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A B S T R A C T

This paper investigates the cycle aging behavior of nickel-manganese-cobalt (NMC) lithium ion battery cells
under high current rates and narrow window of State-of-Charge (SOC) variation for 48 V mild hybrid electric
vehicle (HEV) applications. The charge sustaining aging profiles were synthesized from real-world duty cycles in
some of the authors’ previous work [44,45] and used in the laboratory for life cycle aging testing spaced out by
periodic cell capacity tests performed to assess cell aging conditions. Furthermore, at each 1C discharged aging
characterization stage, the parameters of a physics-based electrochemical cell model were identified using the
Bayesian Markov Chain Monte Carlo (MCMC) method. Among the parameters that can be identified with suf-
ficient accuracy from the experimental data, the concentration of lithium-ions at the negative electrode after full
charge is found to be strongly correlated with the system-level loss of capacity. These results provide new
insights on the aging performance of NMC lithium ion cells in battery management system for 48 V hybrid
vehicles.

1. Introduction

Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles
(PHEVs) and battery electric vehicles (BEVs) are being widely deployed
to improve powertrain fuel efficiency and reduce tailpipe emissions.
Their market acceptance demands refined battery technologies in terms
of lifetime, safety, specific energy, specific power and cost. The lithium-
ion chemistry is gaining popularity and expanding dominance into
electric vehicles. However, to fulfill customer expectations with respect
to electric range and service life across real-world usage, manufactures
have often chosen to oversize the lithium ion battery pack in sacrifice of
costs. Therefore, efficient management and optimized design along
with deeper understandings on lithium ion battery aging have been the
main research foci to minimize ownership costs [1].

It is common to separate lithium ion battery aging processes by
calendar aging under storage and cycle aging upon usage. While ca-
lendar aging is stressed by time, temperature and State of Charge (SOC),
cycle aging introduces additional stressors such as Ampere-hour (Ah)
throughput, SOC change (ΔSOC), and current rate. To understand the
impacts from these aging stressors, well-controlled test activities are
usually conducted in laboratory. Previous testing efforts have been re-
ported for lithium ion chemistries with different positive electrode
materials, such as, lithium nickel-manganese-cobalt (NMC) [2–8],

lithium manganese oxide (LMO) [9,10], lithium NMC-LMO composite
[11–14], lithium iron-phosphate (LFP) [15–18], and lithium nickel-
cobalt-aluminum (NCA) [19,20]. This study focuses on the cycle aging
performance of NMC cells in a 48 V system. The test matrices used in
previous studies [2–7] combine different ΔSOCs around different SOCs
and at 1C discharge/charge rate with fixed temperatures. In [8], on the
other hand, an extended design of experiment comprises 5 ΔSOCs, 3
charging rates (0.2C, 0.5C, 1C), 3 discharge rates (0.5C, 1C, 2C) and 3
temperatures (25 °C, 35 °C, 50 °C) at 50% SOC. Given the low current
rate (≤2C) and wide ΔSOCs, these experiments were mainly designed
for high energy applications such as BEV and PHEV. A gap clearly exists
in the understandings of NMC cell aging performance in HEV applica-
tions with high current rates and narrow state of charge excursion
(compatible with a ΔSOC in the range of 15–30%) for charge sustaining
operation.

The aging of lithium-ion battery cells manifests as capacity loss and
resistance growth [21,22]. Aging models are regarded as useful tools to
interpret aging test results and predict cell performance. While data-
driven (see [23,24],) and empirical (see [2,7,25–31,42],) aging models
view the cell as a whole entity, physics-based aging models offer an
alternative perspective to look into the cell at the electrode or even
finer levels. The basis for the construction of physics-based aging
models is the physics-based electrochemical cell model which describes
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the fresh cell dynamics [32–41]. In some studies [33,39], the electro-
chemical cell models are extended to aging models by adding the
governing equations of aging reactions; in other studies [35,41], a
subset of parameters of the electrochemical cell model are updated
according to empirical relations to account for aging effects. This study
adopts the single particle (SP) electrochemical cell model for the aging
investigation [33–35].

