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Abstract—Electrified powertrains are gaining a larger market
share thanks to stricter emission regulation requirements and
customer preferences. Ranging from micro hybrid to all-electric
powertrains, however, their success highly depends on satisfactory
life-long performance of onboard energy storage systems. In or-
der to guide the battery pack design and management, real-world
representative cell aging tests are essential for a successful product
development. Focusing on cycle aging, this study proposes a novel
methodology based on Welch’s power spectral density estimation
to characterize real-world cell duty cycles and synthesize repre-
sentative profiles for cell aging tests. A 48-V mild hybrid vehicle
model is developed in MATLAB/Simulink to relate the real-world
vehicle-level drive cycles to cell-level duty cycles. Compared to ex-
isting test profiles found in literature, the newly designed profiles
take the impacts of road conditions and driver styles into consider-
ation to account for real-world resemblance. Experimental aging
test results with the proposed aging profiles on nickel manganese
cobalt lithium-ion cells not only hint at the real-world aging sce-
narios, but also lay the foundation for future work such as aging
modeling. Repeatability of testing results is also investigated in this
study.

Index Terms—Battery aging test, driving style, lithium-ion bat-
tery, lithium ion NMC chemistry, power spectral density estima-
tion, real-world drive cycle, 48V mild hybrid vehicle.

I. INTRODUCTION

SOCIETAL expectations for reducing petroleum consump-
tion and greenhouse gas emission in the transportation sec-

tor have resulted in new regulations, such as the 54.5 MPG fleet-
wide CAFE (Corporate Average Fuel Economy) requirement in
the United States [1]. Despite continuous improvements in con-
ventional powertrains, electrification has been widely adopted
by manufacturers and accepted by consumers. As a result, sig-
nificant improvements in fuel efficiency can be attained, and
positive recognition of product reliability has been achieved,
and additional electrification costs for low-to-medium degree
of hybridization have been successfully restrained. Remaining
challenges for future sustainable mobility lie in electric range
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Fig. 1. Illustration of commonly used cycle aging test profiles.

anxiety and battery degradation across real-world usage. Con-
ceptually, these challenges can be overcome with a combined
understanding of real-world driving conditions and battery ag-
ing evolution. This paper focuses on incorporating knowledge
from real-world driving activities into battery cycle aging testing
at the cell level.

Different from calendar aging tests which are usually con-
trolled by temperature and SOC (State-of-Charge) [2]–[4], cy-
cle aging tests incorporate additional stress factors, including
∆SOC, C-rate, Ah-throughput and discharge/charge events. The
design of cycle aging tests is largely driven by the type of appli-
cation, such as hybrid electric vehicles (HEVs), plug-in hybrid
electric vehicles (PHEVs) and Electric Vehicles (EVs) [5]. Al-
though battery cycle aging tests are being conducted worldwide,
e.g., United States, Japan and Europe, a unified aging test pro-
tocol does not exist as different procedures are being used from
country to country, especially concerning the test profiles.

This paper investigates battery operations in a 48V mild hy-
brid powertrain system [6], [7] and extracts useful information
to synthesize repeatable test profiles to be run in laboratory set-
tings. The cell cycle aging stress factors are closely linked to
driver styles as well as road conditions. Nearly 2000 real-world
drive cycles with detailed second-by-second speed traces are
used in this study from a public travel survey provided by the
National Renewable Energy Laboratory (NREL) [8].

Cycle aging test profiles from literature can be summa-
rized into three categories. 1) Constant current/power pulses.
These cycles, shown in Fig. 1(a), are widely used to sepa-
rate the impacts of different stress factors, but usually with
no implication from real-world scenarios [9]–[19]. 2) Transient
real-world cell duty cycles. These transient traces, shown in
Fig. 1(b), are directly adopted as test profiles to fully consider the
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Fig. 2. Main steps describing the methodology developed in this paper to
synthesize driver style-dependent aging cycles.

intrinsic cycle variability requiring complex statistical analysis
to explore the correlation between aging phenomena and oper-
ating conditions [20], [21]. 3) Semi-transient test profiles. These
cycles, as depicted in Fig. 1(c), which are usually synthesized
from statistical analysis of real-world current/power profiles, are
the most popular candidates for cycle aging campaigns [22]–
[25], as they constitute a well-compromise between simplicity
and real-world resemblance.

