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Abstract
This article investigates the fuel savings potential of a series hybrid military truck using a simul-
taneous battery pack design and powertrain supervisory control optimization algorithm. The 
design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. 
The powertrain supervisory control optimization determines the most efficient way to split the 
power demand between the battery pack and the engine. Despite the available design and control 
optimization techniques, a generalized mathematical formulation and solution approach for 
combined design and control optimization is still missing in the literature. This article intends to 
fill that void by proposing a unified framework to simultaneously optimize both the battery pack 
size and power split control sequence. This is achieved through a combination of genetic algorithm 
(GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into 
the Hamiltonian function. As GA and PMP are global optimization methodologies under suitable 
conditions, the solution can be considered as a benchmark for the application under study. 
Five military drive cycles are used to evaluate the proposed approach. The simulation results 
show 5%-19% reduction in fuel consumption depending on the drive cycle compared to a baseline 
non-optimized case.
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Introduction

Military vehicles require increased power and energy 
for superior dynamic performance, reliable power 
exportability, and durable silent watch capability 

when compared to passenger vehicles. Yet enhancing the fuel 
efficiency of military vehicles is an important issue that needs 
to be addressed [1]. Hybridization of the military vehicle 
powertrain is seen as a potential mean to achieve significant 
fuel efficiency improvement while providing the required 
performance. Hybrid electric vehicles (HEVs) combine 
multiple power sources to enable fuel-saving functions, such 
as regenerative braking, engine idling elimination, and effi-
cient engine operating region shift. However, the deployment 
of military HEVs is still under active research due to chal-
lenges such as reliability in complex operating and environ-
mental conditions [2]. The focus of this article is to develop a 
systematic approach to optimize the design and energy 
management of military HEVs, accounting for specific 
military driving conditions.

In HEVs, a high-level supervisory energy management 
strategy (EMS) manages the energy flow among different 
power sources at each time instant. The objective of the EMS 
is to achieve certain tasks, such as minimization of fuel 
consumption and/or tailpipe emission and/or battery health 
degradation, under appropriate constraints, satisfactory driv-
ability, and component specifications [3]. The highest benefits 
out of powertrain hybridization are achieved under the 
optimal component design and optimal power split between 
the engine and the energy storage system (ESS).

Different optimization algorithms have been proposed 
in the literature for the design optimization and energy 
management for HEV application. The design space of an 
HEV powertrain is nonlinear and often discontinuous due to 
the complex interconnection among mechanical, electrical, 
and thermodynamic devices [4]. For HEV design optimiza-
tion, gradient-free algorithms are more suitable than gradient-
based algorithms since they explore the entire design space 
for the global solution [5, 6]. Some of the popular candidates 
for gradient-free algorithms are Dividing Rectangles 
(DIRECT), simulated annealing (SA), genetic algorithm (GA), 
particle swarm optimization (PSO), etc. [6].

EMSs for HEVs can be generally classified into optimal 
and suboptimal strategies. Optimal EMSs are obtained by 
minimizing one or more objectives for off-line bench-
marking for a given drive cycle. In a real-time setting, only 
suboptimal EMSs can be implemented since future driving 
conditions are unknown. In the category of optimal off-line 
strategies, dynamic programming (DP), based on Bellman’s 
principle of optimality, guarantees the global optimal 
solution by searching through all possible power trajectories 
[7]. The Pontryagin’s minimum principle (PMP) is a general 
case of the Euler-Lagrange equation in the calculus of varia-
tion and provides necessary conditions of optimality [8]. 
Equivalent consumption minimization strategy (ECMS) also 
produces off-line benchmarking solution where an 

equivalent fuel consumption is associated with the use of 
electrical energy from the ESS. The equivalence factor in 
ECMS is similar to the co-state of PMP which determines 
the power split based on the instantaneous cost of a virtual 
equivalent fuel consumption. The analytical formulation of 
the equivalent fuel consumption in ECMS can be derived 
using PMP and guarantees the necessary condition of opti-
mality given the a priori information of the drive cycle [9]. 
Suboptimal strategies are energy management power split 
laws that are used for online implementation. Rule-based 
strategies are developed based on heuristics [10, 11, 12] or 
from DP [13] and do not require any prior knowledge of the 
drive cycle. Real-time implementation of PMP (or ECMS), 
possible upon real-time adaptation of the co-state (or equiva-
lence factors) from battery state of charge (SOC) feedback, 
is known as adaptive ECMS (A-ECMS) [14]. Other strategies 
such as model predictive control (MPC) [15, 16, 17] or 
optimal nonlinear regulation strategy which guarantee 
stability have also been proposed in the literature [18]. 
Despite the wealth of solutions proposed for energy manage-
ment and design optimization problem, there have been no 
unified or integrated approaches proposed to resolve a 
combined design and control optimization problem. 
To  address this issue, a systematic framework has been 
proposed in this article to optimize both the design and 
energy management in military HEVs.