However, one challenge of using the electrochemical cell model lies
in the identification of multiple model parameters. It is common prac-
tice to regard the parameter identification problem as a nonlinear op-
timization problem, aimed at minimizing the least-square difference
between model outputs and experiment measurements. Several nu-
merical algorithms are available and have been successfully applied for
this nonlinear optimization problem. They can be categorized as gra-
dient-based algorithms, such as Levenberg-Marquardt method [35],
trust region algorithm [36], and Newton method [41]; and non-gra-
dient-based algorithms, such as genetic algorithm [38], simplex search
method [40], and particle swarm optimization algorithm [40]. While
the results of gradient-based algorithm can be easily trapped in local
minima, the non-gradient-based algorithms have the potential to con-
verge to the global minima or maxima from any initial values.

Additionally, experimental data might fail to provide the informa-
tion needed to carry out full parameter set identification. In this regard,
the single-factored sensitivity analysis can generally be used as the base
line study to assess the dependence of the model output on each
parameter as done in [36], where different aging scenarios were tested
to identify aging parameters of an electrochemical model for the 26650
Lithium-ion battery cells based on iron-phosphate chemistry.

This approach, though, only gives local sensitivity results when
applied to nonlinear models. To gain more insights about the ability to
identify model parameters from output measurements, the Fisher in-
formation method can be used, as in [37,40], where single-factored
sensitivity analysis study and covariance matrix evaluation from mea-
surements were combined in a unified approach. Nevertheless, the
potential interaction among all parameters is not taken into account. In
[41], a Markov Chain Monte Carlo (MCMC) method was proposed to
stochastically estimate the parameter distributions. The effective
parameters and their uncertainties are estimated using a reformulation
and simplification of the pseudo-two-dimensional (P2D) model from
[32] for offline application. The cell chemistry and type, along with the
specific battery application used in [41] were not reported, leaving the
applicability and generalization of the results debatable.

In this paper, we identify and validate a single particle (SP) elec-
trochemical model using data collected on 18650 NMC lithium-ion
batteries to mimic the behavior of a 48 V HEV battery. The MCMC-
based method is used to carried out the parameter identification. The
novel contribution of the paper is in the experimental aging campaign
carried out for a micro hybrid battery application and the application of
MCMC to identify the parameters of a SP model to predict the aging
behavior of a 48 V battery.

The rest of this paper is organized as follows. Section II reports the
experimental setup of the cycle aging tests along with test results.
Section III details the SP electrochemical cell model, and in Section IV
the MCMC algorithm used to identify the SP model parameters across
aging is introduced and a discussion of the aging mechanisms occurring
in the NMC cell tested using the customized test campaign is provided.
Results and their relevance for the NMC cell aging performance in 48 V
systems is summarized in Section V.

2. Experimental setup

In this study, aging experiments are conducted over cylindrical
NMC 18650 lithium ion cells with rated capacity of 2 Ah (at 1C dis-
charge rate) and nominal voltage of 3.6 V. Cell specifications are listed
in Table 1. The aging test profiles were designed by synthesizing cell
duty cycles experienced by a 48 V mild hybrid vehicle battery [43]. In

particular, the duty cycles were categorized in terms of driving style
(calm/normal/aggressive) and mean cycle speed (low/medium/high).
They were synthesized for cell aging testing through a frequency ana-
lysis based on a power spectral density estimation approach [44]. The
aging campaign consists of cycling NMC cells using the calm low (CLS)
speed and the aggressive high speed (AHS) profiles, shown in Fig. 1 (a)
and (b), at two different temperatures, i.e. 23 °C and 45 °C. The CLS and
AHS driving cycles are a synthetic representation, in terms of mean
speed and driving style, of a set of naturalistic vehicle drive cycles
carried out using Welch’s power spectral density approach [44]. The
drive cycle data source used in [44] was obtained from the household
travel survey from June 2001 to March 2002 conducted by SCAG
(Southern California Association of Governments). The data were made
publicly available through the U.S. Department of Energy’s National
Renewable Energy Laboratory (NREL) [49].

For validation purposes, a new aging profile, shown in Fig. 1 (c),
was designed and used in the experimental campaign. It was con-
structed by adding one micro charge profile to the aggressive high
speed profile while using the shorter discharge time period from the
calm low speed profile. In this way, the new condition accounts for an
average discharge current of 16.1 A. Such a high current rate represents
an accelerating stress factor in the context of hybrid vehicle applica-
tions. The temperature was fixed at 45 °C for the new validation profile.
Moreover, for repeatability considerations, two cells (Cell#9 and
Cell#10) were tested under this new condition. All aging profiles kept
cycling the cells around 50% SOC to represent the typical HEV charge
sustaining operating conditions.

