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A Comparative Analysis of Energy
Management Strategies for
Hybrid Electric Vehicles
This paper presents a formalization of the energy management problem in hybrid electric
vehicles and a comparison of three known methods for solving the resulting optimization
problem. Dynamic programming (DP), Pontryagin’s minimum principle (PMP), and
equivalent consumption minimization strategy (ECMS) are described and analyzed,
showing formally their substantial equivalence. Simulation results are also provided to
demonstrate the application of the strategies. The theoretical background for each strat-
egy is described in detail using the same formal framework. Of the three strategies,
ECMS is the only implementable in real time; the equivalence with PMP and DP justifies
its use as an optimal strategy and allows to tune it more effectively.
�DOI: 10.1115/1.4003267�
Introduction

Hybrid electric vehicles �HEVs� have the potential to reduce
uel consumption and emissions in comparison to conventional
ehicles, thanks to the presence of a reversible energy storage
evice and one or more electric machines. The addition of these
evices offers idle off capability, regenerative braking, power as-
ist ability, and potential for engine downsizing. These abilities
re due to the fact that the electric actuators and the storage sys-
em can operate bidirectionally, storing part of the energy pro-
uced by the engine and by the vehicle deceleration, and use it
hen needed. The presence of an additional energy storage device
ives rise to new degrees of freedom since at each time the total
ower request for moving the vehicle can be delivered by one of
he on-board energy sources or their combination. With the addi-
ional degrees of freedom comes the problem of finding the most
fficient way of splitting the power demand between the engine
nd the battery. The energy management strategy is the control
ayer to which this task is demanded. The main objective of the
nergy management strategy �1� is to minimize fuel consumption
nd, possibly, emissions over a driving cycle without compromis-
ng the performance of the vehicle. In this work, minimization of
uel consumption �neglecting drivability considerations� is consid-
red; however, other optimization objectives could be assumed,
uch as minimization of pollutant emissions or maximization of
attery life �2�.

The energy management closed-loop scheme in a HEV is
hown in Fig. 1. The vehicle speed controller is the human driver
n a real vehicle and is typically modeled by a simple feedback
ontroller in simulation. The speed controller decides the total
ower request Preq that the powertrain must deliver in order to
ollow the prescribed velocity profile. The energy management
trategy decides how to split the total power request between the
nergy sources present on-board. Typically, being these a battery
or other electrical storage device� and the fuel tank, it decides the
alue of the engine power Pice and the battery power Pbatt. If the
owertrain has more than one degree of freedom, other control

1Corresponding author. Present address: IFP Energies nouvelles, Rueil-
almaison, France.
Contributed by the Dynamic Systems Division of ASME for publication in the

OURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
anuary 25, 2010; final manuscript received September 26, 2010; published online
arch 25, 2011. Assoc. Editor: Luis Alvarez.

ournal of Dynamic Systems, Measurement, and Control
Copyright © 20

aded 23 May 2011 to 164.107.10.90. Redistribution subject to ASME
variables are also computed: for example, the repartition of torque
between the electric machines, if more than one, or the transmis-
sion ratio, etc.

For the purposes of this study, the overall vehicle is seen as a
dynamic system with two states, the vehicle speed and the state of
charge �SOC� of the storage device. The two states are decoupled:
This allows us to consider the state of charge as the only state
variable in the energy management problem, while the vehicle
speed is controlled independently. Faster dynamics, such as the
speed transients of the various powertrain components, are ne-
glected because they are much faster than the state of charge
variations and do not affect the fuel consumption sensibly. This
steady-state model of the powertrain is sufficient to represent with
reasonable accuracy the overall efficiency and fuel consumption,
yet simple enough to quickly simulate a complete driving cycle.

The HEV energy management problem can be cast into an op-
timal control problem since its objective is to minimize a perfor-
mance index defined over an extended period of time �the trip or
the driving cycle� by using a sequence of instantaneous control
actions �the instantaneous values of power split�. Several strate-
gies have been proposed in literature to solve this problem �see,
for example, the overviews in Refs. �1,3��. The following classi-
fication can be proposed based on the techniques used.

Numerical methods for global optimization assume the knowl-
edge of the entire driving cycle and find the global optimal control
numerically; dynamic programming �DP� �4–6� and numerical
search methods �e.g., genetic algorithms �7�� belong to this cat-
egory. These methods give the optimal solution over the pre-
scribed driving cycle but are not implementable due to the neces-
sity of knowing a priori the driving cycle.