In this study, we propose a novel methodological frame-
work to characterize real-world cell duty cycles in frequency
domain by means of power spectral density (PSD) estimation,
and synthesize them into representative semi-transient test pro-
files. Through our process, these output profiles are dynamic,
charge-neutral, within manufacturer operation limits, and most
importantly can be well traced back to the real-world driving
scenarios. These representative profiles can be coupled with dif-
ferent temperatures to set up the aging test for aging assessment.

Energy storage systems for vehicle propulsion have evolved
from lead-acid and nickel-metal-hydride to lithium-ion chem-
istry due to the improved energy and power density. Lithium-ion
batteries further comprise a family of chemistries that employ
mostly carbon-based anode and various cathode materials.
Each provides disadvantages and advantages in several aspects:
safety, performance, cost, specific energy, specific power
and lifespan [26], [27]. The cycle aging experimental results
conducted in this study aim at supplementing the understanding
of lifespan of nickel-manganese-cobalt (NMC)-based cathode
lithium-ion cells [12], [13]. Previous findings on other popular
cathode materials, such as nickel-cobalt-aluminum (NCA)
[10], [11], iron-phosphate (LFP) [14]–[16], and composite
NMC-LMO [19], [25] can be found in the literature. The
experimental results produced as part of this study can be
applied to identify cell aging models, useful for the design and
control of onboard lithium ion battery packs.

The paper is organized as illustrated in Fig. 2. In Sec-
tion II, a detailed introduction of employed real-world driv-
ing data categorized by drive cycle mean speed and driving
style is reported. Using the 48V mild hybrid vehicle model in
MATLAB/Simulink, as presented in Section III, the vehicle-
level drive cycles are battery cell duty cycles. The battery cell
cycles are preprocessed, as discussed in Section IV, and ana-
lyzed in both frequency and time domains to attain their signifi-
cant cyclic frequencies and current variance respectively, to fa-
cilitate construction of the sinusoidal characteristic test profiles,
shown in Section V. Lastly, the aging experimental results with
these profiles are reported and discussed regarding real-world
driving and temperature variations in Section VI. Concluding
remarks are given in Section VII.

Fig. 3. Distribution of trip distance, trip mean velocity, trip idle percentage,
trip mean positive acceleration in the SCAG naturalistic drive cycle database.

II. REAL-WORLD DRIVING DATA

The drive cycle data source used in this study is part of a
household travel survey from June 2001 to March 2002 con-
ducted by SCAG (Southern California Association of Gov-
ernments), of which de-identified data are publicly available
through the U.S. Department of Energy’s National Renewable
Energy Laboratory (NREL) [8]. The raw data are recorded with
1 Hz sampling rate. After removing outlying vehicle speeds,
speed spikes and infeasible accelerations, 1851 trips were
adopted from 292 passenger vehicles with a total driven dis-
tance of about 25 000 km. The statistical distributions of the trip
travel distance, mean velocity, idle percentage and mean positive
acceleration rates are shown in Fig. 3. Drive cycles with driven
distance less than 1 mile (1.6 km) are intentionally excluded.

A large variety of real-world driving activities are contained
in this database. Mixing all driving data can lead to loss of
interesting features of specific driving patterns, such as city
driving with an aggressive driver. Hence, it is important to divide
driving data into different categories based on selected cycle
metrics. The driving conditions and driving style are chosen as
categories in this study. Firstly, drive cycles are sorted by their
mean speeds (low, medium and high) to indicate the driving
conditions. Secondly, driving style for each trip is evaluated and
classified as calm, normal and aggressive according to a metric
from our previous study [6], [28]. In short, the metric defines the
driving style in frequency domain as follows: 1) extract the jerk
trace of each drive cycle as a second derivative of its speed trace;
2) calculate the periodogram as in Fig. 4 of the jerk trace given
by the modulus squared of the Fast Fourier Transform (FFT)
results in frequency domain; 3) attribute the low-frequency (LF)
area to traffic conditions and high-frequency (HF) area to driver
impacts in the periodogram; 4) multiply the power distribution
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Fig. 4. LA92 drive cycle and driving style.