Experiments were carried out in the Battery Aging and
Characterization (BACh) Laboratory at the Automotive Engineering
Department, Clemson University. The experimental setup used for the
aging campaign, shown in Fig. 2, is composed of the Arbin BT-2000
battery cycler with a programmable power supply and an electronic
load; a MITS Pro data acquisition software for the programming of test
profiles and the control of the Arbin cycler; Peltier junctions that are in
direct contact with the cell fixtures for thermoelectric temperature
control. All cells underwent periodic capacity and internal resistance
characterization tests at room temperature (∼23 °C) throughout the
aging campaign. The capacity test at 1C rate (2 A, nominal capacity
value) consists of four steps: 1) charging the cell to 4.2 V at 1C constant
current; 2) holding constant voltage at 4.2 V until the current drops to
C/50; 3) 1 h rest; 4) discharging at 1C to the cut-off voltage of 2.5 V.

For calculation of the internal resistance, the hybrid pulse power
characterization (HPPC) profile was executed [50]. The HPPC profile
consists of an 18s 2C discharge pulse followed by a 40 s rest period and
10 s 1.5C charge pulse followed by a 40 s rest period. Each pulse is
applied every 10% SOC decrease between 90% and 20% SOC. Both the
capacity and HPPC tests profiles are depicted in Fig. 3. The 10 cells used
in the aging campaign are listed in Table 2 based on their aging con-
dition, e.g., CLS45 indicates a cell tested using the Calm Low Speed
profile at 45 °C. Cells #7 and #8 were tested using the AHS45 profile for
only 9 weeks due to the premature aging that occurred under the high-
rate and high-temperature condition. Cells #9 and #10, tested under

Table 1
NMC 18650 cell specifications.

Specifications Unit Values

Chemistry Nickel-Manganese-Cobalt (NMC)
Lithium ion

Nominal Capacity Ah 2.0 (at 1C discharge)
Nominal Voltage V 3.6
Max Discharge Continuous Current A 32
Discharge Cutoff Voltage V 2.5
Max Charge Continuous Current A 12
Charge Cutoff Voltage V 4.2
Internal Impedance mΩ 12 (measured by AC 1 kHz)
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the New Condition cycle and characterized by a higher C-rate than the
AHS45 cycle, lasted for only 6 weeks. On the other hand, cells #1, #3
and #5 were cycled for 12 weeks whereas their ‘sister’ cells, #2, #4 and
#6, tested under the same conditions, were terminated earlier than 12
weeks given that similar aging trends were observed. The normalized
capacity losses are compiled in Fig. 4 (a), for the time-based aging and
Fig. 4 (b), for kAh-throughput-based aging. For both scenarios, Cells #1
and #2 under CLS23 cycle show no capacity loss after 3-month of
aging. Interestingly, for CLS45 Cell#3 and AHS23 Cell#6, capacity
recoveries are observed during the first few aging characterization
stages. The recovery in capacity is suggested to possibly be due to in-
creased electrode active surface area, resulting from cracking of the
positive electrode material grains [39,40]. But when compared to their
repeated counterparts, those recoveries can be regarded as outliers. The
observed capacity loss severity is in following order: the AHS45 and
NC45 cases as the most severe, the CLS45 cases are next followed by the
AHS23 cases, and, finally, the CLS23 cases. The aging results can be
interpreted as: 1) the impact from temperature is larger than the impact
on discharge current magnitude; 2) the impact from discharge current
magnitude is larger at high temperature; 3) the impact from tempera-
ture is larger at higher discharge current rate.

When comparing the AHS45 cases and NC45 cases, in Fig. 4 (a), the

test time compression can be observed since in the NC45 cases 10%
capacity loss is achieved after only 6 weeks, whereas AHS45 cases need
about 9 weeks. To understand the accelerating factors behind the time
compression effect, both cases are further compared in Fig. 4 (b) which
it shows that for AHS45 and NC45 cases, they actually achieve 10%
capacity loss with almost equivalent Ah-throughput despite different
discharge current rate.

Therefore, the time compression effect in Fig. 4 (a) is mainly at-
tributed to more battery usage in terms of Ah-throughput, but not to
more aggressive battery usage in terms of higher current rate. In other
words, the impact from discharge current rate on battery aging is lim-
ited beyond the AHS45 cases in our aging campaign for the NMC li-
thium ion chemistry.