In [19], the strategies to combine both design and control 
optimization for HEVs have been grouped into sequential, 
iterative, and simultaneous ones. Both the sequential [20] and 
iterative [21] strategies decouple the HEV design and control 
optimization problem. Iterative strategies optimize the plant 
with the fixed controller and then optimize the controller with 
the fixed plant, and the process is repeated until convergence 
is reached. The sequential design and control optimization 
includes bi-level or two layer methods where the controller is 
fully optimized for each candidate design. The simultaneous 
strategies, which vary the design and control parameters at 
the same time, have also been discussed widely. In [22, 23, 
24], GA and a rule-based EMS were integrated for simulta-
neous optimization. The authors of [4] studied the cooperation 
of PSO and rule-based EMS. The drawbacks of such an opti-
mization are the inherent suboptimality of the solution and 
the introduction of many tuning parameters. GA and PSO 
have also been combined with DP for optimal sizing and 
control strategies for HEV in a layered fashion [25, 26]. The 
computational intensity of DP accelerates sharply as the 
number of design and control parameters increases. Recently, 
convex programming (CP) has been adopted in [19, 27] for 
simultaneous design and control optimization; yet the model 
requires a large number of simplifications to be expressed into 
a convex form. A similar approach in [28] combines GA and 
ECMS, where a very large design and control parameter space 
is evaluated.

This article proposes the novel integration of GA and 
PMP for the simultaneous design and control optimization 
of a military hybrid electric truck. A detailed mathematical 
formulation of combined optimization problem is presented 
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in this work. The design variables of the battery pack and 
control variable of the energy management are optimized in 
the GA routine for global minimum fuel consumption. An 
electrothermal battery model, the parameters of which have 
been identified using data from experimental testing on SONY 
US18650VTC4 Nickel-Manganese-Cobalt-Oxide (NMC) 
lithium-ion cells, has been utilized in the studies undertaken. 
Different military drive cycles are used in this study for the 
evaluation of the impacts of real-world military driving 
conditions [40].

In the following sections, the notional Mine-Resistant 
Ambush-Protected All-Terrain Vehicle (M-ATV) model, its 
components, and the a new experimentally validated battery 
model are reviewed. The mathematical formulation of the 
optimization problem is presented and a new solution proce-
dure through GA and PMP and their integration is elaborated. 
The results of simultaneous optimization of the battery pack 
design and the control variables are reported for different 
military drive cycles. Finally, conclusions and lessons learned 
from the study are presented.

Vehicle Model Description
This study focuses on the powertrain design and energy 
management of a notional M-ATV [29]. A series hybrid 
powertrain model of the vehicle is obtained from [30], and 

the vehicle specifications are summarized in Table 1. The feed-
forward fuel control path in the vehicle simulator is removed 
to reduce the number of tuning parameters. The performance 
of the HEV simulator in terms of fuel consumption without 
the feedforward fuel control is considered as the baseline 
against which the solution of the proposed optimization 
algorithm is compared. It must be noted that the proposed 
optimization algorithm is based on a vehicle simulator which 
does not utilize any feedforward fuel control, to ensure an 
unbiased comparison against the baseline. The series hybrid 
electric vehicle (SHEV) configuration comprise of a genset 
(Navistar 6.4L 260 kW diesel engine + 265 kW generator), 
four 95 kW brushless permanent magnet direct current 
(BLPMDC) motors, and a 9.6 kWh battery pack with lithium-
iron-phosphate (LFP) cells. Figure 1(a) shows a schematic of 
the hybrid configuration and power flow among different 
components. A forward-looking simulator is set up in 
Simulink to model the power flow in which a virtual “driver” 
in the form of PID controller takes in the speed trace following 
error to calculate the demanded propulsion power (Preq). The 
genset and the motor are represented by their quasi-static 
efficiency maps. A supervisory controller based on frequency 
domain power distribution (FDPD) strategy is implemented 
for energy management [30].

TABLE 1 Vehicle powertrain and energy storage specifications.