Numerical methods for local optimization are based on optimi-
zation techniques similar to the previous category but consider a
short-term optimization horizon extending into the future, during
which the driving cycle is predicted. These techniques are imple-
mentable online but tend to require high computational capabili-
ties. Among them are model predictive control �8–10� and sto-
chastic dynamic programming �11–13�, in which statistical
methods are used to predict the most likely future driving cycle.

Analytical optimization methods consider the entire driving
cycle but use an analytical problem formulation to find the solu-
tion in a closed, analytical form. They may also provide an ana-
lytical formulation that makes the numerical solution faster than
the purely numerical methods, sometimes at the cost of oversim-
plifying the problem in order to obtain a suitable description.
Among these methods are Pontryagin’s minimum principle �PMP�

�14,15� and the Hamilton–Jacobi–Bellmann equation.
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Instantaneous minimization methods consist in the minimiza-
ion, at each time step of the optimization horizon, of an appro-
riately defined instantaneous cost function. If the instantaneous
ost function is suitably defined, the result is close to the global
ptimum. The most common of these strategies is the equivalent
onsumption minimization strategy �ECMS�, originally intro-
uced in Ref. �16� and further developed by several authors
17–19�.

Heuristic methods do not involve explicit minimization or op-
imization; instead, the energy management is implemented with
ules and algorithms based on engineering intuition. Rule-based
ontrol �20� and fuzzy logic �21,22� are part of this category.
hese strategies are robust and computationally efficient, requir-

ng lower computational load than minimization-based methods.
owever, they may fail to fully exploit the potential of the hybrid

lectric architecture due to the lack of formal optimization. Blend-
ng heuristic and instantaneous minimization strategies has also
een proposed �23�.

This paper does not introduce new energy management strate-
ies; instead, it aims at presenting a thorough formalization of the
nergy management problem and provides a comparative analysis
f three techniques: DP, PMP, and ECMS. The first step for the
tudy of energy management strategies is a suitable problem for-
ulation, presented in Sec. 2. After the presentation of a case

tudy in Sec. 3, DP is described in Sec. 4, PMP in Sec. 5, and
CMS in Sec. 6. The strategies are compared in Sec. 7, pointing
ut their similarities, with the objective of showing how an imple-
entable strategy based on the ECMS framework can, in fact, be

een as the implementation of the optimal solution obtained with
P: The link is represented by the minimum principle, as shown

n Sec. 8.
This link implies that strategies based on equivalent consump-

ion minimization can be regarded as an implementation of the
ptimal solution to the energy management problem and therefore
an be used with more confidence; furthermore, the coherent de-
cription of the optimal control problem and the ties between the
hree strategies allow for a more effective tuning of the ECMS.

Since this paper aims at giving a generic point of view on HEV
ontrol strategies, the theoretical results are generic and valid for
ny hybrid electric architecture. However, for illustrative pur-
oses, numerical examples are developed using a series hybrid
rchitecture as a case study. Also, for simplicity, we refer to bat-
eries as energy storage device, but the same considerations re-

ain true for other devices as well, for example, supercapacitors.

The Energy Management Problem
The optimal control problem in a hybrid electric vehicle con-

ists in finding the sequence of controls u�t� that leads to the
inimization of the performance index J, defined as:

J�x�t0�,u�t�,x�tf�� = ��x�t0�,x�tf�� +�
t0

tf

L�x�t�,u�t�,t�dt �1�

here t represents the time, u�t� is the control action, x�t� is the
tate variable, �t0 , tf� is the optimization horizon, L� · � is the in-
tantaneous cost function, and �� · � is the terminal cost �cost due

Preq(t)

Energy
management
strategy

Driver
(speed
tracking)+ _

vref (t)

Fig. 1 The role of energy managem
o the final value of the state�. The optimal control law is denoted
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as u��t�, and the corresponding state trajectory is denoted as x��t�.
By definition, the optimal control is such that

J�x�t0�,u�t�,x�tf�� � J�x�t0�,u��t�,x��tf�� ∀ u�t� � u��t� �2�

The state variable x�t��R is the battery state of charge, which is
the amount of charge stored in the battery at a given moment,
expressed as a fraction of the total amount of charge that the
battery can accumulate.

u�t��Rm is the vector of control variables. The number m of
control variables in the energy management problem depends on
the powertrain architecture and, in particular, on the number of
energy paths between the energy sources and the wheels. A gen-
eral definition of the control variables is

u�t� = �Pbatt�t�,�1�t�, . . . ,�m−1�t�� �3�

where Pbatt�t� is the total power output of the battery and �i�t� are
additional variables that express how the battery power is split
among the electric actuators if there is more than one degree of
freedom. If the powertrain only has one degree of freedom, i.e.,
m=1, then u�t�= �Pbatt�t��.