TABLE I
THE NUMBER OF REAL-WORLD TRIPS IN EACH CATEGORY

Number of Trips Calm Normal Aggressive

Low Mean Speed (0∼29 km/h) 64 235 318
Medium Mean Speed (29∼43 km/h) 150 234 233
High Mean Speed (>43 km/h) 406 141 70

ratio in frequency domain, H F
H F + LF , by the average value of

the periodogram, mean(periodogram). The steps 3) and 4)
take the frequency and magnitude of the jerk traces into account
to quantify the driving style. The above process is explicitly
defined by:

Driving style = mean (periodogram) ∗ HF

HF + LF
(1)

Where, mean(periodogram) is the average value of the pe-
riodogram; LF is the power aggregated in the low frequency
range by summing up the low frequency components below
0.1 Hz; HF is the power aggregated in the high frequency range
by summing up the high frequency components above 0.1 Hz.
The cutoff frequency for the separation of the traffic and driver
activities is selected at 0.1 Hz for consistency, below which all
trips have at least 99% of speed variance aggregated [6], [28].

Table I shows the number of trips in each category determined
by drive cycle mean velocity and driving style aggressiveness,
of which the probabilistic distributions are separated into three
sets respectively (calm, normal, aggressive for driver styles; low,
medium and high-speed for driving conditions), where each
speed category contains 617 trips. While aggressive style dom-
inates the low-speed driving, calm style rules the high-speed
scenario. This interesting trend implies the real-world variabil-
ity of driver behaviors.

III. 48-V MILD HYBRID VEHICLE

A 48-V mild hybrid propulsion system is typically based on
a conventional powertrain where a starter-generator is coupled
to the internal combustion engine via belt drive or by placing it
directly on the engine shaft. Assuming parallel pre-transmission

Fig. 5. A generic 48V mild hybrid vehicle configuration.

TABLE II
SPECIFICATIONS FOR VEHICLE/ENGINE/TRANSMISSION

Specifications Units Values

Vehicle Dynamics

Curb Weights kg 1350
Passenger and Cargo Weight kg 136
The Product of Drag Area
and Drag Coefficient

m2 0.66

Rolling Resistance Coefficient 0.012
Tire Radius m 0.287

Engine

Engine Type Inline 4 cylinders & Naturally
aspirated & Spark Ignition

Engine Displacement L 1.9

Transmission

Transmission Type 6-speed manual
Transmission Ratios [4.148, 2.370, 1.756, 1.155,

0.859, 0.683]
Final Drive Ratio 3.21

hybrid configuration, a generic 48V hybrid vehicle model is
developed in Matlab/Simulink as schematically shown in Fig. 5
[6]. The specifications of engine, transmission, battery pack and
starter-generator are summarized in Tables II and III.

The power management strategy implemented in the simula-
tion is as follows: for positive power demands, large-amplitude
but low-frequency components are sent to the engine as the
base load and small-amplitude but high-frequency components
are sent to the battery to balance the power peaks; the nega-
tive power demands are met in sequence by engine drag, bat-
tery charge power (for maximum regeneration) and by friction
brakes. The battery power demands are further altered to achieve
charge-sustaining behavior in the SOC window between 0.45
and 0.65. More details about the vehicle modeling approach can
be found in [6].

For better illustration, an exemplary drive cycle and its related
battery cell current profile are compared in Fig. 6. In contrast
to charge current (negative), the discharge counterparts seldom
reach the power limit but display a wide range of power demands
and time durations. All drive cycles in the database can then be
evaluated on the 48V hybrid vehicle model to obtain the trip-
related cell current profiles. The next section identifies latent
features in real-world battery duty cycles.
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TABLE III
SPECIFICATIONS FOR BATTERY AND STARTER-GENERATOR

Specifications Units Values

Battery

Cell Chemistry Nickel-Manganese-Cobalt
(NMC) Lithium ion

Cell Nominal Voltage V 3.6
Cell Rated Capacity Ah 2.0
Cell Max Discharge
Continuous Current

A 32

Cell Max Charge
Continuous Current

A 12

Internal Impedance mΩ 12 measured by AC1kHz
Battery Pack
Configuration

14 series/4 parallel

Starter-Generator (Brushless DC)

Supply DC Voltage V 42-58
Max/Continuous Power kW 25/20
Max Torque Nm 75 @ (0∼3000 rpm)
Max Speed rpm 10000

Fig. 6. A drive cycle speed profile drawn from the SCAG cycle database [8]
and related battery cell current profile.

IV. REAL-WORLD BATTERY DUTY CYCLES ANALYSIS

Discharge and charge micro profiles are displayed in Fig. 7
representing an example of 460 s∼540 s time window from the
current profile in Fig. 6. This study aims to investigate whether
there are underlying cyclic patterns in discharge/charge micro
profiles and how these patterns vary across real-world scenarios.
While only sequential data are observed in time domain, cyclic
events can be better captured in frequency domain with the
Fourier analysis, while the zero current snippets during vehicle
stops are not considered.