Parameter Unit Value
Vehicle
Total weight kg 14,023

Frontal area m2 5.72

Aerodynamic drag coefficient 0.7

Rolling resistance coefficient 0.01

Tire radius m 0.59

Genset + Motor
Engine power kW 260

Generator power kW 265

Motor power kW 4x95=380

Motor rated voltage V 430

Battery Cell
26650 Lithium-iron-phosphate (LFP)  
Cell nominal capacity Ah 2.3

Cell nominal voltage V 3.3

Cell discharge current/voltage limit A/V 60/2.5

Cell charge current/voltage limit A/V 10/4.2

18650 Lithium-ion Nickle-Manganese-Cobalt (NMC)
Cell nominal capacity, Qnom Ah 2

Cell nominal voltage V 3.7

Cell discharge current/voltage limit A/V 30/2.5

Cell charge current/voltage limit A/V 12/4.2©
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 FIGURE 1  (a) Representation of the powertrain 
configuration of a series HEV military truck (adapted from [39]). 
(b) Block diagram representing the components of the modified 
forward-looking vehicle simulator.
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A number of modifications are made to the baseline 
vehicle simulator before using it for combined design optimi-
zation and energy management. A block diagram of the 
modified forward-looking simulator is shown in Figure 1(b). 
The LFP battery model is replaced with an NMC battery 
model. The NMC battery pack in the vehicle simulator is 
modeled by a first-order equivalent circuit model (ECM) 
including temperature dynamics. The supervisory controller 
modified for this work, however, has a zero-order ECM which 
is used for making the power split decision (Figure 1(b)). The 
supervisory controller splits the required propulsion power 
Preq(t) into power demanded from the battery pack Pbatt(t) and 
the genset Pgen(t). The NMC cell model parameters are identi-
fied and the model is validated using experimental data 
collected at the Battery Aging and Characterization (BACh) 
Laboratory at the Department of Automotive Engineering, 
Clemson University. The dynamic cell behavior is captured 
using a first-order ECM as shown in Figure 2. The series resis-
tance Ro represents the internal resistance of the cell, and the 
resistance-capacitance (RC) pair represents the slow diffusion 
dynamics of the cell. The resistance and capacitance of the RC 
pair are defined as R1 and C1, respectively. The ECM has two 
state variables, SOC and the voltage across the capacitor, Vc. 
The state equations describing the dynamic behavior of the 
NMC cell are provided in Equations 1 and 2 and the cell 
voltage equation is given in Equation 3. The nominal cell 
parameters are obtained from the manufacturer specifications 
and presented in Table 1. To identify the parameters of the 
ECM, capacity test and hybrid pulse power characterization 
(HPPC) tests are performed. The open circuit voltage E0 is 
measured from C/20 low current rate discharge capacity test 
at 23°C and 45°C. The electrical parameters Ro, R1, and C1 are 
identified using the PSO algorithm for discharge and charge 
scenarios under temperatures of 23°C and 45°C and SOC from 
20% to 90% as shown in Figure 4. During simulation, the 
values of Ro, R1, and C1 corresponding to a certain SOC, core 
temperature (Tc), and current directionality are obtained 
through interpolation based on the identified values of Ro, R1, 
and C1. Figure 3 illustrates the results of parameter identifica-
tion studies from HPPC tests conducted at 23°C and 45°C. 
The figure shows that the root-mean-square (RMS) errors 
between the measured and simulated cell voltage under 23°C 

 FIGURE 2  Schematic representation of a first-order ECM. 
Eo is obtained using C/20 capacity test in discharge 
experiments, while Ro, R1, and C1 are obtained from parameter 
identification using experimental data from HPPC test.
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 FIGURE 4  Variation of the identified ECM model 
parameters (Ro, R1, C1) based on surface temperature, SOC, 
and current directionality (charge/discharge).
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 FIGURE 3  Parameter identification results, with the input 
current shown in the top plot. The comparison of the cell 
voltage responses between the ECM and the experimental 
data under the HPPC test is shown for 23°C (middle plot) and 
45°C (bottom plot).
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and 45°C are 9 mV and 4.5 mV, respectively. Figure 5 shows 
the validation results of the identified ECM model using a 
US06 (x4) drive cycle obtained from [31]. The RMS error 
obtained from the model validation is 8.3 mV.