The instantaneous cost is the fuel consumption: L� · �= ṁf�u�t��.
If pollutant emissions are also to be minimized, then L� · � can be
defined as a weighted average of fuel and pollutant mass flow
rates; similarly, if battery life is of concern, L� · � may include a
term accounting for battery wear.

Considering a quasi-static engine model, the fuel consumption
is only a function of the engine torque Tice�t� and speed �ice�t�.
Using a powertrain model, these variables are related to the con-
trol Pbatt�t�, the driver’s power demand Preq�t�, and the vehicle
speed vveh�t� in order to express the fuel consumption as
ṁf�Pbatt�t� , Preq�t� ,vveh�t��.

The vehicle speed and the power demand are considered as
measured external inputs, and the dynamics of the powertrain
components are neglected because they are much faster than the
battery state of charge dynamics and do not affect significantly the
vehicle energy balance �24�.

The constraints to which the optimization is subject are

�a� system dynamics
�b� initial state value
�c� terminal state value
�d� instantaneous state limitations
�e� instantaneous control limitations

(a) System dynamics. During the entire optimization horizon,
the system evolves according to its dynamic equation

ẋ�t� = f�x�t�,u�t�� ∀ t � �t0tf� �4�

In the HEV case, this equation represents the evolution of the
battery state of charge as a function of the battery power. By
definition, the variation of the SOC is proportional to the current

Pbatt(t)

Powertrain + vehicle
(plant)

Pice(t) vveh(t)

SOC(t)

t control in a hybrid electric vehicle
en
at the battery terminals:
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ẋ�t� = −
1

Qnom
I�t� �5�

here I�t� is the current �positive during discharge� and Qnom is
he nominal charge capacity of the battery. The SOC variation can
e expressed as a function of the battery power by using a simple
ircuit model, such as the one shown in Fig. 2. In this circuit,

VL�t�I�t� = Pbatt�t� = Voc�x�I�t� − R0�x�I2�t� �6�

here Voc�x� is the open-circuit voltage of the battery, R0�x� is the
quivalent internal resistance �both are functions of the state of
harge�, VL�t� is the load voltage at the terminals, and I�t� is the
urrent flowing at the terminals of the device.

Solving Eq. �6� for the current and replacing it into Eq. �5�
ields

ẋ�t� = −
1

Qnom

Voc�x� + �Voc
2 �x� − 4R0�x�Pbatt�t�
2R0�x�

= f�x,Pbatt� �7�

quation �7� is the form of the state equation assumed in the rest
f the paper. Note that any other form of the function ẋ
f�x , Pbatt� is equally acceptable since the conclusions drawn later

n the paper do not depend on the specific expression of this
quation. However, it is important to note the explicit dependence
f the state equation on the value of the state itself through the
pen-circuit voltage Voc and the internal resistance R0. An ex-
mple of their variation with state of charge is shown in Fig. 3,
hich is referred to the case study introduced in Sec. 3.
(b) Initial state value. The system state at the beginning of the

ptimization horizon must assume the initial value x0:

x�t0� = x0 �8�
(c) Terminal state value. The terminal value of the state must

atisfy the equality constraint �hard constraint�,

x�tf� = xf �9�

or charge-sustaining vehicles, xf =x0, which is the terminal con-
ition assumed in this work. In some cases, the terminal state
onstraints are not defined explicitly and are replaced by soft con-
traints introduced with the terminal cost ��x�t0� ,x�tf�� that ap-
ears in Eq. �1�. This may be useful, for example, in plug-in
ybrid vehicles, in which the battery can be discharged to a low

+

discharge

charge

Voc I

R0I

R0

VL

Fig. 2 Simple circuit model of a generic battery

0 0.2 0.4 0.6 0.8 1
3

3.1

3.2

3.3

3.4

3.5

State of charge, x

V
oc

[V
]

(a)
Fig. 3 Effect of the state of charge o

ournal of Dynamic Systems, Measurement, and Control

aded 23 May 2011 to 164.107.10.90. Redistribution subject to ASME
state of charge value, and the terminal cost accounts for the cost of
the electricity needed to recharge the battery. In this paper, how-
ever, we assume no terminal cost, i.e., ��x�t0� ,x�tf��
=0, ∀x�t0� ,x�tf�.