3. Single particle electrochemical cell model

In this section, a physics-based electrochemical model is introduced.
While physical phenomena inside the cell are intrinsically due to mi-
croscale dynamics, reduced-complexity macro-scale models can be used
to capture cell level dynamics. The pseudo-two-dimensional (P2D)
model, firstly proposed in [32], uses nonlinear coupled partial differ-
ential equations to describe the mass diffusion and the potential dis-
tribution inside and between the porous electrodes and the electrolyte.
A tradeoff between model fidelity and model complexity is achieved by
simplifying the P2D model through approximation of each porous
electrode as a single spherical particle. This results in either the single-
particle (SP) model [33,35] or the enhanced single-particle (ESP) model
[36,37]. The difference among these two models is that the latter in-
cludes the electrolyte dynamics that are not negligible in high current
scenarios. In contrast, the SP model holds accuracy when used in low
current rate applications (≤1C). With 1C discharge capacity test data,
this study pertains to the application of the physics-based SP model to
execute the parameter identification algorithm.

The lithium ion battery can be simplified by representing each
electrode as a spherical particle, as shown in Fig. 5. The lithium ions
intercalate between two electrodes during discharging and charging.
The intercalation resistance at the electrode surface exhibits in the form
of overpotential. These phenomena can be described by the SP model
through the following equations.

The concentration of lithium ions within the spherical particle at
each electrode follows the Fick’s diffusion law:
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where the subscript =i n is used for negative electrode, =i p is used for

Fig. 1. Aging test profiles designed to represent different driver styles, (a) Calm Low Speed (CLS) profile, (b) Aggressive High Speed (AHS) profile, and (c) New
Condition (NC) profile which is designed to validate the cycle aging performance of NMC lithium-ion cell.

Fig. 2. Experimental test set-up at the BACh Laboratory. The Arbin BT-2000
cycler discharges and charges the cell continuously, according to the request
from the interface of the MITS Pro data acquisition software. During testing, the
Peltier junctions maintain the cell at a constant temperature.
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positive electrode; c (r, t)i is the solid-phase concentration (mol/m3); Di
is the diffusion coefficient of the electrolyte in the solid particle (m2/s);
Ri is the radius of the solid particle (m); ri is the distance from the center
of the particle (m); t is the time instant (s); j (t)i is the lithium ion in-
tercalation flux density (A/m2), calculated as:

=j (t) I(t)
Ai

i (4)

where I(t) is the applied current (A), positive for discharge, negative for
charge and Ai is the equivalent electro-active surface area (m2).

It is common practice to reduce the Eq. (1) into an ordinary dif-
ferential equation by assuming a parabolic electrode lithium ion con-
centration profile [45]:

= +c (r ,t) a (t) b (t)
r
Ri i i i
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2

i
2 (5)

After substituting Eq. (5) into Eq. (1), one obtains:

+ =d(a (t))
dt

r
R

d(b (t))
dt

6 D b (t)
R

i i
2

i
2

i i i

i
2 (6)

And after substituting Eq. (5) into Eq. (3), one obtains:

= −2 D b (t)
R
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i
i (7)

Two quantities are of interests for the present study, i.e., the average
concentration, c (t)avg,i and the surface lithium ion concentration, c (t)s,i .
The c (t)avg,i is calculated as:

∫=
=
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which, after substituting Eq.(5) into Eq.(8), becomes:

= +c (t) a (t) 3
5
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On the other hand, c (t)s,i is obtained by substituting ri =Ri into Eq.
(5):

= +c (t) a (t) b (t)s,i i i (10)

Combining Eqs. (7), (9) and (10),
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From c (t)avg,i , one can determine the state-of-charge at the electrodes,
SOC (t)i , after normalizing c (t)avg,i with respect to the maximum elec-
trode lithium ion concentration (mol/m3), cmax,i:

=SOC (t)
c (t)
ci
avg,i

max,i (13)

The electrode surface overpotentials, ηi (t), which are caused by the
resistance of the flow of electrons at the electrode-electrolyte interface,
can be calculated as:

Fig. 3. The current and voltage responses for 1C discharge capacity test (top)
and HPPC test (below) from fresh new cell#1. The discharge capacity test is
done at 1C (or 2 A), the HPPC test profile consists of 2C (or 4 A) discharge pulse
and 1.5C (or 3 A) charge pulse at every 10% SOC increment.

Table 2
The aging test matrix with the aging conditions and their corresponding cells.

