efficiency ηV ), unlike most time-domain models.
In-cylinder gas composition includes air, exhaust gas, fuel,
and other minor species that are neglected in this paper. The
amount of air and fuel can be determined by mβair , assuming
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stoichiometric AFR. The fuel mean effective pressure can be
computed as

Pf (k) = LHV · mβair(k)

σ0Vd
(6)

where σ0 is stoichiometric AFR and LHV is the low heating
value of the fuel.

The amount of in-cylinder exhaust gas is the summation of
mβeg and RGM. This paper adopts the semiempirical model
proposed in [37], which expands the RGM model proposed
in [36]. This model separates the RGM into two parts: 1) from
trapped residual at EVC due to unswept cylinder volume and
2) exhaust gas backflow into the cylinder and intake runner
during the valve overlap period. After adding terms �Pexh
and �Pm to account for wave tuning dynamics to the original
Fox model, the RGM for each engine cycle can be calculated
according to

RGM(k)

= C1
Pexh

RTexh(k − 1)
Vc

+ C2

√
Pexh

RTexh(k−1)
((Pexh + �Pexh) − (Pm +�Pm))Aflow

× OLV

ωe
(7)

where

Pexh ≈ 110 kPa exhaust pressure;
Texh exhaust temperature;
R gas constant;
Vc cylinder clearance volume;
Aflow effective flow area during valve

overlap period;
OLV overlap volume which is the cylinder

volume difference between
EVC and IVO;

C1 and C2 calibration factors.

The total fraction of in-cylinder exhaust gas ceg can be
generated as

ceg(k) = mβeg(k) + RGM(k)

mβair (k) + mβeg(k) + RGM(k)
. (8)

With the information of cylinder composition, the IMEP can
be modeled using Willians approximation method [5]

IMEP(k) = e(k)Pf (k) − P0 (9)

where e is the “slope” factor and P0 = Pexh − Pm is pumping
effective pressure.

The slope factor e is related to engine speed ωe, C A50, and
ceg. It is the product of multiple slope factors with dependence
of one or two inputs

e(k) = eω(ωe)eζ (C A50(k))eeg(ceg(k), ωe). (10)

Each slope factor in (10) can be approximated with
a low-order polynomial function, as demonstrated by
Figs. 2–4 regarding the engine used in this paper. Fig. 4 shows
the contour plot of the computed eeg with respect to in-cylinder

Fig. 2. Relationship between eω and RPM.

Fig. 3. Relationship between eζ and CA50.

Fig. 4. Relationship between eeg and ceg.

exhaust gas fraction and engine speed for the calibration data.
Clear correlation can be observed and modeled using 2-D
polynomial functions (not shown on the plot).

An energy balance approach is utilized to calculate exhaust
temperature Texh for the RGM model. The IC engine trans-
forms the chemical energy of the injected fuel into mechanical
work (IMEP) and rejected heat, which is the summation of
heat transfer to coolant and exhaust enthalpy. Thus the exhaust
gas temperature can be calculated according to

Texh(k) = Vd(P f (k) − IMEP(k))(1 − ϑ)

cpmβair (k)(1 + 1/σ0)
(11)

where cp is the constant pressure gas heat capacity and ϑ is
the ratio of transferred heat to coolant (in terms of the total
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rejected heat). It can be estimated with engine speed, CA50,
and load [39], [40].

COV of IMEP is utilized as an indication of cycle-by-cycle
combustion variability. The proposed model predictive IMEP
control should maintain the COV of IMEP below a certain
value. The COV of IMEP is correlated with the cylinder air
mass flow mβair and CA90 [42]. CA90 is computed with an
artificial neural network (one hidden layer and ten neurons)
with CA50, RPM, and mβair as inputs. KI is computed by
integrating the end gas energy modeled by an Arrhenius type
function in the crank angle domain [38]. The output of this
model is the normalized KI, which indicates engine knock
likely if KI ≥ 1. This model cannot be directly integrated
in the E-NMPC due to its need for a crank angle-resolved
combustion model. A fully empirical KI map is employed to
approximate the crank angle-resolved physics-based KI model
in the engine cycle domain. The inputs to this KI map are
RPM, CA50, mβair , and RGM.

In summary, the engine is modeled as a continuous fourth-
order nonlinear state-space model. Lookup tables and artificial
neural networks are applied in the state and output functions
to improve model accuracy. We use subscript k to replace step
indicators for the convenience of discussion. The engine model
can be written as

xk+1 = fx (xk, uk)

yk = fy(xk)

zk = fz(xk) (12)

where x ∈ R
4, x = [mβair , mβeg , RGM, xC A50]T ; u ∈

R
3, u = [mα, mε, C A50]T ; y ∈ R

1, y = IMEP; z ∈ R
3,

z = [Pm, COV, KI]T ; and xC A50 is an augmented state that
delays CA50 by one step.

The CA50 output of the MPC is the target value for the
next engine cycle, which induces a unit step delay.

Remark: The slowest dynamics of the investigated engine
system are the intake manifold filling dynamics. Therefore,
the characteristic “time” τ (in engine cycles of 4π crank angle
degrees) is calculated as

τ ≈ Vm

ηV V d
= 2 cycles with ηV ≈ 1. (13)

Hence, the control and preview horizons of the MPC can
be as short as two steps without significant loss of optimality
and stability [2].