(d) Instantaneous state limitations. At each time t� �t0 , tf�, the
state of charge must remain within lower and upper bounds:

xmin � x�t� � xmax �10�
For a more compact notation, the instantaneous state constraints
can also be written as follows:

G�x�t�,t� � 0, G�x�t�,t� = 	x�t� − xmax

xmin − x�t� 
 �11�

(e) Instantaneous control limitations. At each time, the control
variable�s� must be in the set of admissible controls:

u�t� � U�t� �12�

where U�Rm is a compact set in all the control variables. The
definition of the admissible control set U�t� is specific to each
architecture: The general guidelines are that the controls must be
such that the torque or power delivered by each machine does not
exceed their intrinsic limitations, while at the same time, the total
torque or power demand at the wheels is satisfied �to the highest
degree possible�.

At this point, the optimal control problem is completely de-
fined, although not particularized explicitly for any specific archi-
tecture. The following sections show how three different methods
can be used to solve it. A case study is first described, which will
be used in the rest of the paper as an example of the explicit
formulation of the problem and its constraints. The reason for the
comparison of different strategies is to show the similarities be-
tween the different approaches, improve their understanding, and
provide a method for the online implementation of the optimal
solution to the problem.

3 Case Study

3.1 Powertrain Architecture. A series hybrid vehicle is pre-
sented as a simple case study to show the application of the strat-
egy with a numerical example using a medium-size sport-utility
vehicle �SUV� with Li-ion batteries. The powertrain architecture
is shown in Fig. 4, and the data used for simulation are listed in
Table 1.

The total power request Preq�t� is the sum of the power request
from the traction motor, Pem,e�t�, and the electrical accessories,
Pacc�t�:

Preq�t� = Pem,e�t� + Pacc�t� �13�
The power request is satisfied using either the generator or the
battery, i.e.:

Pgen,e�t� + Pbatt�t� = Preq�t� �14�
The set of admissible values for the battery power is defined as the
range that satisfies both the following conditions �i.e., the inter-
section of the two�:

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

State of charge, x

R
0

[O
hm

]

b)
(
n the circuit parameters of Fig. 2
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Pbatt,min�x� � Pbatt�t� � Pbatt,max�x� �15�

Preq�t� − Pgen,e,max�t� � Pbatt�t� � Preq�t� − Pgen,e,min�t� �16�

here Pbatt,min�x� and Pbatt,max�x� are the minimum �peak re-
harge� and maximum �peak discharge� power of the battery,
hich depend on its state of charge, and Pgen,e,max�t� and

gen,e,min�t� are the maximum and minimum electric power that
he generator can produce. The battery power is assumed to be
ositive during discharge and negative during recharge. The gen-
rator power is positive if generating and negative if motoring.
owever, the minimum generator power is set to zero because the
enerator cannot be used as a motor.

Since in a series HEV there is no mechanical connection be-
ween the engine and the wheels, the engine speed can be set
ndependently from the vehicle speed. In principle, this means that
he speed can be chosen as the value corresponding to the maxi-

um efficiency for a given output power; i.e., the genset can be
perated along its maximum efficiency line or optimal operating
ine �OOL�, as shown in Fig. 5. This is a strong assumption but is
ustified by the fact that a quasi-static modeling approach is used,
ith relatively low time resolution: This means that the genset

ontroller brings the machines at their speed setpoint in the time
nterval between successive simulation steps �1 s in this case�.

positive power

negative power

Batteries

Traction
motor

Gearing

Wheels

Secondary
accessories

Engine Generator

Pbatt

Pice Pgen,e

Pem,e

Pacc

Pem,m

Pwh

ig. 4 Series hybrid architecture used as application example

Table 1 Data used for simulation

ehicle mass 2000 kg
enset maximum power 60 kW
otor maximum power 110 kW
attery maximum power 110 kW
attery energy capacity 3.5 MJ
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Fig. 5 Efficiency map of engine-generator set
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Under this condition, the fuel consumption is only a function of
the net electric power produced by the generator, as shown in Fig.
6:

ṁf = ṁf�Pgen,e� = ṁf�Preq − Pbatt� �17�

4 Numerical Optimization: Dynamic Programming
DP generates a numerical solution to the optimal control prob-

lem defined in Sec. 2. In other words, it gives sufficient conditions
for the global optimality. DP is based on Bellman’s principle of
optimality:

An optimal control policy has the property that no matter
what the previous decisions �i.e., controls� have been, the
remaining decisions must constitute an optimal policy
with regard to the state resulting from those previous
decisions �25�.