Aging Conditions Cell No. #

Calm Low Speed 23 °C (CLS23) Cell#1 / Cell#2
Calm Low Speed 45 °C (CLS45) Cell#3 / Cell#4
Aggressive High Speed 23 °C (AHS23) Cell#5 / Cell#6
Aggressive High Speed 45 °C (AHS45) Cell#7 / Cell#8
New Condition 45 °C

(NC45)
Cell#9 / Cell#10
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where

= ⋅ ⋅ ⋅ ⋅ −d (t) F k c (t) c (t) (c c (t))0,i i e s,i max,i s,i (15)

represents the exchange current density (A/m2); R is the universal
gas constant, 8.314 J mol−1 K−1; T is the temperature (K); F is the
Faraday constant, 96487 (C/mol); ki is the reaction rate constant (m2.5/
mol0.5/ s); c (t)e is the solution phase concentration (mol/m3).

The cell voltage response output, V (t)output , is determined by the
open circuit potentials (OCP), U (t)i at the two electrodes, and the
overpotentials, η (t)i of the two electrodes, and the contact resistance
voltage drop, ⋅R I(t)f . The OCP curves, U (t)i , are shown in Fig. 6 where
SOC (t)i is calculated according to Eq. (13).

= + − − − ⋅V (t) U (t) η (t) U (t) η (t) R I(t)output p p n n f (16)

The SP electrochemical model described above introduces 14
parameters which are summarized in Table 3. The initial values are

compiled from previous literature [25,38]. The coupling between ki and
ce in the form of k ci e in Eq. (9) indicates that only 13 effective
parameters should be identified. In this study ce is always fixed at
1000mol/m3 to enable the effective identification of ki. The inherent
drawback of neglecting solution phase dynamics limits the application
of single-particle model to the low current rate scenarios (usually less
than 1C). In our case, the discharge capacity measurements (at 1C) are
qualified for the adoption of SP model.

In the following section, the parameters of the SP electrochemical
cell model are fitted at different aging stages. The identification algo-
rithm is detailed in the next section. The parameters are identified in
terms of their stochastic distributions and their correlations with cell-
level aging quantities, such as capacity, are investigated.

4. Parameter identification with MCMC algorithm

In this study the MCMC algorithm is used to identify the stochastic
distribution of the parameters of the SP cell model. The MCMC algo-
rithm integrates the Bayesian stochastic-based feature, as it treats each
parameter as a probabilistic distribution, with the stochasticity of
Monte Carlo method, which uses sampling methods to approximate the
parameter distributions [48]. The MCMC algorithm is applied to fit the
parameters of the SP model with the 1C discharge capacity test data at
different aging stages. The progression of the most significant aging-
related parameters can provide new insights for NMC Li-ion battery
aging. The application of the MCMC algorithm on the SP model for
NMC aged cells operating for a 48 V system is proposed for the first
time.

In the context of full discharge capacity test, in [38] it is indicated
that SOCn,100, SOCp,100, Ap are the most significant parameters related to
aging when the SP model is used; [41] evaluated the drift of the Dn, Dp,
kn kp parameters during aging based on the P2D model. SOCn,100,
SOCp,100, Dn, kn are assumed to account for the resistive film growth at
the negative electrode; Ap, Dp, kp are mainly considered to account for
active material losses at the positive electrode. Other parameters are

Fig. 4. The capacity loss in the aging campaign; (a) time-based, (b) kAh-throughput-based.

Fig. 5. Schematic of the electrochemical battery model using SP approximation.

Fig. 6. Electrode OCPs for NMC and Graphite [46].
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regarded as non-aging-related.
The parameter identification process is conducted in two steps.

First, all parameters are identified from capacity test data from a fresh
battery using the simplex search method aimed at minimizing the
square errors between experimental and simulated voltage responses. In
the second step, the non-aging-related parameters are regarded as
constants, and the identification is run for the subset of parameters that
are affected by aging using the MCMC algorithm. The aging-related
parameters are identified as distributions.