III. TWO-LAYER SUPERVISION CONTROL STRUCTURE

The proposed E-NMPC is designed in the engine cycle
domain. The E-NMPC manipulates throttle mα (air mass flow
per cycle), EGR valve mε (EGR mass flow per cycle), and
combustion phasing C A50 (crank angle at which 50% of total
heat release occurs). These variables are sent to lower level
controllers as tracking references. The lower level controllers
have faster update frequencies than the E-NMPC to account
for fast- and low-order nonlinear dynamics of the actuators.
The two-layer supervision control structure (shown in Fig. 5)
exploits the frequency separation between engine and actuator
dynamics. The lower level controllers remove nonlinearities

Fig. 5. Two-layer supervision engine control structure.

from the E-NMPC, significantly reducing the complexity of
the NLP problem.

CA50 is an important input to many control-oriented engine
models. In this paper, it is used to compute IMEP, exhaust
temperature, COV of IMEP, and KI. SI engine control sys-
tems manipulate SPKT to provide desired CA50. However,
the correlation between CA50 and SPKT varies with engine
operating conditions. To capture this correlation, the cur-
rent SI engine control systems utilize maps and combustion
models [6], [7]. Both options are too computationally expen-
sive to be implemented in the MPC. Therefore, we employed
a separate SPKT controller so that the MPC can manipulate
CA50 directly. This controller updates before every firing, and
directly inverts factory calibrated combustion phasing maps.

Using the orifice flow model, the flow through the throttle
and EGR valves can be computed as

ṁα = CD Ae
Pi√
RTi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
γ

(
2

γ + 1

) γ+1
γ−1

, Po < Pcr

(
Po

Pi

) 1
γ

√√√√√ 2γ

γ − 1

⎡
⎣1 −

(
Po

Pi

) γ−1
γ

⎤
⎦

Po ≥ Pcr

(14)

and

Pcr = Pi

(
2

γ + 1

) γ
γ−1

where

ṁ air mass flow rate through the valve;
CD discharge coefficient;
Ae effective area;
Pi and Po pressure on input and output sides of the valve;
R gas constant;
Ti temperature of the input side;
γ heat capacity ratio.

The desired valve opening is computed by inverting the
above orifice flow model and sending it to the valve actuation
controller every 5 ms. The time constant of valve position
dynamics is approximately 10–100 ms for common automotive
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butterfly valves. Frequency analysis of the throttle on the
investigated engine shows 180° phase lag at approximately
40 Hz. Considering the engine cycle duration of 200–20 ms
for engine speeds of 600–6000 r/min, the frequency separation
assumption is valid for low to medium speed operation. For
high-speed engine speed operation, the frequency difference
in engine and valve dynamics diminishes. Engine cycle-based
MPC should integrate the valve dynamics into the prediction
process, but that is outside of the scope of this paper. As a
result, the experimental validation of the proposed E-NMPC
was carried out for engine speeds less than 3000 r/min.

Remark: The proposed engine IMEP control hierarchy
transfers the nonlinear orifice valve flow and combustion
phasing models to the fast sublevel controllers. It reduces
modeling complexity of the MPC and in turn lowers com-
putational load. Another advantage of this control structure
is that feedback control and lookup tables can be applied to
the sublevel controllers since they only deal with low-order
nonlinear dynamics. These controllers can have faster update
frequencies than the MPC has, exploiting the bandwidth of
actuators. They also provide the ability to fine tune the control
response to compensate for dynamics ignored by the MPC
loop.

IV. OPTIMIZATION PROBLEM FORMULATION

The objective of the proposed model predictive IMEP
control is to track an IMEP reference while minimizing fuel
consumption. This determines that the stage cost of the objec-
tive function g(x, u) should penalize the least-squares error of
IMEP tracking and fuel consumption. The fuel consumption
penalty term makes the proposed MPC problem an E-MPC (in
contrast with the conventional tracking MPC). Assuming the
engine operates under stoichiometric AFR, the fuel consump-
tion can be calculated with throttle air mass flow mα , which
is the first element of u

g (xk, uk) = 1

2
q(yk − (yref)k)

2 + uT
k r (15)

where r = r̃ [1, 0, 0]T , r̃ ∈ R
1
>0, and q ∈ R

1
>0.

The objective function of the NLP is the summation of the
stage cost over a horizon window of length N

J (xk, Uk) =
N∑

i=1

1

2
q(yk|k+i − (yref)k|k+i )

2 + uT
k|k+i r (16)

where subscript k|k + i represents the prediction of k + i step,
while the system is at step k, and the vector Uk is

Uk = [uk|k+1, uk|k+2, . . . uk|k+N ]T ∈ R3N .

After substituting the state-space equation (12) into (16),
cost J becomes a function of current state xk and future control
sequence Uk . The weighting q and r can be tuned to balance
between IMEP tracking performance and fuel consumption.
If the model is normalized, then q and r are in the range
of 0–1. Otherwise, Bryson’s rule can be applied to compute
default values of q and r , considering the range of y and u.
It is noticed that the fuel consumption penalty makes the
MPC an economic optimal controller rather than a conven-
tional tracking MPC. However, the objective function of this

Fig. 6. Contour plot of the 2-D cost function surface, with CA50 (degrees
after compression TDC) and mα of the first step as decision variables.

specific control application still preserves the least-squares-
like structure that favors Gauss–Newton methods. Section V
discusses exploiting this property to reduce computation load.

The proposed model predictive engine control strategy has
upper bounds on COV of IMEP (denoted as C OVub) and
KI (denoted as K Iub). The manifold pressure has to be
constrained to be less than the ambient pressure Pa since the
engine is naturally aspirated. The air mass flowthrough the
throttle, mα , and EGR valve, mε , are also nonnegative to be
physically reasonable. The CA50 is referenced to MBT and
required to be later than MBT. Finally, the following equation
shows the complete NLP that needs to be solved every engine
cycle to obtain the optimal control sequence for the N steps
of the future horizon:

min
U (k)

J (xk, Uk)

s.t.