	 �V t
V t

R SOC T C SOC T

I t

C SOC T
c

c

c c

cell

c

( ) = - ( )
( ) × ( )

+
( )

( )1 1 1, , ,
	 Eq. (1)

	 SOC t
I t

Q
cell

nom

� ( ) = - ( )
×3600

	 Eq. (2)

	 V E SOC T R SOC T I t V tcell c c cell c= ( ) - ( ) ( ) - ( )0 0, , 	 Eq. (3)

A two-state temperature model is designed to predict the 
thermal behavior of the NMC lithium-ion cell [32]. The model 
has two state variables: the cell surface temperature, Ts, and 
the core temperature, Tc, as shown in Figure 6. The state 

equations are obtained through energy balance and summa-
rized in Equation 4 and 5. The heat generation rate due to 
chemical reaction, �Q, is defined in Equation 6 using electrical 
circuit parameters. To identify the thermal model parameters, 
a customized current profile shown in Figure 7 is used. The 
surface temperature Ts and the core temperature Tc are 
measured using thermocouples, and from the measurement, 
the heat conduction resistance Rc, the heat convection resis-
tance Ru, the heat capacity of the cell core Cc, and the heat 
capacity of the cell casing Cc are identified. The comparison 
between the thermal model response and the experimental 
data in terms of surface and core temperature shows an RMS 
of 0.45°C and 0.58°C, respectively:

	 C
dT

dt
Q

T T

R
c

c s c

c

= +
-� 	 Eq. (4)

	 C
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T T
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T T

R
s

s f s
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=
-

-
-

	 Eq. (5)

	 �Q E V Icell cell= -( ) ×0 	 Eq. (6)

 FIGURE 5  (Top) Input current profile of the US06 (×4) 
cycle obtained from [31]. (Bottom) Comparison between the 
experimental cell voltage [31] and simulated cell voltage from 
the identified ECM shows that the model captures the voltage 
response with an RMS of 8.3 mV.
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 FIGURE 6  Schematic of a two-state thermal model for a 
lithium-ion battery where surface temperature Ts and core 
temperature Tc are the state variables [32].
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 FIGURE 7  For the input current in the top plot, the cell 
surface temperature (middle plot) and cell core temperature 
(bottom plot) are measured and used to fit the thermal model. 
Calculated RMS errors show that the thermal model captures 
the measured core and surface temperature dynamics within an 
RMS error of 0.58°C and 0.45°C, respectively. The experiment 
was conducted with the surrounding temperature at 22.2°C.
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Combined Optimal Design 
and Energy Management 
Problem
The goal of this article is to develop a unified framework to 
tackle, simultaneously, the design optimization problem and 
optimal energy management problem with application to 
military HEVs.

Traditionally, the optimal component sizing problem and 
the energy management problem have been solved in a layered 
fashion. On the outer layer, an exhaustive search or heuristic 
global search algorithm, such as GA, PSO, etc., is typically 
employed to randomly select a battery pack size. In the inner 
layer, an optimal energy management algorithm, such as DP, 
PMP, rule-based EMS, etc., is used to find the optimal energy 
split among different energy devices at every time step [25, 
26, 28]. In [28], such a layered optimization algorithm is 
proposed where vehicle architecture parameters, such as the 
number of the motor per axle, number of axles, size, and type 
of energy storage, are considered as the design variables. It 
has six objective functions and fuel consumption minimiza-
tion found through ECMS is one of them. A similar approach 
is proposed in [26], where GA is used in the outer loop for 
battery and supercapacitor sizing and DP is used in the inner 
loop to find the optimal power split between them. In these 
approaches, the interaction between the design parameters 
and control strategy is from top to bottom resulting in a 
bi-level iterative process. Such processes increase the compu-
tational time and complexity, so multiple design variables are 
visited and evaluated for which the control strategies might 
not be feasible in the first place. In this article, a combined 
optimization framework where control variables of the bottom 
level are optimized simultaneously with the design variables 
in the top level is proposed. The proposed approach formulates 
the Hamiltonian function by incorporating both the design 
and control variables. In this combined approach, the differ-
ential evolution (DE) algorithm, which is a GA-based heuristic 
algorithm, and the PMP are used together. PMP is suitable 
for such a combined approach because of its structure. Unlike 
DP algorithm which suffers from the “curse of dimension-
ality,” PMP minimizes a cost function by minimizing the 
Hamiltonian with less computation even for a large number 
of state variables. DP uses a backward simulation approach 
from the end of time in a discrete state space. The optimality 
of the solution from DP is guaranteed only up to a certain 
level of discretization [8]. PMP solves the problem forward in 
time, which makes it possible to use a more complex forward-
looking model. The solution of PMP is obtained by solving a 
two-point boundary value problem. However, in HEV control 
with a lithium-ion battery pack, the dependency of the co-state 
dynamics on the SOC is neglected and a constant co-state is 
assumed [33]. This assumption greatly simplifies the optimiza-
tion problem formulated using PMP. The next section 
describes a mathematical formulation of the design and 
optimal control problem.