The Bayesian methodology for parameter identification treats
parameters as stochastic distributions rather than a constant. The es-
sence of this approach lies in the Bayes’ relation:

∫
= =θ

θ θ θ θ
θ θ

p( Data)
p(Data )p( )

p(Data)
p(Data )p( )

p(Data )d (17)

where the vector θ = [Ap, Dn, Dp, kn, kp, SOCn,BOD, SOCp,BOD] contains
the aging-related parameter set in this study. θp( ) is the prior dis-
tribution of the parameter set, which quantifies the prior knowledge of
θ ; θp(Data ) is the likelihood distribution, which quantifies the prob-
ability of the observed voltage data given the parameter set θ ; p(Data)
is the normalizing constant, representing the probability of the ob-
served voltage data; θp( Data) is the posterior distribution which
quantifies the conditional probability distribution of the parameter set θ
given the observed voltage data.

While the analytical solution of Eq. (17) is intractable, numerical
sampling methodologies are desired for the approximation of prob-
abilistic distribution θp( Data). The MCMC algorithm is one of the ef-
fective methodologies, and is applied according to following steps [47]:

Step 1: Set the number of sampling iterations N=50,000 in this
study.

Step 2: Start with initial values of the aging-related parameter set θ0,
which can be determined arbitrarily or from some preliminary results
based on efficient optimization routines, such as the simplex search
method. The latter is recommended because it can help the MCMC al-
gorithm approximate its results more efficiently [47].

Step 3: Initialize aging-related variables for the implementation of
the MCMC algorithm.

(1) The error variance of the initial fit is defined as:

=
−

⋅err 1
n p

SEθ
2

The n is the length of the time vectors, p is the length of the para-
meter set θ, the SEθ is the square error between simulated and experi-
mental voltage responses under certain parameter set θ:

∑= −
=

V θ VSE [ ( ) ]θ
j 1

n

model,j exp,j
2

The Vmodel,j and Vexp,j are the voltage outputs of the SP model and the
experiment at each time instance j;

(2) Set = ⋅ ⋅D θ I0.01 0 as the constant parameter walking distance for the
following steps; θ0 is the vector containing initial values of the
aging-related parameter set.

I is the identity matrix of size 7× 7, which is determined by the
length of parameter set θ.

Step 4: Approximate the parameter distributions for N iterations
For = …i 1, 2, , N
Generate a new candidate set of parameters in a random-walk

manner:

= +−θ θ Dz* i 1

where z is a random variable drawn from a normal distribution with
zero mean value and standard deviation 1, Normal(0,1), to facilitate the
random walk of the parameters;

Compute = ∑ −= θV VSE [ ( ) ]θ j 1
n

model,j
*

exp,j
2* ;

Sample a random variable u from a uniform distribution, e.g.
∈u Uniform(0 1);

Compute =− −
− −

θ θα( , ) min(1, e )
[ ]

* i 1
θ θ

SE * SE i 1

2err2 ;
If < −u θ θα( , )* i 1

Set =θ θi *, =SE SEθ θi *;
Else
Set = −θ θi i 1, = −SE SEθ θi i 1;
End

End
The traces of the seven aging-related parameters (Ap, Dn, Dp, kn, kp,

SOCn,100, SOCp,100) over the 50,000 iteration window are displayed in
Figs. 7(a)–(g). Generally speaking, it is common to identify a “Burn-in”
period and a “Stable” period. The “Burn-in” period is the time window
over which the parameter trace, after starting from an initial value,
settles to its steady state. This phase is the transient phase for the
identified parameter. In contrast, the “Stable” period is the time
window over which the mean value of the parameter trace stays ap-
proximately constant. While the SOCn,BOD in Fig. 7(a) and the Ap in
Fig. 7(b) quickly reach steady states, the kp in Fig. 7(f) is the slowest
one, taking nearly 30,000 iterations. The choice made in this work is to
separate the 50,000 iterations into the initial “Burn-in” period, con-
sisting of the first 30,000 iterations, and the “Stable” period related to
the last 20,000 iterations. Information from the “burn-in” period should
be discarded due to its transient nature, whereas the data in the “stable”
period are used to obtain the estimate of the parameter distributions.

Table 3
The set of model parameters with their initial values for the discharge capacity test data.