{
fz(xk|k+i ) − bz ≤ 0

−uk|k+i − bu ≤ 0
(17)

where i = 1, 2, . . . N ; bz = [Pa, C OVub, K Iub]T is the upper
bounds on z; and bu = [0, 0, 0]T is the lower bounds on u.

After lumping the constraint functions together

min
U (k)

J (xk, Uk)

s.t. l(xk, Uk) ≤ 0 (18)

where l : R
4+3N → R

5N after eliminating the infinite lower
bound on CA50.

This NLP problem is nonconvex with multiple local min-
ima. In order to prove this property, Lemma 1 (refer to
the Appendix) can be used. For any combination of given
system states xk the objective function J maps the control
sequence, U , belonging to the admissible set, U

N , into a scalar
value. Without loss of generality, the control component mε is
fixed (for example, set to zero), and the first components (the
values at time k) of CA50 and mα are considered as free
decision variables. In this case, the objective function J is
a 3-D surface, whose contour plots on the CA50 and mα

domain are shown in Fig. 6. One can see that the contours
are nonconvex lines. In fact, the point c on the straight
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line connecting the point a and b (within the same contour)
belongs to a different contour with higher level. Therefore,
the objective function J with all elements in U as decision
variables is nonconvex with multiple local minima according
to Lemma 1.

V. SQP STRATEGY WITH GAUSSIAN HESSIAN

APPROXIMATION

Finding the global optimal solution in real time is con-
sidered infeasible for engine control due to the fast update
frequency. Applying suboptimal NLP algorithms that find
local optimal solutions is more practical. However, closed-loop
stability of the suboptimal E-NMPC needs to be proved. SQP
is a computationally efficient numerical algorithm searching
for the local optimal solution of problem (16). This paper
tailors the conventional SQP algorithm for the proposed
E-NMPC to reduce computation effort, ensuring closed-loop
stability and convergence to predictable local optima.

A. Hessian and Jacobian Calculation

With a given initial guess of U (represented by U0), the SQP
computes the search direction �U by solving a subquadratic
programming problem as follows:

min
�U ( j )

1

2
�U T H J(xk,U 0)�U + �U T ∇ J(xk,U 0)

s.t. l|(xk,U0) + ∇l|(xk,U0)�U ≤ 0. (19)

It is noticed that the conventional SQP algorithm utilizes
the Hessian of the Lagrangian equation to account for the
curvature of constraints. While the second-order derivatives
of the constraints are computationally expensive, the Hessian
of the objective function can be computed from lineariza-
tion of the state-space model. A finite-difference approach is
applied to linearize the complex engine model that consists
of neural networks, lookup tables, and algebraic equations.
This approach provides robustness against discontinuities (e.g.,
from lookup tables) and exploits the fact that most of the
model is linear or can be linearized analytically.

The Hessian H J(xk,U 0) can be calculated by taking the
second-order derivatives of J (xk, Uk) with respect to Uk

H J(xk,U 0) = 2

(
∂Y

∂Uk

∣∣∣∣
xk ,U0

)T

Q
∂Y

∂Uk

∣∣∣∣
xk,U0

+ 2
∂2Y

∂U2
k

∣∣∣∣∣
xk ,U0

Q(Y0 − Yref) (20)

where

Y = [yk|k+1, yk|k+2, . . . yk|k+N ]T

Y0 = Y (xk, U0), Q =

⎡
⎢⎢⎢⎢⎣

q 0 · · · 0

0
. . .

. . .
...

...
. . . q 0

0 · · · 0 q

⎤
⎥⎥⎥⎥⎦ ∈ R

N× N.

The second term on the right-hand side of (20) can be
neglected if Y0 ≈ Yref . This assumption is reasonable if the

initial guess is not far from the optimal solution. This can be
achieved with warm start techniques or additional calibration
effort to improve the initial guess of the optimal solution.
Furthermore, this assumption becomes more reasonable as
the SQP converges to the optimal solution. It is noticed
that the tracking performance weighting matrix Q is positive
definite. Depending on the rank of ∂Y/∂U the Hessian of the
proposed MPC objective function is inherentively semipositive
definite. Some active set QP algorithms are able to handle
problems with semipositive definite Hessian by adding a small
quadratic penalty to the search step �U to potentially reduce
QP iterations by making the Hessian positive definite. This
penalty narrows the search of local optimal solutions close to
the initial guess U0 and improves the chance of finding the first
local minima along the search direction. The quadratic penalty
of �U also provides convenience for proving the closed-loop
stability of the proposed suboptimal E-NMPC, which will be
discussed later in this paper. However, this penalty reduces
the size of search step �U and decreases the convergence
rate of the SQP. Therefore, the weighting s should be small.
The objective function augmented with quadratic search step
penalty becomes

J (xk, Uk) =
N∑

i=1

1

2
q(yk|k+i − (yref)k|k+i )

2 + uT
k|k+i r

+ �uT
k|k+i s�uk|k+i (21)

where s ∈ R
3×3
>0 .

It is noted that uk|k+i = �uk|k+i + u0. After dropping the
constant term uT

0 r that does not influence the optimal solution,
the objective function becomes

J (xk, Uk) =
N∑

i=1

1

2
q(yk|k+i − (yref)k|k+i )

2

+ �uT
k|k+i r + �uT

k|k+i s�uk|k+i . (22)

The following equation shows the Hessian calculation of the
augmented objective function:

H J(xk,U0) = 2

(
∂Y

∂U

∣∣∣∣
xk ,U0

)T

Q
∂Y

∂U

∣∣∣∣
xk ,U0

+ S (23)

where

S =
⎡
⎢⎣

s · · · 0
...

