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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Organic Rankine Cycle (ORC) waste heat recovery systems offer promising engine fuel economy improvements for heavy-duty 
on-highway trucks. An ORC test rig with parallel evaporators to recover both tailpipe and EGR waste heat from a 13L heavy 
duty diesel engine was developed and used in this work to demonstrate a novel control strategy based on Model-Predictive 
Control (MPC). The main control objectives for the ORC system are: (i) regulation of working fluid temperature, (ii) safe turbine 
operation - away from 2-phase region, and (iii) maximization of waste heat recovery. The MPC uses a built-in moving boundary 
evaporator model to predict future system response and generate optimal actuator reference commands. Two variants of MPC 
were considered in this work: an adaptive linear MPC (LMPC) and a nonlinear MPC (NPMC). Compared with the traditionally 
used PID controller, MPC demonstrates more accurate temperature control and improved disturbance rejection in simulation. 
Finally, the LMPC and NMPC controllers were implemented on the ORC test rig and showing promising initial test results. 
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1. Introduction 

With tightening emission regulation on heavy-duty on-road vehicles, engine waste heat recovery technologies 
have been under extensive study in recent years.  Organic Rankine Cycle (ORC) is a promising waste heat recovery 
technology providing about 3-5% fuel economy benefit in addition to base engine efficiency improvement [1]. In 
the SuperTruck program, Cummins reported a 3.6% absolute improvement in brake thermal efficiency of a heavy 
duty truck engine due to ORC with EGR and exhaust tailpipe evaporators [2]. ORC is similar to the conventional 
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steam cycle used in power plants, except an organic fluid, such as ethanol, replaces water as working fluid due to the 
low-temperature heat source. The main challenge of operating an ORC in automotive applications is handling the 
highly transient and wide ranging engine operating conditions. This poses challenges on the ORC control system 
design. Tona and Peralez [3] presented a literature review on different ORC system architectures and control 
strategies used for heavy-duty vehicles. The ORC control approaches can be classified into two categories:  

 traditional PID-based, e.g., PI feedback plus feedforward [4], PI-based decentralized control [5] 
 advanced Model Predictive Control (MPC) [6,7,8] 

Advanced MPC demonstrates better performance in simulation, but real-time implementation and validation on test 
rigs are scarce in literature if not absent at all. In this paper, the implementation of an adaptive linear MPC (LMPC) 
and a nonlinear MPC (NMPC) are described. Both simulation and preliminary experimental results are presented.  

The paper is organized as follows. Section 2 describes the layout and main components of the ORC system. 
Section 3 presents the ORC control goals and challenges. Section 4 describes a PID controller implementation. 
Section 5 presents the MPC control structure, formulation, and evaporator modeling. Section 6 provides a 
comparison of MPC vs PID simulation results, and initial MPC test results. Finally, conclusions and future work are 
presented in Section 7.  

2. System Description 

2.1. ORC system layout 

In order to provide OEMs with ORC components optimized for the engine application environment, BorgWarner 
has taken a “Systems Approach” to refine the ORC components via on-engine transient testing.  An ORC test rig 
with parallel evaporators to recover both tailpipe (TP) and Exhaust Gas Recirculation (EGR) waste heat was 
developed to evaluate the dynamic requirements of ORC systems and refine the products accordingly. Fig. 1a shows 
a simplified schematic of the ORC system [6]. Major components in the system include: 2-stage pumps, two flow 
distribution valves, two evaporators in parallel, a turbine expander, a motor/generator, a condenser, and an exhaust 
gas bypass valve. The pumps increase the working fluid pressure up to 40bar and circulates working fluid through 
the evaporators. The low pressure feed pump is upsteam of the positive displacement type high pressure pump to 
prevent cavitation. The distribution valves determine the flow split into the two evaporators. Inside the evaporators, 
working fluid absorbs heat from engine exhaust and EGR, and undergoes phase changes from liquid to two-phase 
and then to vapor. The high-pressure and high-temperature vapor then expands through the expansion device, 
extracting useful work and driving either an electric generator or the engine crankshaft via gear reduction. Turbine 
inlet and bypass valves protect the turbine from two-phase working fluid and ensure smooth startup and shutdown of 
turbine expander. Finally, the working fluid vapor exiting from the expansion device flows through the condenser 
and transitions back to liquid phase. In the test rig, ethanol was selected as working fluid due to its favorable 
thermophysical properties and low global-warming potential [9]. A turbine expander with an electric generator was 
chosen as the expanding device due to its high thermal efficiency, wide operating range, small package volume, and 
low mass [10].  