In order to apply DP, the system dynamics is written in a
discrete-time form, and the state and control domain are also dis-
cretized; thus, a finite �albeit very large� number of possible solu-
tions are considered. Let us define the control policy � as the
sequence of controls during the optimization horizon: �
= �u0 ,u1 , . . . ,uNt−1�, where Nt is the number of time steps in which
the optimization horizon is subdivided and a subscript indicates
the time instant. The total cost of the control policy � is

J0��� = ��xN� + �
0

N−1

L�xk,uk,tk� �18�

and the optimal policy is

�� = arg min
�

J0��� �19�

The cost-to-go Jk��� is defined as the cost incurred in moving
from the time step k to the end of the optimization horizon, fol-
lowing the policy �. Bellman’s principle is applied by computing
the optimal cost-to-go, Jk

�, in an iterative fashion, starting from the
final instant of the optimization horizon. At t= tN:

JN
� �x� = ��xN� �20�

and then for each instant tk , k=N−1, N−2, . . . ,0:

Jk
��x� = Jk+1

� �x� + min
uk�Uk

L�xk,uk,tk� �21�

where xk and uk are the values of the state and control at time tk,
and Jk

� is the value of the optimal cost-to-go at the same time. The
optimal cost-to-go is computed for each value of the state in the

0 10 20 30 40 50 60
0
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2

3

4

5
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7

Electric power [kW]
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el
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pt
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Fig. 6 Fuel consumption of the genset as a function of net
electric power generated „assuming operation along the opti-
mal line OOL shown in Fig. 5…
admissible range. The control policy that generates the optimal
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ost-to-go at a given time is �k
��xk�. After the backward iterations

ave been completed, the law �k
��xk� is defined for each value of

ime and is used to compute the optimal control sequence starting
rom the initial time and state values using a forward iteration of
he algorithm. For a more detailed description of the DP algo-
ithm, see Ref. �26� or �27�.

DP is capable of determining the optimal solution to the dis-
retized problem. This solution is generally suboptimal for the
ontinuous problem because of the approximation introduced with
he discretization; however, if the grid is fine enough, the approxi-

ation is negligible. The need for a backward procedure means
hat the solution can be obtained only offline, for a driving cycle
nown a priori, and therefore it is not possible to use DP for an
nline implementable solution. Furthermore, the high computa-
ional load makes any DP optimization prohibitive on typical on-
oard microcontrollers.

Analytical Optimization: Pontryagin’s Minimum
rinciple
Pontryagin’s minimum principle �28� states that if the control

aw u��t� is optimal for the problem defined in Sec. 2, the follow-
ng conditions are satisfied.

1. u��t� minimizes at each instant the Hamiltonian of the opti-
mal control problem:

H�x�t�,u�t�,t,��t�� � H�x�t�,u��t�,t,��t��, ∀ u � u�

where the Hamiltonian is defined as

H�x�t�,u�t�,t,��t�� = �T�t� · f�x�t�,u�t�� + L�x�t�,u�t�,t�

with f�x�t� ,u�t�� being the system dynamic equation,
L�x�t� ,u�t�� being the instantaneous cost, and ��t� being a
vector of auxiliary variables called co-states of the system. �
has the same dimension as the state vector x and therefore is
a scalar in our problem.

2. The co-state variable satisfies the following dynamic equa-
tion:

�̇�t� = −
�H�x�t�,u�t�,t,��t��

�x
�22�

The conditions given by the minimum principle are necessary,
ot sufficient. Every solution that satisfies the necessary condi-
ions is called an extremal solution. If the optimal solution exists,
hen it is also extremal. In general, the opposite is not true: A
olution may be extremal without being optimal. However, if the
roblem has a unique optimal solution and the application of the
inimum principle gives only one extremal solution, then this is

he optimal solution.
In practical applications, the minimum principle can be used to

nd solution candidates by computing and minimizing the Hamil-
onian function at each instant, which generates, by construction,
xtremal controls. If the Hamiltonian is a convex function of the
ontrol, then there is only one extremal solution, which is there-
ore optimal.