. . .
...

0 · · · s

⎤
⎥⎦ ∈ R

3N×3N
>0 .

The Jacobian of the objective function J can be computed
as

∇ J(xk,U 0) = −2
∂Y

∂U

∣∣∣∣
xk ,U0

Q(Yref − Y0) + R (24)

where

R = [r, r, . . . r ]T ∈ R3×N .

The Jacobian of the constraint function l can be generated in
a similar fashion. ∂Y/∂U is calculated using a finite-difference
linearization approach, which provides a robust solution to
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Fig. 7. Steady-state control chattering (CA50 of 10–20 engine cycles) of the
SQP MPC without merit function step scaling.

differentiate general first principle models like lookup tables
and nonphysics-based models. Furthermore, the computation
load of the finite-difference approach is acceptable for the
investigated system, since the manifold dynamics are linear
and known. For the proposed control strategy ∂Y/∂U is fully
computed with 4× N +1 number of engine model evaluations.

Remark: The objective function of the NLP can be consid-
ered as the summation of a nonlinear least square function
and a linear function. The linear function, accounting for
the economical penalty, does not affect the Hessian of the
NLP. Therefore, the Hessian and Jacobian computations for
the proposed E-NMPC are similar to the Gauss–Newton
approach. Both the Hessian and the Jacobian can be generated
by linearizing the system model at every step along the
preview horizon. The computational load of this approach is
significantly less than solving the exact Hessian numerically.
The augmentation of the quadratic penalty of �U makes the
proposed approach similar to the Levenberg–Marquardt (LM)
method, with differences in the Jacobian calculation to account
for the economical penalty. The LM method is widely used
to solve least-squares problems in engineering due to its
robustness and fast convergence rate.

B. Merit Function Technique

For systems with high nonlinearities, the full search step
�U calculated from the sub-QP can be so large that the
algorithm may miss some local minima along the search
direction. This situation reduces the convergence rate of SQP,
and can cause the “cycling” phenomenon (example can be
found in [27, pp. 292–298]). From the perspective of MPC
applications, this situation increases computation load and
causes unnecessary control chattering (CA50 of 10–20 engine
cycles in Fig. 7). The merit function approach is often applied
to solve the global convergence issues of SQP [27], [32].

The search step size toward direction �U is scaled by a
factor α which is generated by solving a line search problem
of a merit function of the original NLP. For each major iter-
ation, j (whereas the iterations solving the sub-QP problems
are referred to as minor iterations), the updated solution is
calculated as

U∗
k = U0( j + 1) = U0( j) + α�U( j). (25)

Let us define a merit function V (xk, U) : R4 × R3N → R1

such that

V (xk, Uk) = J (xk, Uk) + σ

q∑
i=1

max(0, li (xk, Uk)) (26)

where q is the total number of inequality constraints and
σ ∈ R

1 is tuning parameter that penalizes the constraints
violation.

The scaling of the search step is obtained by solving the
following 1-D search problem

α(i) = arg V (xk, U0 + α�U)

s.t. 0 ≤ α ≤ 1. (27)

While multiple line search algorithms can be applied to
solve (27), this paper fixes the starting point of α as zero
and the search direction as α → 1. If the search cannot find
any α ∈ [0, 1] that reduces the merit function value the SQP
converges to U0 and α = 0. This approach guarantees that the
SQP converges to the local optimal solution that is closest to
the starting point U0 along the search direction. Furthermore,
the value of the merit function g is strictly decreasing as SQP
progresses.

The SQP is converged if the search step α�U( j) is smaller
than a certain threshold. In this situation, the algorithm ter-
minates outputting U∗ as the final solution. The rest of this
section discusses the computation of Hessian H J(xk,U 0) and
Jacobians ∇ J(xk,U 0) in (19) and the initialization of the SQP
and merit function techniques.

C. Warm-Start Strategy and Stability

This section will introduce a warm-start technique that
is able to guarantee closed-loop stability of the proposed
E-NMPC solved by the suboptimal SQP algorithm. Some
notations are necessary for the convenience of this discussion:

An admissiable set for control sequences is defined as U
N ⊆

R
3N , while the admissible set for u is U ⊆ R

3. The feasible
set of states is X ⊆ R

4. Let φ(i ; x, U) denote the solution
of xk+1 = fx (xk, uk) at time i if the initial state is x and
the control sequence is U . Since the constraint function l(·)
compiles with the constraints of N preview steps, the merit
function V can be written as the summation of stage penalties

V (xk, Uk) =
N∑

i=1

g(φ(i ; xk, Uk), uk). (28)

After augmenting with the terminal states penalty V f (·) and
constraints X f the NLP problem can be written as

min
Uk∈UN

VN (xk, Uk)

s.t. φ(N + 1; xk, Uk) ∈ X f (29)
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where

VN (xk, Uk) = V (xk, Uk) + V f (φ(N + 1; xk, Uk)).

Assumption 1: The open loop system (12) is stablizable
∀x ∈ X .

Assumption 2: The admissible control set U is a compact
set containing the nominal control actions. The terminal states
set X f is a closed set and contains the nominal states X f ⊆ X.

Assumption 2 is adapted from [11, Assumption 2.3, p. 97].
For the investigated engine system, this suggests that the final
IMEP reference is achievable with feasible control actions.

Assumption 3: For any x ∈ X f , there exists a terminal
control law

u := K1x − (s−1)T r (30)

that makes V f ( fx (x, u)) + g(x, u) ≤ V f (x), where V f (x) :=
(1/2)xT Pf x and Pf ∈ R

4×4
>0 .