A. Introduction of Fourier Analysis

Discrete Fourier Transform (DFT) [29] can be applied to
transform cell current profiles from time domain to frequency
domain. Given a length-N signal, x(n) in discrete time domain,
with the Discrete Fourier Transform (DFT), the Fourier analysis

Fig. 7. The definition of discharge and charge micro profiles.

formula of the signal is in Equation (2):

X (k) =
N − 1∑

n= 0

x (n) Wnk
N , k = 0, . . . , N − 1 (2)

where WN = e− j 2π
N .

Therefore, a finite length-N signal in time domain can be
transformed to frequency domain and decomposed into a set
of N sinusoidal oscillatory components, characterized by the
X(k) in frequency domain. X(k), which contain the magnitude
and initial phase of each oscillator, corresponds to the digital
frequency of 2πk

N (k = 0, 1, ..., N − 1). It denotes the abstract
dimensionless digital frequency as ωdigital , it relates to real
frequency freal in Hertz as in Equation (3):

freal =
fs

2π
ωdigital (3)

where fs is the sampling frequency of the signal.
Due to the phenomenon of Aliasing [29], the maximum real

frequency for the signal is fs/2 for a real-valued signal and fs

for a complex-valued signal. Since the speed values are all real
and the sampling frequency is 1Hz for all available speed traces
in this study, the real-frequency range should be (0: 1/N: 1/2).

The DFT produces a frequency spectrum which contains all
information about the original time series. In other words, the
original signal can be reconstructed by the Inverse Discrete
Fourier Transfer (IDFT), or say, the Fourier synthesis, as illus-
trated in Equation (4) for above signal:

x (n) =
1
N

N − 1∑

k= 0

X (k) W − nk
N , n = 0, . . . , N − 1 (4)

DFT is a numerical tool which deals with finite signals and
defines a finite number of operations, and the Fast Fourier Trans-
form (FFT) is commonly used as the computation efficient al-
gorithm to accelerate the DFT. There are several techniques to
implement the FFT, such as the Cooley-Tukey algorithm [30].

While the FFT spectrum analysis preserves both the mag-
nitude and phase of each frequency component in the form
of a complex number, a common technique is to calculate the
squared amplitude to estimate the so-called PSD. The simplest
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Fig. 8. Mean-adjusted concatenated discharge micro profiles of calm and
aggressive low-speed trips (∼4.5 hour data for display).

estimator is the periodogram by the modulus squared of the FFT,
φ̂p as follows.

φ̂p (k) =
1
N

∣∣∣∣∣

N∑

n= 0

x (n) Wnk
N

∣∣∣∣∣

2

, k = 0, . . . , N − 1 (5)

However, despite its simplicity, the periodogram suffers from
various drawbacks such as high spectral leakage, high variance
and estimation inconsistency. While parametric techniques have
been proposed to overcome the problems [29], the present study
comprehensively considers several nonparametric candidates.
These include, 1) modified periodogram which multiplies a
time series with a specified window (Hamming window, Kaiser
window, Blackman window, etc.) before calculating its peri-
odogram; 2) Barlett’s method which averages the periodograms
of several segments of a time series; 3) Welch’s method which
averages the modified periodograms of several segments of a
time series.

B. Application of Fourier Analysis

Discharge and charge micro profiles are treated separately.
They are further concatenated in each driving data category. In
addition, signal pre-processing steps, (i) deleting zero-current
periods during vehicle stops, (ii) adjusting the mean values of
the concatenated profiles by inversing the sign of every other
micro profile, are executed to make PSD estimation results more
discernable. The mean-adjusted discharge and charge data from
calm and aggressive drivers are displayed in Figs. 8 and 9.
Considering the length of data and accuracy requirement, we
apply the Welch’s method and illustrate the process specifically
for the charge data in Fig. 9. A hamming window of length
256 is moving along the time series with an overlap of length
128; these modified periodograms are averaged to output the
estimated PSDs in Figs. 10 and 11 for discharge and charge data
under different driving conditions. The length 256 and 128 are
chosen to achieve a satisfactory smoothing level.