Problem Formulation
In this work, the overall objective is to minimize the total 
vehicle fuel consumption over a given drive cycle over the 
time horizon [0, tf ]:

	 J m P t dt
t

fuel batt

f= ( )( )ò 0
� 	 Eq. (7)

where �mfuel  is the fuel mass flow rate (kg/s) which is a 
function of the instantaneous power demand from the battery 
pack, Pbatt(t). Assuming homogeneity in the battery pack, the 
power delivered from the pack can be expressed as a product 
of the number of lithium-ion cells in a series string Ns, number 
of parallel strings Np, and power delivered by a single cell Pcell 
(t). For the problem formulation, the battery pack SOC is 
defined as 𝑥(t), the power from a cell is defined as 𝑢(t), and 
battery design vector is defined as 𝒗, where 𝒗 = [Ns Np]T. The 
goal of the optimization problem is to find the admissible 
design and control variables 𝜋:

	 pp t
u t U t( ) = ( )Î ( )

Î
ì
í
î v V

	 Eq. (8)

where U(t) = [umin(t), umax(t)] and V = [vmin, vmax], such that
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where T denotes torque and 𝜔 denotes angular speed of 
the engine, the motor, and the generator.

The PMP has been successfully implemented to solve the 
optimal power split problem in HEVs [33, 34]. In this formula-
tion, SOC x(𝑡) is the state variable and input power u(𝑡) is the 
control input. For the given objective, the Hamiltonian 
function is defined as follows:

	 H t x t u t m u t t f t x t u tfuel, , , , , ,( ) ( )( ) = ( )( ) + ( ) × ( ) ( )( )v v� l 	
Eq. (10)

where 𝜆 is the co-state in units of kilograms and f repre-
sents the state dynamics of the battery pack. The temperature-
dependent two-state lithium-ion battery model presented in 
Equations 1-6 is implemented in the powertrain of the vehicle 
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simulator. However, for making the power split decision in 
the supervisory controller, a simpler zero-order ECM of a 
lithium-ion battery is used to define the battery SOC, x(t) as 
a function of the control variable. The necessary conditions 
for optimality of the Hamiltonian are the following:

State dynamics

	 �x t
H I

Q

I

Q

E E R u t

R Q
batt

pack

cell

nom nom

( ) = ¶
¶

= - = - =
- - ( )

l
0 0

2
0

0

4

2
	 Eq. (11)

Co-state dynamics

	 �
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l l lt
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¶
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¶
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÷
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0 0
2

0
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2
	 Eq. (12)

Charge sustainability

	 x t x xf target( ) - = =D 0	 Eq. (13)

Stationarity

	

pp * ( ) = ( ) ( ) ( )( )( )
( )Î ( )

Î

t H t x t t u t v

u t U t

argmin , , , ,l

v V

	 Eq. (14)

Under an HEV charge sustaining operation, the battery 
SOC is usually constrained within a narrow window. Within 
that range, E0 and R0 can be assumed as constant, and �x t( ) 
depends only on cell power u(t). Therefore, the co-state 
dynamics �l t( ) given in Equation 12 becomes zero and λ(t) 
becomes a constant [5].

Solution Method
For a given military drive cycle, the problem formulation 
described in the previous section is used to find a global 
solution for minimum fuel consumption. DE is used to solve 
the fuel consumption minimization problem. It is a variation 
of GA, where the real encoding of floating point numbers 
and the nonuniform crossover are used. DE is easier to tune 
compared to other evolutionary algorithms [35] and it was 
first proposed in [36]. In this work, a modified version of the 
DE algorithm, similar to the one in [37], is used and applied 
to the optimal battery pack design and control problem for 
the military SHEV. The design variables are the number of 
lithium-ion cells in series, Ns, and the number of lithium-ion 
cells in parallel, NP. The control variable is the power split 
decision at each time step between the engine and the battery 
pack. Since the co-state variable 𝜆 is a measure of the cost of 
using electric energy from the battery, the optimal value of 
𝜆 determines the optimal power split at each time step. 
Therefore, in the global optimization framework, the decision 
variables are the number of cells in series Ns, the number of 
cells in parallel Np, and the co-state 𝜆. At the initialization 
phase of the optimization, an initial population of N members 
is generated, where each population member has a different 
combination of these three decision variables. Through cross-
over and mutation, a larger population set is generated. If 