The proof of the system satisfying this assumption can be
found in the Appendix. The terminal control law (30) has a
state dependent term which regulates the states to the nominal
condition. The second term of (30) is a constant that is related
to the weighting of the control variation and fuel economy
penalty. Therefore, the system converges to a nonzero steady-
state xss which can be obtained by solving the following linear
system:

[A + B K 1 − I B]
[

xss

−(s−1)T r

]
= 0. (31)

A solution of the above linear system exists since the system
is stablizable (according to Assumption 1). It is observed that
xss → 0 as r → 0, and the E-NMPC becomes a tracking
NMPC. If r > 0, the nominal condition must be shifted
to xss. This process is automatically completed by the proposed
SQP algorithm with real-time linearization, which updates the
nominal conditions according to U0 of each iteration.

The terminal state penalty is not necessary if N is suf-
ficiently large to ensure the origin is asymptotically stable
for the proposed controller, (see [2], [11, pp. 147–153]). Due
to the complex nature of the system model, it is difficult to
find the exact control horizon N that makes the terminal states
penalty unnecessary. Simulation and experimental results show
that the optimal control actions converge for N as small as two
steps. Therefore, the terminal state penalty is removed from
the proposed E-NMPC.

Based on Assumptions 1–3, a starting point U0 can be
selected to warm start the SQP algorithm for receding horizon
MPC applications. At step k, the E-NMPC computes an
optimal control sequence using the suboptimal SQP algorithm

U∗(k) = [
u∗

k|k+1, u∗
k|k+2, . . . u∗

k|k+N

]T
. (32)

For the next step, +1, the starting point U0(k + 1) can be
generated from the current optimal control sequence U∗(k) by
removing the first element (which is applied to the system a
k + 1 step) and adding a new control action u+ for the final
step of the control horizon

U0(k + 1) = [
u∗

k|k+2, u∗
k|k+2, . . . u∗

k|k+N−1 , u+]T
(33)

Fig. 8. Flowchart of the proposed SQP model predictive IMEP control.

where control action u+ is obtained according to (30).
Assumption 4: The stage cost g(·) and the terminal cost

V f (·) satisfy

g(x, u) ≥ α1(|x |) ∀x ∈ X, ∀u ∈ U (34)

V f (x) ≤ α2(|x |) ∀x ∈ X f (35)

where α1(·) and α2(·) are in K∞ class.
Equation (34) is satisfied since g(x, u) ≥

(1/2)xT CT qCx = α1(|x |). Equation (35) is also satisfied.
We can select a matrix Pc ∈ R

4×4
>0 , Pc ≥ Pf . Then,

V f (x) = (1/2)x T Pf x ≤ (1/2)xT Pcx = α2(|x |).
It is noticed that the terminal states penalty is quadratic,

making integration into the SQP algorithm previously dis-
cussed straightforward. Using similar reasoning from [11],
it can be proved that Assumptions 1–4 result in upper and lower
bounds of VN (x, U), where U is computed by the proposed
E-NMPC

β1(|x |) ≤ VN (x) ≤ β2(|x |) ∀x ∈ X (36)

where β1(·) and β2(·) are K∞ functions.
Let β3(|x |) := VN (x) − VN (x+), where x+ are the suc-

cessor states generated by the E-NMPC control law. The
merit function search process discussed previously ensures
that {VN (xi )|i ∈ I>0} decreases as the SQP progresses (or
i → ∞). Thus

β3(|x |) ≥ 0. (37)

Furthermore, VN (xi )|i ∈ I>0 is nonincreasing (as i → ∞)
and bounded below by zero (every terms in VN is greater
than or equal to zero). Therefore, as i → ∞, VN (xi , Ui ) →
V ∗

N (a constant), xi → 0, and β3(|x |) → 0. This means β3(|x |)
is in PD class, proving that VN (x) is a Lyapunov function of
the engine system controlled by the proposed E-NMPC.

Figure 8 shows the flow chart that summaries the entire
proposed SQP model predictive IMEP control strategy.
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TABLE I

OPERATION CONDITION RANGE OF SQP MPC VALIDATION

TABLE II

ITERATION NUMBER AND COMPUTATIONAL TIME

FOR SQP MPC SIMULATION

VI. ACTIVE SET QP ALGORITHMS

Two active set QP algorithms for solving the sub-QP prob-
lems are considered in this paper: 1) a dimensional search dual
active set (see [44], [45]) and 2) parametric active set meth-
ods (e.g. qpOASES [33]). The first method does not require
matrix inversion during each QP iteration, making it more
numerically robust and efficient. However, it has unsatisfactory
performance against constraint degeneracy (a situation where
the constraint gradient ∇l(xk,U0) is row rank insufficient). The
parametric active set method, on the other hand, was refined
by Ferreau et al. [34] to improve convergence and degeneracy
handling performance. The parametric active set QP requires
solving a linear system during each iteration resulting in longer
computation time per iteration compared to the dual active
set method. However, since the parametric method uses less
iterations both active set methods have similar computational
time for the proposed MPC. Finally, both active set meth-
ods can be warm started, exploiting the similarities between
successive QPs along the sequence. This characteristic makes
both algorithms favorable for the current E-NMPC application,
although each method has its own unique advantages.

Both dual and parametric active set QP algorithms are
implemented in the E-NMPC and evaluated in simulation for
106 consecutive engine cycles. The IMEP tracking reference
and engine speed traces are generated randomly according to
a uniform distribution. Table I shows the range of operating
conditions used for validation.