As the PSD indicates the distribution of time series vari-
ance across the frequency domain, we emphasize the different
peak values of PSDs between calm and aggressive drivers in

Fig. 9. Mean-adjusted concatenated charge micro profiles of calm and ag-
gressive low-speed trips (∼0.5 hour data for display); also including illustration
of Welch’s moving window method for power spectral density estimation.

Fig. 10. Power spectral density estimation for low-speed drive cycles.

low-speed driving activities in Fig. 10. For illustration, in dis-
charge, aggressive drivers have the peak frequency of 0.0215 Hz,
translated to a 46-second sinusoidal period in time domain; calm
drivers have the peak frequency of 0.0156 Hz, equal to a 64-
second period. During charging, the comparison is 0.0469 Hz
of aggressive to 0.0390 Hz of calm; equivalent to a period of 22-
seconds to 26- seconds. These differences of peak frequencies
are compiled in Table IV. The fact that aggressive drivers have
shorter discharge/charge events applies as well for the high-
speed driving activities. Since the concatenated charge data are
much shorter than discharge data, the smoothing levels of their
PSD estimations are worse as indicated by sporadic lower peaks
in Fig. 11. Another difference is the area under the curve of
PSDs, which is proportional to the variances of concatenated
time series, compiled in Table V. The information in Tables IV
and V can be summarized as:
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Fig. 11. Power spectral density estimation for high-speed drive cycles.

TABLE IV
SIGNIFICANT FREQUENCY OF CONCATENATED MEAN-ADJUSTED DISCHARGE

AND CHARGE MICRO TRIPS FOR CALM AND AGGRESSIVE DRIVERS IN
LOW/HIGH-SPEED DRIVE CYCLES

Peak Frequency
(Hz)

Mean-Adjusted Discharge Mean-Adjusted Charge

Calm Aggressive Calm Aggressive

Low Speed 0.0156
(64s)

0.0215
(46s)

0.0390
(26s)

0.0469
(22s)

High Speed 0.0004
(250s)

0.0117
(86s)

0.0352
(28s)

0.0352
(28s)

TABLE V
VARIANCE OF CONCATENATED MEAN-ADJUSTED DISCHARGE AND CHARGE
MICRO TRIPS FOR CALM AND AGGRESSIVE DRIVERS IN LOW/HIGH-SPEED

DRIVE CYCLES

Variance (A2) Mean-Adjusted Discharge Mean-Adjusted Charge

Calm Aggressive Calm Aggressive

Low Speed 22 55 74 82
High Speed 53 99 84 91

1) The batteries of aggressive drivers switch faster between
discharge and charge;

2) The batteries in low-speed driving conditions switch faster
between discharge and charge;

3) In each category the charge periods are shorter than dis-
charge counterparts;

4) The differences of current variances in discharge scenarios
are significantly enlarged by both driving style aggressive-
ness and speed;

Fig. 12. The process of synthesizing the characteristic battery test profiles for
aggressive high-speed category.

5) The differences of current variances in charge scenarios
are relatively small because they are mostly saturated by
the charge current limits.

V. SYNTHESIS OF BATTERY TEST PROFILES

Information on Tables IV and V are used to synthesize char-
acteristic cell aging test profiles based on cycle speeds and driver
style. The aging profiles are synthetized in the form of sinusoidal
waves with the peak frequencies from estimated PSDs and the
period of mean-adjusted time series. The derivation of such
profiles is illustrated, see Fig. 12, considering the aggressive
high-speed category. Constructed with half sinusoidal profiles
separately from discharge and charge data, the synthesized char-
acteristic profile should comply with cell current limits and must
be Ah-throughput neutral to guarantee repeatability. The char-
acteristic profiles for calm low-speed, calm high-speed, aggres-
sive low-speed and aggressive high-speed driving conditions are
compiled in Fig. 13. For all of them, the charge parts are close
to the manufacturer’s limit, but the discharge parts are signifi-
cantly different in duration and current magnitude. Aggressive
drivers tend to discharge their batteries faster and harder; while
high-speed driving further increases battery discharge duration
and current magnitude.

VI. EXPERIMENTAL SETUP AND AGING TEST RESULTS

This section discusses the experimental setup and the aging
test results using the synthesized charge-neutral profiles devel-
oped in previous sections. Experiments were carried out at the
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Fig. 13. Characteristic battery test profiles for four categories of driving data.

Fig.14. Experimental test set-up at the BACh Laboratory.