any population member violates the constraints of the opti-
mization problem, that member is discarded and a new 
member is generated. To generate a set of candidate solutions, 
the charge sustaining constraint in Equation 13 is relaxed 
and a population member is considered feasible if the final 
SOC is within 0.25% of the initial SOC. For each population 
member, the Hamiltonian function is minimized at every 
time step while satisfying the constraints of state and co-state 
dynamics in Equations 11 and 12. From the optimal battery 
power corresponding to the minimum value of the 
Hamiltonian, the total fuel consumption over the drive cycle 
for each population member is obtained using Equation 9. 
Based on the fuel consumption of each member, a small set 
of population members are selected. The process is then 
repeated in the next generation until the stopping criteria 
(M number of generations) are achieved. Then the best 
combination of the decision variables with the minimum 
fuel consumption is selected. This global solution approach 
eliminates the need of solving a two-point boundary value 
problem iteratively [25] to find the optimal co-state. In 
Figure 8, the basic structure of the solution approach used 
in this article is presented.

 FIGURE 8  Flowchart for solving the combined design 
optimization and optimal energy management problem using 
GA and PMP.
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Bounds of Decision Variables
The global optimization algorithm has three decision vari-
ables, Ns, Np, and 𝜆. A design space needs to be specified, 
within which the optimization algorithm determines the 
optimal combination of the decision variables. A feasible 
bound of values for each variable is determined based on the 
electrical system limitations and vehicle dynamic 
performance requirements:

	 1.	 The bound on NS is defined by assuming that battery 
pack voltage, which is equivalent to the DC bus 
voltage, stays within 90% to 110% of the rated voltage 
of the DC motor for reliable and safe operation. 
Thus, Ns must satisfy the inequality constraint in 
Equation 15. For a DC bus voltage of 429 V, the 
constraint on the number of cells in series is 
expressed as

	 V N V VDC BUS s Li nominal DC BUS, , ,% %× £ × £ ×90 110 	 Eq. (15)

	 104 128£ £Ns 	 Eq. (16)

	 2.	 The energy capacity of the battery pack is assumed to 
vary within 50% to 110% of the capacity of the 
original pack on baseline vehicle. This asymmetric 
inequality constraint, with more emphasis on smaller 
pack for economic concerns, is illustrated in 
Equation 17. With nominal cell voltage, Vcell = 3.7 V; 
nominal charge capacity, Qnom = 2 Ah; and energy 
capacity of the baseline battery pack, Ebatt,pack = 9867 
Wh, the resulting constraint on the number of 
cells in series and number of parallel strings is 
given by

	 E N N E Ebatt s p Li nominal batt× £ × × £ ×50 110% %, 	 Eq. (17)

	 667 1466£ × £N Ns p 	 Eq. (18)

	 3.	 The value of the optimal co-state 𝜆 for military drive 
cycles is typically around 2.5 for the military HEV 
with the existing battery pack in this study. So the 
feasible bound of 𝜆 for a search is selected as

	 2 3£ £l 	 Eq. (19)

Results
The simultaneous design and control optimization routine 
was applied to five military drive cycles: DCE5 Urban Assault, 
DCE4 convoy Escort, Churchville, Munson, and Harford [38]. 
Figure 9 shows the performance of the HEV vehicle simulator 
equipped with the optimal battery pack and PMP-based EMS 
to follow the desired drive cycle. Cycle following errors 

sporadically occur where sharp acceleration power demands 
are requested, especially in drive cycles such as Churchville 
and Munson. The value of the optimization variables and the 
corresponding fuel consumption obtained from the global 
optimizer for each drive cycle are summarized in Table 2 in 
the “Optimized NMC Pack” rows. Results obtained from the 
combined design optimization and energy management are 
compared against the baseline vehicle simulator with an LFP 
battery pack [30]. To reduce the number of tuning parameters 
in the baseline, and to obtain feasible results for all five 
military cycles, a constant cutoff frequency (0.12 Hz) is used 
for the frequency-based EMS. The fuel consumption values 
for the baseline vehicle are listed in the “Baseline with LFP 
Pack” rows. The results presented in Figure 10 indicate that 
the proposed approach can reduce the fuel consumption of a 
series hybrid M-ATV from 4.6% to as high as 19.54% compared 
to the baseline. In this optimization study, 0.25% difference 

 FIGURE 9  Five military drive cycles (blue) are simulated 
with the optimal battery pack using the proposed combined 
design and control optimization approach (red dotted line). For 
all the drive cycles, the simulated vehicle velocity follows the 
drive cycles, which confirms the validity of the vehicle 
simulator and the optimal solution.
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between the initial and final SOC is allowed. Therefore, the 
optimal solutions for different drive cycles are very close to 
the charge sustaining case. However, the results from the 
baseline are often not charge sustaining. For a fair compar-
ison, a correction term is added to the total fuel consumption 
for the baseline based on the difference between the initial 
and final SOC of the battery pack outlined in [34].