The qpOASES software is used in this paper to implement
the parametric active set QP algorithm in MATLAB. Table II
summarizes the number of iterations and mean computational
time (per SQP iteration) of both QP algorithms. It can be
observed that both methods can benefit from “warm” start
strategies that exploit similar active constraint sets between

TABLE III

ENGINE PARAMETERS

Fig. 9. Dynamometer test setup for the investigated engine located at
CU-ICAR, Clemson University.

successive SQP iterations. The parametric method requires
fewer number of iterations in both “cold” and “warm” start
situations. The simulation is carried out on a desktop computer
with a 3.2-GHz 64-b CPU and 16 GB of RAM. Although
the parametric method has obvious advantages in terms of
iteration number the difference in computation time between
the two algorithms is not very significant. The dual QP
requires scalar computation within each iteration, making it
faster per iteration compared to the parametric method. There
were compatibility issues between qpOASES and the prototype
engine controller of this paper. Therefore, the experimental
validation of the proposed SQP MPC was carried out with the
dual QP algorithm.

VII. SIMULATION AND EXPERIMENTAL RESULTS

The spark ignited V6 engine investigated in this paper has
port fuel injection and a displacement of 3.6 L. The EGR
system has an intercooler and postthrottle setup, as shown
in Fig. 1. A summary of engine geometry is given in Table III.

The experiment validation was carried out on an ac
dynamometer. The test engine was controlled using an ETAS
ES910 system overriding the stock ECU. AVL Concerto
software was used to process the data that were acquired
during each experiment. Each cylinder of one engine bank was
instrumented with passage-mounted AVL GH12D piezoelec-
tric cylinder pressure sensors. The sensors were located in the
cylinder head to maximize accuracy according to Patterson and
Davis [41], and were equipped with flame guards to minimize
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Fig. 10. Prototype control system setup.

Fig. 11. Engine performance comparison between LPV E-MPC and E-NMPC
IMEP control.

thermal shock errors. The cylinder pressure measurement was
sent to a cylinder pressure development controller (CPDC) unit
to compute CA50 and IMEP [43]. Communication between the
CPDC and ES910 was established via a CAN communications
link. Figs. 9 and 10 show the hardware and prototype control
system setup of the experimental validation.

Figs. 11 and 12 show the engine performance and con-
trol actuation of the proposed SQP model predictive IMEP
controller in simulation with comparison to an LPV E-MPC.
The LPV E-MPC shares the same finite-difference real-time
linearization and warm-start techniques as the proposed SQP

Fig. 12. Control actuation comparison between LPV MPC and SQP MPC
IMEP control.

E-NMPC. The engine speed is fixed at 1500 r/min during this
simulation. The COV of IMEP limit is selected as 6%.

It can be observed from Fig. 11 that the proposed SQP
E-NMPC is able to track the IMEP reference without vio-
lating knock, COV of IMEP and intake manifold pressure
constraints. The normalized root-mean-square error (NRMSE)
of IMEP tracking is in the neighborhood of 1%. In comparison,
the NRMSE of IMEP for the LPV E-MPC is 9.8%. The
inferior IMEP tracking performance of the LPV E-MPC can
be observed in Fig. 11, with steady-state IMEP tracking error
caused by model linearization errors. It can also be observed
from Fig. 11 that the LPV E-MPC cannot guarantee the
COV of IMEP constraints during tip-out situations (e.g., 40th,
60th, and 80th engine cycles). The EGR valve actuation from
Fig. 12 reveals that the LPV E-MPC over dilutes the cylinder
charge during these transient situations due to errors caused
by linearizing the COV of IMEP model. The LPV MPC
also violates the manifold pressure constraint at the 100th
and 170th engine cycles, resulting in a false improvement of
IMEP tracking performance. The large IMEP tracking error
at high load conditions (1000-kPa IMEP reference) is due to
the knock constraint, which causes the IMEP reference to be
infeasible. This is a situation where Assumption 2 is invalid.
However, the E-NMPC (and the LPV MPC) is still able to find
a reasonable control action to mitigate the knock constraints
without inducing instability. Both LPV MPC and the E-NMPC
mitigate engine knock by postponing combustion phasing.
Close examination of these high load situations reveals that
the E-NMPC generates slightly higher IMEP output than the
LPV MPC by using larger throttle air mass flow and less EGR.
Therefore, the E-NMPC needs to retard CA50 further than the
LPV MPC. The large IMEP tracking error during these high
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load situations makes the fuel economy penalty insignificant,
causing the E-NMPC to find the actuator setpoints that gen-
erates the maximum IMEP possible.

Control actuation of the proposed SQP E-NMPC is demon-
strated in Fig. 12. It can be observed between engine cycles
10–20 that the control chattering issue is eliminated with the
merit function technique (compared to Fig. 7). For a “tip-
in” situation (around 10th, 30th, 50th, etc., engine cycles),
the throttle air mass flow mα overshoots during IMEP refer-
ence steps. This maneuver is to compensate for the manifold
delay and quickly increase the IMEP output. During “tip-
out” situations (around 20th, 40th, 60th, etc., engine cycles),
the throttle air mass is reduced to zero initially to compensate
for manifold delay. Then, it converges to a steady-state value
without oscillation. For a “heavy” tip-out situation where
IMEP reference reduces significantly (40th, 60th, 80th, etc.,
engine cycles), the E-NMPC closes the EGR valve 1–2 cycles
earlier than the throttle in order to prevent excessive dilution
and meet the COV of IMEP constraint. The LPV MPC does
not find this maneuver most of the time, resulting in the
COV limit violation for “heavy” tip-out situations. During
part load conditions, the E-NMPC maximizes EGR flow to
the limit of COV of IMEP or manifold pressure, reducing
the pumping losses. In comparison, the EGR flow allowed
by the LPV MPC during part load conditions is much less.
If the IMEP demand is very high (10th–20th, 100th–110th,
etc., engine cycles), both E-NMPC and LPV MPC reduce
EGR to maximize engine air mass flow. The optimal transient
maneuvers generated by the proposed E-NMPC are in agree-
ment with the production engine calibration when the future
IMEP demand is known (for example, during the gear shift
phase). However, the calibration effort of the E-NMPC is much
less than conventional map-based engine control strategies.