In the HEV energy management problem, the Hamiltonian is

H�x�t�,Pbatt�t�,��t�� = − ��t� · f�x�t�,Pbatt�t�� + ṁf�Pbatt,Preq�t��
�23�

here f�x , Pbatt� is given by Eq. �7�, and the control Pbatt�t� is
btained at each instant as the value that minimizes Eq. �23�:

Pbatt
� �t� = arg min

Pbatt

H�x�t�,Pbatt�t�,��t�� �24�

he co-state variable ��t� appearing in Eq. �23� is obtained from
he dynamic Eq. �22�, which, considering that ṁf�Preq , Pbatt� is not

function of the state of charge x, becomes
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�̇�t� = − ��t�
� f�x�t�,u�t��

�x
�25�

Note that the co-state variation is different from zero only if the
system dynamic equation f�x�t� ,u�t�� is indeed a function of the
state itself. As mentioned in Sec. 2, in the case of a battery this is
true in the measure that the open-circuit voltage Voc and the inter-
nal resistance R0 depend on the state of charge. Their variation is
typically limited, especially in charge-sustaining HEVs where the
battery is used in a narrow SOC range: Therefore, the co-state
variation is also very small and sometimes completely neglected.

Equation �25�, together with Eq. �7�, represents a system of two
differential equations with two variables, x�t� and ��t�. The solu-
tion requires two boundary conditions. For the problem definition
considered in Sec. 2, these are the initial and final values of the
state: x�t0�=x0 and x�tf�=xf.

Despite being completely defined, this two-point boundary
value problem can be solved numerically only using an iterative
procedure because one of the boundary conditions is defined at the
final time. The procedure is known as the shooting method and
consists in replacing the two-point boundary value problem with a
conventional initial-condition problem, starting from an initial
guess for ��t0�. The solution of the problem is then obtained by
integration in time of Eqs. �25� and �7�, replacing at each time the
value of Pbatt resulting from the minimization �Eq. �24��. If the
final value of the state does not match the desired terminal condi-
tion x��tf�=xf, the value of ��t0� is adjusted iteratively until the
terminal condition on the state is met. A bisection procedure can
be used to obtain convergence in few iterations, making the mini-
mum principle sensibly faster than dynamic programming. The
solution is very sensitive to the initial co-state value, as shown in
Fig. 7.

The existence and uniqueness of the solution cannot be proved
formally in the general case, but it is reasonable to assume that at
least one optimal solution exists for the energy management prob-
lem in the sense that there must necessarily be at least one se-
quence of controls giving the lowest possible fuel consumption. If
the minimum principle generates only one extremal solution, that
can be considered the optimal solution; if there is more than one
extremal solution, they are all compared �i.e., the total cost result-
ing from the application of each is evaluated� and the one yielding
the lowest total cost is chosen.

6 Real-Time Control: ECMS
The ECMS was introduced by Paganelli et al. �16,29� as a

method to reduce the global optimization problem to an instanta-
neous minimization problem to be solved at each instant, without
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Fig. 7 Effect of initial co-state value on SOC variation
use of information regarding the future.
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This strategy is based on the concept that in charge-sustaining
ehicles, the battery is used only as an energy buffer, and all the
nergy ultimately comes from fuel. Thus, the battery can be seen
s an auxiliary, reversible fuel tank that is never refilled using
nergy from outside the vehicle. In order to keep the vehicle
harge-sustaining, the electricity used during the battery discharge
hase must be replenished later using the fuel from the engine
either directly or indirectly through a regenerative path�. In both
harge and discharge phases, a virtual fuel consumption can be
ssociated with the use of electrical energy and can be summed to
he actual fuel consumption to obtain the instantaneous equivalent
uel consumption,

ṁeqv�t� = ṁf�t� + ṁbatt�t� = ṁf�t� +
s

Qlhv
Pbatt�t� · p�x� �26�

here ṁf�t� is the engine instantaneous fuel consumption, Qlhv is
he fuel lower heating value �energy content per unit of mass�,
˙ batt�t� is the virtual fuel consumption associated with the use of
he battery, Pbatt�t� the battery power, and p�x� is a correction
unction that takes into account the deviation of the current SOC
rom the reference �nominal� SOC, as shown in Fig. 8. The factor

is called equivalence factor and is used to convert electrical
ower into equivalent fuel consumption; it plays an important role
n the ECMS, as will be shown later. Depending on the sign of

batt�t� �i.e., on whether the battery is charged or discharged�, the
irtual fuel flow rate can be either positive or negative; therefore,
he equivalent fuel consumption can be higher or lower than the
ctual fuel consumption. The correction term p�x� is shown in Fig.
: Its value is unitary if the SOC is at the reference value xref, but
t changes if the SOC becomes higher or lower, in such a way as
o compensate for the deviation from the condition x=xref. In fact,
�x��1 when x	xref, which means that a lower cost is attributed

o the battery energy, thus making the discharge more likely when
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x
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x
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Fig. 8 SOC correction term for ECMS, p„x…
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the SOC is above the reference value. On the other hand, p�x�
	1 when x�xref �SOC below reference value�: In this condition,
the cost of battery energy is increased to make its discharge less
likely.