The ORC system is coupled to a 13L heavy duty diesel engine which is equipped with a high-pressure EGR 
system and a turbocharger with variable geometry turbine. The stock EGR cooler is replaced by the ORC EGR 
evaporator. The ORC tailpipe evaporator is placed downstream of the after-treatment system. A tailpipe evaporator 
bypass valve is installed in the exhaust gas path to divert a portion of the exhaust gas away from the tailpipe 
evaporator at high engine load conditions. The bypass valve protects the working fluid from overheat and potential 
degradation while also limiting heat rejection to the vehicle cooling package that would require use of the electric 
cooling fan. By design, the valve moves to the full bypass position at failure modes.  

The 13L heavy duty diesel engine is controlled by an open ECU with an ETK interface. ECU calibration is 
through ETAS INCA software. The dyno control software is AVL PUMA. The ORC system is controlled by a 
dSPACE MicroAutoBox prototype controller. It interfaces sensors and actuators through CANSAS data acquisition 
system. The communication between controllers is through CAN bus. 
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2.2. ORC components 

BorgWarner supplies the major ORC system components, including: the TP evaporator, EGR evaporator, turbine 
expander with electric generator, turbine expander controller, and exhaust gas bypass valve. Fig. 1b shows the 
pictures of above-mentioned ORC components. 

a 

 

 
b 

 
Fig. 1. (a) Schematic of ORC system with parallel evaporators [6];  

(b) Main ORC system components 

3. Control Development Goals and Challenges 

The ORC system control development was divided into two phases. The goal of phase 1 is to achieve an 
operational test rig for component evaluation and system level investigation. A PID-based controller was developed 
to:  

 achieve smooth operation during startup, steady state, and shutdown, 
 ensure safe turbine operation away from 2-phase dome, 
 develop safety measures including fault detection and handling of over pressure, over temperature, 

ethanol leak, etc.,  
 transition from one operating point to another slowly. 

The PID controller works well for steady state and slow transient conditions, but has difficulties in fast transients. 
In phase 2, the focus is on transient cycle optimization with Model Predictive Control (MPC). The optimal 

setpoints of working fluid pressure and temperature are determined through offline simulations and a model 
predictive controller controls the pump and valves to closely track the optimal temperature and pressure setpoints.   

There are many challenges in ORC system control: (i) It is a highly nonlinear Multiple Input Multiple Output 
(MIMO) system interfacing with the engine and dyno. (ii) Disturbances from engine exhaust flow and temperature 
are fast transients while the ORC working fluid temperature response to pump and valve actions is relatively slow. 
(iii) The time constants  of EGR and TP evaporator outlet working fluid temperature response to engine speed/load 
change are different. The after-treatment system has large thermal inertia to smooth the exhaust gas temperature 
change at TP evaporator inlet, while the EGR evaporator is subject to the dynamic exhaust gas temperature change 
directly without a buffer. (iv) The ORC system has a wide operation range in terms of working fluid temperature 
and pressure. To have a controller performing well at all operating conditions, the calibration effort is significant. (v) 
In the two-phase region, the working fluid temperature does not vary over constant pressure, which poses difficulty 
in state estimation.  

The ORC control is formulated as an optimal control problem with safety constraints. The following limits need 
to be imposed:  

 Temperature limit due to dissociation and flammability of working fluid, 
 Pressure limit due to structural integrity of key components, 
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 Vapor phase limit on turbine expander operation. 