Fig. 13 compares E-NMPCs with different preview and
control horizons. It can be observed that the E-NMPC with
longer horizon closes the EGR valve earlier if EGR purging
is required to avoid high COV of IMEP. The CA50 output is
also modified to accommodate the EGR flow to avoid knock
and COV of IMEP constraints. However, the differences in
IMEP tracking performance and throttle air mass flow are not
distinguishable after N ≥ 2. This suggests that further increas-
ing horizon length will only provide marginal improvement
of optimality, suggesting the possibility of decreasing horizon
length to reduce computational load of the E-NMPC.

In Fig. 14, the E-NMPC is evaluated for different engine
speeds. The two-step preview E-NMPC is provided with the
same IMEP reference in the time domain. While the accel-
erated engine speed reduces characteristic time of manifold
filling and combustion, it also reduces the change rate of IMEP
reference in the engine cycle domain. Therefore, the optimal
control actions found by the MPC become less “aggressive” as
engine speed increases. The throttle actuation almost becomes
a slow transition between two steady states, and the CA50 is
maintained at MBT. This suggests fast throttle position control
is not necessary for high speed operation. However, the
E-NMPC demands fast EGR actuation to purge the EGR out of
the system during high speed tip-out situations. This behavior
requires fast EGR valve position tracking to maintain the

Fig. 13. Comparison between E-NMPCs with different preview/control
horizons.

Fig. 14. E-NMPC performance comparison between different engine speeds.

engine-actuator frequency separation assumption. Considering
the mechanical design of current EGR valves, this requirement
is difficult to realize. In this case, the E-NMPC formulation
should be integrated with the EGR valve position dynamics,
which will be addressed in a future extension of this paper.
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Fig. 15. Engine performance during experiment validation at 2000 r/min.

Fig. 16. Actuator output of E-NMPC during experimental validation at
2000 r/min.

Experimental validation of the proposed IMEP con-
troller was carried out for engine speeds less than
3000 r/min. Fig. 15 shows the engine performance results
and Fig. 16 shows the control actions found by the proposed
E-NMPC. The experimental results exhibit similar transient

TABLE IV

STATISTICS OF THE PROPOSED SQP MODEL
PREDICTIVE IMEP CONTROLLER

behaviors as the simulation results. The engine states are
estimated using an extended Kalman filter. The estimated
IMEP is shown in the first plot of Fig. 15, but engine state(s)
estimation is not the focus of this paper.

Table IV summarizes execution time statistics of the pro-
posed SQP MPC during experimental validation. The ETAS
ES910 prototype engine controller has a double precision
floating CPU with 800-MHz clock. The memory is DDR2-
RAM with 512 MB of space and a 400-MHz clock. It can be
observed that the control algorithm is computationally efficient
for cyclic engine control considering the duration of every
engine cycle is 200–20 ms for engine speeds from 600 to
6000 r/min. Table IV also reveals that QP computation takes
approximately 1/3 of the overall computational time, while
the rest of the execution time is spent on evaluating the engine
model. It can be concluded that the simplification of the engine
models can significantly reduce the computational time.

VIII. CONCLUSION

This paper proposes an E-NMPC strategy for managing
the IMEP control of spark-ignition engines. The E-NMPC
is solved by an SQP algorithm. The control objective is to
track IMEP reference while minimizing fuel consumption.
This E-NMPC also guarantees abnormal combustion con-
straints during the search for optimal control actions. The
proposed SQP E-NMPC is designed to work in the engine
cycle domain, which reduces the engine speed dependence of
air-path dynamics. The application of fast low-order sublevel
controllers reduces the modeling complexity needed in the
NMPC formulation. These fast controllers can also maximize
the bandwidth of actuators.

The SQP algorithm is tailored for this application for high
computational efficiency. It exploits the Gauss–Newton-like
structure of the NLP formulated for MPC to simplify computa-
tion of the Hessian matrix. Warm-start and merit function tech-
niques are applied to ensure closed-loop stability on top of the
conventional terminal state penalty technique. Merit function
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step scaling also improves global convergence performance
and eliminates steady-state control chattering issues. Two
active set QP algorithms were investigated for implementation
with the SQP MPC. Both algorithms can be warm started and
exploit similar active constraint sets between successive QP
problems of each SQP iteration. Finally, the finite-difference
linearization technique makes the SQP strategy adaptive to
different types of engine models with complex structures.

Simulation and experimental results demonstrate that the
proposed model predictive IMEP control strategy achieves
its design objectives, in terms of tracking torque reference,
minimizing fuel consumption, and respecting combustion con-
straints. Compared to LPV MPC, the E-NMPC demonstrates
superior ability to guarantee constraints and reducing fuel
consumption. Although it is possible to calibrate conventional
map-based engine control strategies to make control decisions
similar to E-NMPC, the calibration effort is much less with
E-NMPC. This advantage of E-NMPC is expected to increase
as more actuators are integrated into engines for the purpose
of improving fuel economy. Finally, the computational time
analysis of the proposed SQP MPC with prototype engine
controllers demonstrates high potential for real-time imple-
mentation with future production ECUs.