The fuel consumption reduction compared to the baseline 
simulator depends largely on the drive cycle characteristics. 
The DCE4 cycle produces the least amount of fuel consumption 
reduction, while Munson cycle produces the most amount of 
reduction. Figure 11 shows the engine operating points, while 

Figure 12 shows the battery SOC and power split between the 
battery pack and the engine-generator set for DCE4 and 
Munson cycle. The DCE4 cycle is composed of high-speed 
driving with frequent speed fluctuations. The optimal control 
algorithm splits the required power between the engine and 
the battery pack in such a way that the engine operates close 
to its optimal operating point compared to the baseline. Due to 
large fluctuations in the required power, the operating points 
cannot move very close to the optimal brake-specific fuel 
consumption (BSFC) point, hence the 4.6% reduction in fuel 
consumption. The improvement in fuel economy for Munson 
cycle based on the proposed approach is around 19.54%. Since 
the drive cycle has a long cruising period, the optimal control 
algorithm allows the engine operating points to steadily move 
toward its most efficient zone (“sweet spot”). On the other 
hand, the baseline simulator splits the power based on the 
cutoff frequency only and operation close to the efficient zone 
of the engine is not considered.

Small variation in the baseline vehicle design given in 
Equations 15 and 17 allows the optimizer to select a battery 
pack size and control strategy that produces the least amount 
of fuel consumption for each drive cycle. For two out of five 
drive cycles, a larger battery pack size in terms of energy 
capacity is found by the optimizer compared to the original 
pack in the baseline. It is interesting to note that in three cases, 
the optimizer yielded battery pack sizes which are smaller than 
the baseline pack and yet produce better fuel economy. The 
collective weight and volume of the cells are also computed for 
better understanding of the optimal solution found for different 
drive cycles. SOC variation of the battery pack presented in 
Figure 13 shows that battery use is diminished significantly 
compared to the baseline strategy. The suppressed battery usage 
helps push the engine operating points to higher power regions, 

TABLE 2 Comparison of the baseline LFP and the optimized NMC battery pack configurations in terms of the number of cells, 
total weight of the cells, total volume of the cells, co-states, and fuel consumptions for the five military drive cycles. The proposed 
approach finds the best battery pack configuration and the co-state to minimize fuel consumption within the vehicle 
design constraints.

Ns Np

Energy 
capacity (kWh) Weight (kg) Volume (m3) λ

Fuel consumption 
(L/100 km)

DCE5 Urban Assault
Baseline LFP pack 130 10 9.87 98.8 3.45e−3 N/A 38.06
Optimized NMC pack 111 13 10.68 66.38 2.71e−3 2.6378 34.40 (−9.61%)
DCE4 Convoy Escort
Baseline LFP pack 130 10 9.87 98.8 3.45e-3 N/A 22.37
Optimized NMC pack 108 12 9.59 59.62 2.44e-3 2.3235 21.34 (−4.6%)
Churchville
Baseline LFP pack 130 10 9.87 98.8 3.45e-3 N/A 40.1
Optimized NMC pack 120 09 7.99 49.68 2.03e-3 2.0548 32.59 (−18.73%)
Munson
Baseline LFP pack 130 10 9.87 98.8 3.45e-3 N/A 21.31
Optimized NMC pack 116 12 10.30 64.03 2.62e-3 2.4009 17.15 (−19.54%)
Harford
Baseline LFP pack 130 10 9.87 98.8 3.45e-3 N/A 21.00
Optimized NMC pack 119 10 8.81 54.74 2.24e-3 2.0131 19.01 (−9.49%)©
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 FIGURE 10  Comparison of fuel consumption between the 
baseline vehicle simulator with a fixed LFP battery pack and 
the PMP-based EMS and vehicle simulator where the NMC 
battery pack size and power split are optimized through 
combined design optimization and energy management.
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closer to its sweet spot. The small fluctuation in battery SOC 
also has a potential benefit for long-term battery health.