4. PID controller 

     The developed PID-based ORC controller enabled steady state and slow transient operation of the test rig. The 
working fluid pressure, temperature upstream of the turbine expander (referred to as system pressure and 
temperature in the sections below) and temperature differential between the two evaporator outlets (referred to as 
delta temperature) are key control signals. The MIMO system was divided into multiple Single Input Single Output 
(SISO) sub-systems. The system pressure is mainly controlled by the turbine bypass valve. The system temperature 
is controlled by pump speed, which correlates directly with working fluid mass flow. The delta temperature is 
controlled by the two mass flow distribution valves. Feed forward plus feedback PID controllers are used in system 
temperature and delta temperature control. The turbine speed is regulated by the generator load. Proper subcooling is 
achieved by adjusting the cooling water flow. 

The PID controller worked well in steady-state and slow transient operations, but had difficulties in fast transient 
conditions due to poor disturbance rejection and undesired coupling between PID control loops. Therefore an MPC 
approach was adopted to improve operation during fast transients. 

5. Model Predictive Control 

An MPC controller was developed with a built-in evaporator model to predict future system response and 
generate optimal actuator commands for ORC temperature regulation and safe turbine expander operation. 

5.1. Model based control development process  

The model based control development follows the typical V-diagram approach. First, a high fidelity physics-
based model is built and validated against experimental data. Then through model reduction techniques, the model is 
simplified to a reduced-order control-oriented model, which is simple enough to run in real time, yet capable to 
capture the main system dynamics. An optimization based controller utilizes the control-oriented model to predict 
future system response and generate optimal control input actions. The controller is verified with the physics-based 
model in offline simulations and finally validated on the test rig in real-time. 

5.2. MPC controller structure 

Fig. 2a shows the high-level MPC control structure. The center is the optimization based controller with a 
reduced-order control-oriented model. Controller objectives and constraints are predefined. The objective is to 
minimize temperature tracking error and control effort for a few seconds in the future. The constraints are physical 
limits of pump speed, temperature, pressure, valve actuation rate, etc. The optimizer calculates optimal actuator 
commands to minimize the objective function and then apply them to the plant model. The plant model output is 
feedback to the optimization-based controller. Because some system states cannot be directly measured, a state 
estimator is required. External disturbances, such as engine exhaust temperature and flow, are measured and fed into 
the controller. In the figure, x, �, �, �, � refer to state, output, input, disturbance, and reference signals respectively. 

5.3. Evaporator modeling 

Model predictive control requires a good plant model to predict future system response with given inputs. The 
key component of the ORC plant is the evaporator, where heat transfer and working fluid phase changes occur. The 
accuracy of the evaporator model dominates the whole ORC plant model. The major challenge is the modeling of 
the two-phase flow in the evaporator. Evaporator governing equations based on conservation of mass and energy 
within the working fluid and exhaust gas were developed in [11,6,12]. Two main evaporator modeling approaches 
are adopted in literature: the Finite Volume Method (FVM) and the Moving Boundary Method (MBM). In the FVM 
approach [13], the evaporator is discretized into many cells along the flow path. Within each cell, the working fluid 
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properties are assumed to be homogeneous. Equations of mass and energy conservation are solved within each cell 
to calculate unknown flow, temperature or pressure variables. The FVM approach is not suitable for real-time 
control due to a large count of state variables which leads to long execution time and large memory consumption.  

a 

 

b 

Fig. 2. (a) High-level MPC control structure; (b) Moving boundary scheme of an evaporator [6] (modified) 

To reduce the computation effort in the model predictive controller, a reduced-order, control-oriented model is 
required. In a MBM model [11,6], the crossflow evaporator is divided by working fluid phase into liquid, two-phase 
and vapor regions as shown in Fig. 3b. The phase boundary locations change over time. The main concept of the 
MBM model is to dynamically track the boundaries of the three working fluid phases. Thermodynamic properties 
within each control volume are assumed to be homogenous. Within each region, conservation of mass and energy 
equations were derived, and system equations in state space form were developed. The state (x), input (u), 
disturbance (�), and output (�) vectors are listed below: 

 � = ���, ��, ℎ�,���, ���, ���, ����
�
                                                                   

 � = �̇�,��                                                                                                                                                              (1) 

 � = [�̇�,��, ��,��, ℎ�,��]′ 

 � = ��,��� 

where ��, �� are phase lengths of liquid region and two-phase region, ℎ�,��, ℎ�,��� are working fluid enthalpy at 

evaporator inlet and outlet, ��,���  is working fluid temperature at evaporator outlet, ���, ���, ���  are pipe 

surface/wall temperatures, �̇�,�� is the working fluid flow rate at evaporator inlet, and �̇�,��, ��,�� are exhaust gas 

flow rate and exhaust gas temperature at evaporator inlet, respectively. Note that the moving boundary model 
considered in this paper assumes the co-existence of all three phases of working fluid along the evaporator. 