APPENDIX

This Lemma is used to prove the nonconvexity of the
NLP problem that is solved in every MPC update step.
The existence of multiple local optimal solutions makes
it impractical to apply global optimization algorithms in
real-time implementation. Therefore, this paper considers
the suboptimal SQP algorithm for the proposed MPC
problem.

Lemma 1: A function f (x) : X ∈ R
m → Y ∈ R

n

is nonconvex, if ∃Z ⊆ X such that f (x) is nonconvex
for x ∈ Z.

Proof of Lemma 1: By the definition of convexity, if ∃Z ⊆ X

such that f (x) is nonconvex for x ∈ Z, ∃x1, x2 ∈ Z, ∃α ∈
[0, 1] : f [αx1 + (1 − α)x2] > α f (x1) + (1 − α) f (x2). Since
Z ⊆ X, x1, x2 ∈ X. Therefore f (x) is nonconvex for x ∈ X

Proof of Assumption 3: After linearizing the system model
at φ (N + 1; xk, U0) and (u0)k|k+N , we have linear state-
space model x+ = Ax + Bu, and y = Cx . The stage cost
is g(x, u) = (1/2)(x T CT qCx + uT su + uT r). The constraint
penalty is neglected according to Assumption 2. Design the
control law as u := K1x + K2. Let Ak := A + B K1, and
let V f : R4 → R≥0 be defined by V f (x) := (1/2)x T Pf x ,
Pf ∈ R

4×4
>0 . Then

V f (x+) − V f (x) + g(x, u)

= x T (
AT

k Pf Ak + Qk − P f
)
x + (

K T
2 s − r T )

K1x

+ K T
2 (sK2 − r)

where Qk = CT qC + K T
1 sK1

We can choose K2 = −(s−1)T r , while K1 and Pf solve
the Lyapunov equation

AT
k Pf Ak + Qk − P f = 0.

Then we have

V f (x+) − V f (x) + g(x, u) = 0.

REFERENCES

[1] A. Ali and J. P. Blath, “Application of modern techniques to
SI-engine torque control,” in Proc. IEEE Int. Conf. Control Appl.,
Munich, Germany, Oct. 2006, pp. 2405–2410.

[2] T.-K. Lee and Z. S. Filipi, “Nonlinear model predictive control of a
dual-independent variable valve timing engine with electronic throttle
control,” Proc. Inst. Mech. Eng. D, Transp. Eng., vol. 225, no. 9,
pp. 1221–1234, Sep. 2011.

[3] E. Feru, M. Lazar, R. H. Gielen, I. V. Kolmanovsky, and
S. Di Cairano, “Lyapunov-based constrained engine torque control using
electronic throttle and variable cam timing,” in Proc. Amer. Control
Conf., Montreal, QC, Canada, Jun. 2012, pp. 2866–2871.

[4] M. Kang and T. Shen, “Nonlinear model predictive torque control for IC
engines,” in Proc. 11th World Congr. Intell. Control Autom., Shenyang,
China, Jun./Jul. 2014, pp. 804–809.

[5] L. Guzzella and C. H. Onder, Introduction to Modeling and Control
of Internal Combustion Engine Systems, 2nd ed. Heidelberg, Germany:
Springer, 2009.

[6] C. M. Hall, G. M. Shaver, J. Chauvin, and N. Petit, “Combustion phasing
model for control of a gasoline-ethanol fueled SI engine with variable
valve timing,” in Proc. Amer. Control Conf., Montreal, QC, Canada,
Jun. 2012, pp. 1271–1277.

[7] S. Wang, R. Prucka, Q. Zhu, M. Prucka, and H. Dourra, “A real-time
model for spark ignition engine combustion phasing prediction,” SAE
Int. J. Eng., vol. 9, no. 2, pp. 1180–1190, 2016.

[8] K.-H. Lee and K. Kim, “Influence of initial combustion in SI engine on
following combustion stage and cycle-by-cycle variations in combustion
process,” Int. J. Autom. Technol., vol. 2, no. 1, pp. 25–31, 2001.

[9] M. Diehl and J. Bjornberg, “Robust dynamic programming for min-max
model predictive control of constrained uncertain systems,” IEEE Trans.
Autom. Control, vol. 49, no. 12, pp. 2253–2257, Dec. 2004.

[10] E. S. Meadows, “Dynamic programming and model predictive control,”
in Proc. Amer. Control Conf., Albuquerque, NM, USA, Jun. 1997,
pp. 1635–1639.

[11] J. B. Rawlings and D. Q. Mayne, Model Predictive Control Theory and
Design. Madison, WI, USA: Nob Hill Publishing, 2009.

[12] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[13] T. Ohtsuka, “A continuation/GMRES method for fast computation
of nonlinear receding horizon control,” Automatica, vol. 40, no. 4,
pp. 563–574, 2004.

[14] M. Lazar, “Flexible control Lyapunov functions,” in Proc. Amer. Control
Conf., St. Louis, MO, USA, Jun. 2009, pp. 102–107.

[15] R. Quirynen et al., “Symmetric algorithmic differentiation based exact
Hessian SQP method and software for economic MPC,” in Proc. IEEE
53rd Annu. Conf. Decision Control, Dec. 2014, pp. 2752–2757.

[16] T. Broomhead, C. Manzie, P. Hield, R. Shekhar, and M. Brear, “Eco-
nomic model predictive control and applications for diesel generators,”
IEEE Trans. Control Syst. Technol., vol. 25, no. 2, pp. 388–400,
Mar. 2017.

[17] Q. Zhu, S. Onori, and R. Prucka, “Pattern recognition technique based
active set QP strategy applied to MPC for a driving cycle test,” in Proc.
Amer. Control Conf., Chicago, IL, USA, Jul. 2015, pp. 4935–4940.
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