At each time, the equivalent fuel consumption is calculated
using Eq. �26� for several candidate values of the control variable
Pbatt�t�; the value that gives the lowest equivalent fuel consump-
tion is selected.

In standard ECMS, the equivalence factor is a constant, or
rather a set of constants: Because it represents the chain of effi-
ciencies through which fuel is transformed into electrical power
and vice versa, it changes for each operating condition of the
powertrain. In particular, there are at least two equivalence fac-
tors, one to apply during battery charge, and another during bat-
tery discharge; there can be more if the powertrain has more than
one mode of operation �for example, if it is a series/parallel archi-
tecture�. In each mode, the equivalence factor can be interpreted
as the average overall efficiency of the electric path during a spe-
cific driving cycle.

The values of the equivalence factors affect the vehicle fuel
consumption and the trend of the battery state of charge. The
battery tends to be discharged if the equivalence factor is too low
�charge-depleting behavior� or to be charged if it is too high
�charge-increasing behavior�. In order to obtain a charge-
sustaining solution and to minimize the total fuel consumption
during a driving cycle, it is necessary to tune all the equivalence
factors for the specific driving cycle. For example, in the series
HEV case study, it is possible to define charge and discharge
equivalence factors �schg and sdis�, corresponding respectively to
negative and positive values of battery power Pbatt. The effect that
these have on the fuel consumption and the charge sustainability
of the solution is shown in Fig. 9.

7 Strategy Comparison
A comparison of the results of all three strategies is shown in

Fig. 10 using the regulatory driving cycle U.S.06 as a test.
By observing the SOC profile in Fig. 10�b�, it is apparent that

the dynamic programming and the minimum principle give essen-
tially the same solution, with only minor differences �justified by
slightly different implementation details, such as the discretization
steps for the control variable�. The global nature of the DP and
PMP solutions is evident in the trend of the state of charge, which
first increases, then decreases steadily during the high-power
phase of the cycle, and finally increases to reach just the desired
terminal value. By contrast, the ECMS solution, even though per-
fectly charge-sustaining by virtue of the appropriate choice of
equivalence factors �point A in Figs. 9�a� and 9�b��, is clearly
different from the formally optimal solution.

The difference between the results obtained with the three strat-
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gies can be better appreciated by looking at the comparison of
he battery power Pbatt�t� and genset power Pgen�t� in the three
ases �Figs. 10�a�–10�c��. While DP and PMP tend to steadily
ischarge the battery at constant power �in the order of 2 kW� for
n extended period of time �for example, in the interval between
=150 s and t=400 s�, the ECMS tends to discharge it at the
eginning of an acceleration phase, and then—when a low SOC
evel is reached and the correction function p�x� becomes
mportant—it stops discharging, and only the genset is used to
atisfy the power demand. This is especially visible in the first 60
and in the time interval between 500 s and 560 s. This behavior

s clear evidence of the local nature of the ECMS solution, which
ends to react in a similar way to similar power demand trends, as
pposed to DP, which, by using the a priori knowledge of the
ntire cycle, can modify the power split trends in different phases
f the cycle to achieve the global optimum. It is significant to
bserve how PMP, when tuned with the appropriate co-state
alue, can give a solution practically identical to DP despite being
mplemented with an instantaneous minimization. Of course, the
lobally optimum behavior of PMP is achievable only with opti-
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al tuning of the co-state, which is done iteratively offline and
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requires the knowledge of the driving cycle. In all three cases, the
overall fuel consumption is very close, as shown in Table 2.

8 Optimal ECMS Based on PMP
Observing the ECMS equivalent fuel consumption �Eq. �26��

and the Hamiltonian �Eq. �23��, the two appear to be very similar.
In fact, both are the sum of two terms, one of which is the instan-
taneous cost, i.e., the fuel consumption ṁf, while the other is
proportional to battery power �in ECMS� or SOC derivative �in

DP
PMP
ECMS

400 500 600

S

P
batt

P
gen,e

strategies on the cycle U.S.06

Table 2 Fuel consumption for the three strategies. All values
are normalized with respect to the DP solution.