Notations Parameters Initial Values

Rn Negative Electrode Equivalent Particle Radius (μm) 5
Rp Positive Electrode Equivalent Particle Radius (μm) 5
An Negative Electrode Equivalent Active Surface Area (m2) 2
Ap Positive Electrode Equivalent Active Surface Area (m2) 2
Dn Negative Electrode Solid Phase Diffusion Coefficient, *10−14(m2/s) 2
Dp Positive Electrode Solid Phase Diffusion Coefficient, *10−14(m2/s) 2
kn Negative Electrode Surface Reaction Rate Constant, *10−11(m2.5/mol0.5/ s) 2
kp Positive Electrode Surface Reaction Rate Constant, *10−11(m2.5/mol0.5/ s) 2
cmax n, Negative Electrode Maximum Lithium ion Concentration (mol/m3) 25000
cmax p, Positive Electrode Maximum Lithium ion Concentration (mol/m3) 22000
SOCn,100 Negative Electrode SOC at Beginning-of-Discharge (BOD) after Full Charge 0.90
SOCp,100 Positive Electrode SOC at Beginning-of-Discharge (BOD) after Full Charge 0.02
Rf Cell Contact Resistance (Ω) 0.02
ce Solution Phase Concentration (mol/m3) 1000
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Figs. 7(h)–(n) show the parameter distributions for the SP model from
the MCMC algorithm. The distributions of Ap, in Fig. 7(h), and SOCn,100

in Fig. 7(i), vary in much narrower windows than the other parameters,
which have rather wide variation windows, indicating high uncertainty
of parameter identification. In other words, among the aging-related

parameters, only Ap and SOCn,100 can be identified with high con-
fidence under the scenario of 1C discharge capacity test.

The cell capacity test data at different aging stages were fitted for
cell #5 and #7 as examples in Fig. 8. Under both test scenarios with the
same aging profile at two different temperatures (23 °C and 45 °C), the

Fig. 7. The traces of aging-related parameters in the MCMC exploration with 50,000 iterations (a) – (g); the distributions of the aging-related parameters with the last
20,000 iterations of the parameter traces (h) – (n), which are all visualized in the [-25%, 25%] normalized deviation window around their mean values for
comparison.
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root mean square (RMS) errors between experimental and simulated
data were kept under 0.03 V, indicating satisfactory parameter identi-
fication performance. The Ap, which indicates the positive electrode
active material loss, decreases in all cases. The SOCn,100, which implies

the active lithium ion loss and SEI growth, is overall reducing except in
a few characterization stages. By correlating the variations of the two
significant aging parameters with the capacity loss in Figs. 9 and 10, it
is found that the loss of SOCn,100 is strongly positively related to ca-
pacity loss (R2= 0.9926), yet the relationship between Ap loss and
capacity loss is loose (R2=0.6757). In the perspective of aging me-
chanisms, these correlations indicate that during the testing period used
in this study, the degradation at the negative electrode (mainly SEI film
growth) is the most significant cause of capacity loss; the degradation at
the positive electrode affects the capacity loss in a limited manner.

5. Conclusions

This study aims to characterize the aging conditions of NMC lithium
ion batteries for 48 V mild HEV application, which normally operates in
a shallow SOC range and at high C rates. A set of in-house test profiles
synthesized from real-world driving data were applied under different
temperatures for accelerated cell aging testing. After the aging cam-
paign, the capacity loss is much severer than the internal resistance rise
and shows negative impacts from elevated temperature and higher
discharge current rate. Further increasing the discharge current above a
certain level does not result in a higher cell aging rate in terms of Ah-
throughput, but can reduce testing time for the same amount of capa-
city loss. As the single-particle model is capable of simulating the bat-
tery voltage response under low current scenarios, its parameters are
identified with the 1C discharge data at each aging characterization
stage to imply potential aging mechanisms. Out of seven aging-related
parameters, only two parameters can be identified with high confidence
based on the Bayesian MCMC parameter identification algorithm. To
identify other parameters, other test scenarios should be carried out to
integrate more information into the identification process in future
studies. The variation of negative electrode SOC after full charge,
SOCn,100, is found to strongly linearly correlate with the loss of cell
capacity, suggesting the degradation at the negative electrode is the
main aging mechanism in the 18650 NMC cell used in 48 V vehicle
applications.

The findings from this research regarding the high correlation be-
tween the SOCn,100 and the loss of cell capacity are specifically sig-
nificant in that they can facilitate implementation of onboard battery
capacity estimation and battery prognostics for micro-hybrid applica-
tions.

Fig. 8. Experimental and simulated 1C discharge data for the cell#5 under the AHS aging profile at 23°C and the cell#7 under the AHS aging profile at 45°C (top),
and their corresponding fitting errors (bottom); the root mean square value of the fitting errors for both cases are under 0.03V.

Fig. 9. Capacity loss vs. SOCn,BOD loss.

Fig. 10. Capacity loss vs. Ap loss.
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