Both the FVM and MBM models were correlated with test rig data and are in good agreement, more information 
on ORC modeling can be found in reference [12]. 

5.4. MPC formulation 

The nonlinear system equations can be rearranged into the generic format below with state, input, and 
disturbance vectors defined previously. The state, input, and output variables are subject to physical constraints.   

�̇(�) = ���(�), �(�), �(�)�                                                                                                                                    (2) 

�(�) = ���(�), �(�), �(�)�   

For simplification, ��(�) is defined as the combined plant input variable, comprising the �(�)  and �(�) 
variables,  i.e.  ��(�) = [�(�), �(�)]�. 

The nonlinear system equations can be linearized around a nominal operating point (�� , ��� ). 

��̇ =
��

��
|�� ,���

�� +
��

���
|�� ,���

��� − ��̇ = ��� + ���� − ��̇                                                                            (3)            

�� =
��

��
|�� ,���

�� +
��

���
|�� ,���

��� = ��� + ����  

where � =
��

��
|�� ,���

, � =
��

���
|�� ,���

, � =
��

��
|�� ,���

, � =
��

���
|�� ,���

 

Since the linearized ORC system has different �, �, �, � matrix at different operating points, an adaptive linear 
MPC is utilized to cover the whole operating range. The adaptive MPC uses a fixed model structure, but allows the 
model parameters and nominal point to be updated at each control interval. 
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The objective or cost function is defined as  

� =  ∫ �
�����,���(�)�����

�

����
� + ��� (��(�))�/�����

� � ��
�����

��
+

�����,���������������
�

����
�                                               (4) 

Where ��� is the working fluid temperature setpoint, ��  is the change of control input between time steps, 
��, ���, ��  are weighting parameters for temperature deviation, control input change, and final temperature 
deviation.  �� is the current time step and �� is the prediction time horizon. �, �� are normalized in Eq. (4)  so the 
calibration of weighting parameters is easier. 

5.5. Real-time implementation of MPC on an embedded platform  

The model predictive control algorithms, both adaptive Linear MPC (LMPC) and nonlinear MPC (NMPC), were 
implemented on a dSPACE MicroAutoBox with a 900MHz processor and 16MB RAM. LMPC was implemented 
using the Model Predictive Control Toolbox from Mathworks. NMPC was implemented with the ACADO Toolkit 
for automatic control and dynamic optimization [14]. Efficient C code of NMPC solver was generated by ACADO 
and integrated with the main controller in Simulink. For LMPC, unmeasurable state variables were estimated with a 
Kalman Filter using the exhaust gas and working fluid temperatures. For NMPC, a nonlinear estimator was 
constructed via an Unscented Kalman Filter (UKF) [15].  

The following MPC Parameters were adopted: Measurement update time step: 0.2 sec, MPC control time step: 
0.3 sec, prediction horizon steps: 50, and prediction time horizon: 15 sec. The prediction time horizon should be 
longer than the response time of output signal to control input step change.  

Note that LMPC offers faster execution and reduced memory consumption compared with NMPC. The average 
computation time per step is about 10 ms for LMPC and 30 ms for NMPC. For reference, the computation time is 
less than 0.2ms for PID. 