Driving cycle DP PMP ECMS

UDDS 1 1.000 1.017
U.S.06 1 1.001 1.017
FTP highway 1 1.000 1.009
cle

les

: DP

PMP

CM

ee
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MP�. By comparing these two terms, it is possible to rewrite the
MP expression in order to match the ECMS physical meaning as

ṁeqv = ṁf + 
�t�
f�x,Pbatt�Ebatt

Qlhv
p�x� �27�

here


�t� = − ��t�
Qlhv

Ebatt
�28�

s an a-dimensional equivalence factor, just like s in Eq. �26�.
The equivalence factor 
�t� in expression �27� is valid for all

he powertrain operating conditions, without distinction between
harge and discharge. In fact, instead of using a set of equivalence
actors to represent the average efficiencies in different operating
onditions, an explicit model of the power flow is introduced with
he function f�x , Pbatt�, covering the entire operating range. This is
rue also for powertrain architectures including several operating

odes since the different efficiency characteristics of each mode
re included in the function f�x , Pbatt� and in the relation between

batt and the powertrain output �e.g., torque at the wheels�. The
quivalence factor is therefore a tuning parameter related to the
riving cycle, being the same as the co-state of the minimum
rinciple. Since 
�t� is directly proportional to the co-state ��t�,
ts variation during a trip can be modeled using the co-state dif-
erential Eq. �25�, thus reducing the tuning to the determination of
ts initial value.

Reformulated in this way, the ECMS becomes the implementa-
ion of the optimal solution of PMP �30�, giving results identical
o PMP and therefore very close to the DP optimal solution, with
n improvement with respect to the traditional ECMS. Moreover,
t is more easily tuned due to the fact that there is only one free
arameter, 
. In particular, the tuning parameter is the initial value
f the equivalence factor, 
0=
�t0�, while the instantaneous value
s obtained by the integration of Eq. �25�. However, the variation
f the co-state during a driving cycle is very small, as shown in
ig. 11, and therefore the equivalence factor 
 can be considered
onstant with very good approximation:


�t� � 
0

Online Implementation
The three strategies presented are not directly implementable

nline because they require complete knowledge of the driving
ycle for explicit minimization �DP� or appropriate tuning �PMP
nd ECMS�. Furthermore, the computational load of DP makes its
eal-time implementation impossible. On the other hand, the
CMS has the potential of being implemented online because it
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ses an instantaneous minimization. However, for obtaining opti-

31012-8 / Vol. 133, MAY 2011

aded 23 May 2011 to 164.107.10.90. Redistribution subject to ASME
mal results, the ECMS must be tuned for each driving cycle to
find the most appropriate value of the equivalence factor 
0.

The presence of the correction term p�x� in Eq. �27� makes the
ECMS solution less likely to reach extremely high or low SOC
values but is still not sufficient to guarantee that the state of
charge remains around the nominal level, and the solution is close
to the optimum. A higher correction achieves the first objective at
the expense of the optimality of the solution, while a lower cor-
rection allows for a solution closer to the optimum given by PMP,
but in which charge sustainability is achieved only with accurate
tuning of 
0.

In order to realize an implementable strategy that is also close
to the optimal solution, it is necessary to adapt online the value of
the equivalence factor using adaptive-ECMS �A-ECMS� algo-
rithms.

In A-ECMS, the nominal value of equivalence factor 
0 is
changed during vehicle operation, according to an adaptation law.
Some methods to achieve this are feedback of the state of charge
to ensure charge sustainability �31�, pattern recognition algorithms
to identify the type of driving cycle the vehicle is following and to
select the optimal 
0 from a precomputed database �19�, some
form of driving cycle prediction to attempt a priori determination
of the most appropriate equivalence factor during short-term fu-
ture �18�.

The approach presented in this paper is useful to devise more
effective A-ECMS approaches, thanks to a deeper understanding
of the meaning of the equivalence factor. These approaches are
object of current research by the authors.

A different method to implement an optimal solution originated
from DP is to derive heuristic rules from the observation of the
optimal solution �32�, which can be easily coded to be executed in
real time. This approach is also currently under investigation by
the authors and leads to the design of a rule-based strategy.

10 Conclusion
The application of three energy management strategies to a hy-

brid electric vehicle has been presented, showing how the optimal
solution obtained with DP can also be computed by applying
PMP, which in turn leads to a real-time, implementable strategy in
the form of an appropriately formulated ECMS, presented in Sec.
8. Despite still requiring ad hoc tuning for the specific driving
cycle, this ECMS results in a more effective �i.e., closer to the
optimum� strategy, which can also be tuned more easily and rap-
idly because it only needs one tuning parameter �even for complex
hybrid architectures with several operating modes�. The develop-
ment of adaptive ECMS strategies is also facilitated due to a more
fundamental understanding of the equivalence factor.
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