TABLE VI
AGING TEST MATRIX, NUMBERED CELLS WITH AGING CONDITIONS

Aging Conditions Cell No. #

Calm Low Speed 23 °C (CLS23) Cell 1 / Cell 2
Calm Low Speed 45 °C (CLS45) Cell 3 / Cell 4
Aggressive High Speed 23 °C (AHS23) Cell 5 / Cell 6
Aggressive High Speed 45 °C (AHS45) Cell 7 / Cell 8

Battery Aging and Characterization (BACh) Laboratory at the
Automotive Engineering Department at Clemson University.
The experimental setup used for the aging campaign, shown in
Fig. 14, is composed of the Arbin BT-2000 battery cycler with
a programmable power supply and an electronic load; a MITS
Pro data acquisition software for the programming of test pro-
files and the control of the Arbin cycler; and Peltier junctions
that are in direct contact with the cell fixtures for thermoelectric
temperature control. In this study we use the cylindrical 18650
NMC lithium ion cells, the detailed specifications of which can
be found in Table III.

In the experimental aging campaign, two extreme conditions
were considered: the calm low-speed (CLS) and aggressive
high-speed (AHS). Both profiles were tested at two temper-
atures, 23 °C and 4 °C, respectively to form the test matrix
shown in Table VI. For each test condition, two cells were

Fig.15. The flowchart of the aging test.

Fig.16. Battery aging test results with in-house characteristic profiles.

tested to check for repeatability. All cells underwent capacity
characterization tests at room temperature of around 25 °C at the
beginning and thereafter every three-week period. A flowchart
of this aging campaign is shown in Fig. 15. The 1C capacity
tests was performed by firstly charging the cell to 4.2 V at a
constant current of 1 C, then holding constant voltage at 4.2 V
until the current dropped to C/50. The fully charged cells were
rested for one hour, then the 1 C discharge current was applied
until the cut-off voltage of 2.5 V was reached.

The normalized capacity loss results from three-month char-
acterization tests are shown in Fig. 16. For better comparison,
the x-axis is in Ah-throughput rather than time. The cells un-
dergoing the AHS45 cycle (i.e., cells #7 and #8) lost 10% of
their initial capacity in only two months due to the severe ag-
ing rate of the cycle. Cells #1 and #2, undergoing the CLS23
cycle show no capacity loss after a three-month aging period.
A slight capacity recovery is instead observed. Interestingly, for
CLS45 Cell#3 and AHS23 Cell#6, some capacity recoveries are
also observed during the first few aging characterization stages,
different from their repeated counterparts.

The overall aging results can be interpreted as follows: 1)
the impact of temperature on aging is more significant than the
discharge current magnitude, or the driving style; 2) the impact
of the rate of discharge on aging is larger at high temperature;
3) the impact of temperature on aging is larger as the discharge
rate increases. The aging results derived from experimental
testing validated the impact of the real-world driving on the cell
aging properties, and emphasized the need for efficient battery
thermal management, as well as the benefits one might obtain
from eco-driving.
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VII. CONCLUSION

This study analyzed real-world battery duty cycles to create
synthesized characteristic aging test profiles. Using naturalistic
vehicle drive cycles, which are categorized by mean speed and
driving style, a 48-V mild hybrid vehicle model equipped with
a power management strategy was constructed in /Simulink to
generate real-world battery duty cycles. By adopting the Welch’s
PSD estimation method on discharge and charge data separately,
we concluded that: 1) discharge pulses are generally longer in
duration than charge pulses; 2) an aggressive driver style short-
ens the discharge/charge durations, while high-speed driving
activities lengthen them; 3) aggressive driver style and high-
speed driving activities both stimulate larger discharge/charge
current rates. Characteristic sinusoidal test profiles were synthe-
sized with peak frequencies and amplitudes respectively from
PSD estimations and time series variances. Aging tests were
performed using the current profiles designed to be within the
manufacturers’ current limits and Ah-throughput neutral. Ap-
plying different temperatures and “driving styles”, the cycle
aging results reveal the negative impacts on cell capacity loss
from aggressive driver style at high temperature. The method-
ologies of this study for the characterization of real-world duty
cycles and synthesis of representative profiles can be flexibly
extended to new datasets. The aging test results lay the founda-
tion for the cell aging modeling and the investigation of cycle
aging mechanisms relative to the real-world usage. This study
has also shown that repeatability of tests is an important aspect
to account for consistency of test results.
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