The results infer that using a single energy storage tech-
nology (NMC in this case) and allowing small variations in 
the total energy storage capacity (50% to 110% of the baseline) 
yield a 4.6% to 19.54% reduction in fuel consumption, 
depending on the drive cycle. These results also confirm that 
the optimization algorithm presented in this article is capable 
of finding the optimal size of the ESS and power management 
policy within the allowable design space for minimum fuel 
consumption. The resulting energy capacity for the NMC 
battery pack compared to the baseline LFP battery pack is 

 FIGURE 11  The engine operating points with the baseline 
LFP and optimal NMC battery pack along with the engine 
BSFC contours for DCE4 Convoy Escort (top) and Munson 
drive cycles (bottom). The reduction in fuel consumption from 
the baseline vehicle simulator to the optimized vehicle 
simulator is obtained by shifting the engine operating points 
toward the more efficient region with a lower average BSFC.
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 FIGURE 12  The power delivered from the battery pack and 
the engine-generator set for DCE4 Convoy Escort (top) and 
Munson (bottom) drive cycles using the baseline LFP battery 
pack and the optimized NMC battery pack.
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larger for the DCE5 and Munson cycles. For DCE4, 
Churchville, and Harford drive cycle, lower fuel consumption 
is obtained using an NMC battery pack with a smaller energy 
capacity compared to the baseline LFP pack. Therefore, this 
work shows that based on the drive cycle characteristics, even 
a smaller battery pack in terms of energy capacity might result 
in lower fuel consumption. This finding signifies the impor-
tance of a combined design optimization and energy manage-
ment algorithm compared to the control optimization for a 
fixed design. These results also motivate the inclusion of addi-
tional degrees of freedom such as hybrid ESS in the vehicle 
powertrain to further reduce the fuel consumption. The opti-
mization approach developed in this article is general enough 
to include additional ESS and powertrain components for 
better fuel economy or additional objective functions.

To validate the dynamic capabilities of the hybrid electric 
military truck, both acceleration and grade tests were 
performed. The authors of [1] summarize that for a medium-
duty truck (gross vehicle weight between 4 and 9 tons), the 
ability to accelerate from 0 to 60 km/h in less than 22 seconds 
and traverse at least 20% grade is critical for military applica-
tions. These requirements are used to calibrate the dynamic 
performance of the hybrid electric M-ATV military truck in 
this study. Figure 14 shows the acceleration and grading 
performance of the M-ATV SHEV truck with the largest opti-
mized NMC battery pack. The dynamic capability tests were 
performed under “sport mode” condition, in which both 
genset and battery are used with their maximum power. With 
the largest optimized battery pack (Ns = 111, Np = 13) which 
is derived for the DCE5 Urban Assault drive cycle, the truck 
meets the dynamic capability requirements.

Summary
This article proposes a simultaneous design and control opti-
mization routine for a series hybrid military truck. Both the 
powertrain design and power management strategy are opti-
mized to utilize the maximum benefit from hybridization. The 
development of such a combined mathematical formulation 
to find the benchmark design parameters and control solution 
for HEVs is the novel contribution of this article. The previous 
literature decoupled the design and control optimization 
problem by using either sequential or iterative optimization 
approaches. In this study, the design optimization parameters 

 FIGURE 13  The battery SOC profiles in the baseline LFP 
battery pack and optimized NMC battery pack configurations 
for five military drive cycles. The optimal battery pack design 
and control policy produce less SOC variations compared to 
the original battery pack across all drive cycles.
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 FIGURE 14  The acceleration performance test, without 
grade (top) and with 20% grade (bottom) for the hybrid 
electric military M-ATV truck using the largest optimized 
battery pack from Table 2 (Ns = 111, Np = 13). The truck achieves 
the 0-60 km/h target in 10.5 seconds (0 km/h at 5 sec and 60 
km/h at 15.5 sec) and manages to overcome the 20% grade.
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are integrated in the Hamiltonian function from PMP. The 
implementation of the integrated optimization problem uses 
the co-state 𝜆, the number of battery cells in series and number 
of battery cells in parallel as decision variables within the GA 
framework. The hybrid M-ATV military truck with the opti-
mized battery pack can achieve fuel economy benefits spanning 
from 4.6% to 19.56% across different military drive cycles. 
Simulation results reveal that SOC variation is smaller than 
the SOC variation experienced by the battery used in the 
baseline case. Such a limited variation is beneficial for battery 
health in the long run. The optimal fuel efficiency obtained in 
this study cannot be fully achieved in real-time control applica-
tions due to the lack of a priori drive cycle information. 
However, the optimization algorithm proposed provides a 
benchmark solution that can be used to both evaluate and 
calibrate online EMSs. For real-time implementation, it is 
possible to suitably adapt the co-state of the PMP as driving 
conditions change by means of an adaptive optimal supervisory 
controller [24]. The simultaneous optimization framework in 
this study can be  generalized to powertrain optimization 
problem with hybrid ESS as well.
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