6. Comparison of MPC with PID 

6.1. Simulation Results 

The LMPC, NMPC and PID controllers were simulated with an ORC plant model with single tailpipe evaporator 
to evaluate the control performance. Fig. 3a shows the temperature response comparison of LMPC and PID. The y-
axis is the working fluid temperature at the evaporator outlet. The engine condition is constant. The working fluid 
pressure is assumed constant. At 100s and 200s, the working fluid temperature setpoint has a step change of 
10DegC. It can be seen that LMPC has less overshoot and shorter settling time.  
 
a 

 

 
b 

 

 
c 

Fig. 3. Temperature responses of LMPC and PID (a) T setpoint step;  

(b) engine speed/load ramp; (c) T step plus engine speed/load ramp 

Fig. 3b shows another simulation case, at t=100s, the engine operating condition ramps from condition B 
(1575RPM, 1540Nm) to condition A (1200 RPM, 1000Nm) in 20s, stays at condition A for 80s, then ramps back to 
condition B in 20s. The working fluid temperature set point is a constant 280C throughout the simulation. The 
temperature deviation from setpoint experienced with LMPC is much less than that produced with the PID 
controller. LMPC has better disturbance rejection.  
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Fig. 3c shows the evaporator outlet working fluid temperature response in a 3rd simulation case. At 100s, the 
engine operating condition ramps from condition B to condition A in 20 seconds. Simultaneously, the temperature 
set-point experiences a step change of 10DegC at 100s. LMPC regulates working fluid temperature well, while PID 
response exhibits a large overshoot, oscillation and longer settling time. LMPC has better temperature regulation 
and disturbance rejection, with fast response and minimal overshoot. 

Fig. 4 shows LMPC and NMPC simulation results over a transient cycle. The bottom two curves are exhaust gas 
temperature and flow rate, the working fluid pump flow is controlled to achieve target temperature at evaporator 
outlet, 260C in this case. LMPC and NMPC produce comparable results in the simulation case. The working fluid 
temperature is well regulated within ±10℃. Considering the large disturbance on the engine exhaust side in this 
transient cycle, the MPC performance is satisfactory.  

Note that MPC has similar calibration effort to PID controller, but with significantly more modeling effort. Main 
tuning parameters in MPC are the weighting parameters ��, ���, ��  in Eq. (4). A larger ���  leads to smoother 
working fluid flow rate and temperature. A larger �� leads to less steady state error. The weighting parameters are 
set to be constant over various engine operating conditions, and satisfactory controller performance is achieved. 

Fig. 4. Temperature regulation of LMPC and NMPC over a transient cycle 

6.2. Experimental results on ORC test rig 

The MPC control strategies, LMPC and NMPC, were implemented and tested on the experimental ORC rig. For 
the initial setup, only a single tailpipe evaporator was installed. The MPC controller regulates the working fluid 
temperature at the tailpipe evaporator outlet, while the PID controller controls working fluid pressure and other 
signals. During startup of the test rig, a predefined low pump speed was set to warmup the rig. Once the working 
fluid at the evaporator outlet is in vapor state, the MPC controller takes over temperature control. Fig. 5 shows the 
LMPC and NMPC test results of working fluid temperature response over a temperature setpoint change and an 
engine speed/load ramp in 60 seconds. The initial results are encouraging. The temperature step response of both 
LMPC and NMPC are fast and with minimal overshoot. The steady state error of working fluid temperature is small. 
The responses of LMPC and NMPC over transient engine operating conditions are satisfactory. The working fluid 
temperature is well maintained during the engine speed/load ramp test. The development is ongoing and more test 
results will be updated when available.  

7. Conclusions and future work 

An ORC test rig to recover waste heat from a heavy-duty diesel engine exhaust tailpipe and EGR system was 
developed. A PID based controller was developed enabling steady state and slow transient operation of the ORC 
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system. An MPC controller was developed with a built-in evaporator model to predict future system response and 
generate optimal actuator commands for ORC temperature regulation. Two variants of MPC were considered, an 
adaptive linear MPC (LMPC) and a nonlinear MPC (NPMC). MPC showed better temperature control and improved 
disturbance rejection in simulation relative to PID. MPC was implemented on a real-time embedded platform. Initial 
test results of MPC on an ORC system with a single evaporator are encouraging. LMPC offers faster execution and 
reduced memory consumption compared with NMPC.  

Future work includes further development and validation of the MPC controller on the ORC test rig over warmup 
and transient cycles. Additionally, the MPC control will be extended to an ORC system with parallel evaporators. 

 
a 

 

b 

 Fig. 5. (a) MPC response to T setpoint change; (b) MPC response to engine speed/load ramp on ORC test rig 
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