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Abstract: In this work, state of charge (SOC) and state of health (SOH)
estimation algorithms for battery management system are proposed and
compared. These algorithms are developed on a battery pack designed
specifically for light electric vehicle (electric scooter or bicycles) applications.
The advanced battery management system is designed in order to evaluate the
instantaneous charge available in the battery and at the same time to monitor
the slowly varying battery aging parameters. Two SOC estimation algorithms
are proposed: an extended Kalman filter (EKF) and an adaptive extended
Kalman filter (AEKF). With the adaptive version of Kalman filter a proper
value of the model noise covariance is adaptively set using the information
coming from the online innovation analysis. In the second part of this paper, a
new estimation algorithm based on least squares is proposed to estimate the
battery SOH. A general framework for a combined evaluation of SOC/SOH is
discussed.
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1 Introduction

Light electric vehicles, such as electric bikes (e-bike) or scooters, offer many benefits
over their traditional counterparts as they can go further than conventional bicycles with
little effort. They can be quickly recharged anywhere a power supply is available, or low
(in state of charge — SOC) batteries can be swapped in no time instantly with fully
charged batteries.

Lithium-ion batteries have become the battery of choice not only for hybrid and
electric cars, but also for electric bicycle and scooter applications. The key drivers are
their high specific energy, energy density, cycle/calendar life as well as their reduced
need for maintenance as compared to flooded lead acid batteries.

As technology advances, batteries are now also required to communicate with other
components within the vehicle such as the motor controller to maximise range and
acceleration. An accurate estimation of the energy available inside the battery is essential
to optimise powertrain operation and prevent stranding the rider. Lastly, knowing the
remaining energy also helps prevent overcharge and over discharge of batteries, vital to
safe use and long life of lithium-ion batteries.

The battery SOC is generally used as a metric to quantify the amount of energy left in
a battery compared with the energy it had when it was full and it gives the user an
indication of how much longer a battery will continue to perform before it needs
recharging. Battery state of health (SOH), on the other hand, represents the level of
degradation of the battery due to the aging phenomena. In this paper, the problem of SOC
and SOH monitoring by the battery management system (BMS) is addressed. In the first
part of this work, the SOC estimation problem is discussed in detail. In the second part,
an estimation algorithm for capacity monitoring is proposed and estimation results are
shown. A general approach to monitor the battery SOH combined with the SOC
estimation is also discussed.

The easiest way to estimate the actual SOC is by evaluating the ratio between the
amount between the energy stored in the battery and the battery capacity. The main
drawback of this approach, though, is that the numerical integration done in-vehicle is
very sensitive to the SOC initial condition, not always accurately known. Moreover, the
result of the integration can easily drift or diverge due to the presence of additional noise
(Chicago Electric Bicycles LLC, http://www.chicagoelectricbicycles.com).

For, different methods falling in the category of indirect methods have been
developed in the literature to estimate SOC (Pang et al., 2001; Chang, 2013; Coleman
et al., 2007; Chiasson and Vairamohan, 2005; Barbarisi et al., 2006; Piller et al., 2001;
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Rubagotti et al., 2009; Plett, 2004; Lee et al., 2008; Vasebi et al., 2007; He et al., 2011;
Han et al., 2009). For instance, SOC can be computed starting from open circuit voltage,
Vocy, measurement (Chiasson and Vairamohan, 2005). Both for lead-acid and most
Li-ion batteries, the SOC estimation with this method is straight-forward due to the linear
relationship of the V¢ with respect to the SOC. By contrast, when the relationship Vocy
(SOC) shows a flat region for a large range of SOC values, it is harder to translate the
Vocy measurement to SOC values (Chang, 2013; Coleman et al., 2007).

Indirect methods can also be developed using reduced state-space electrochemical
models. Online SOC estimation is performed together with the identification of the model
parameters using model-based methods for state estimation (Barbarisi et al., 2006;
Di Domenico et al., 208). Other methods have been used in literature, such as artificial
neural networks and impedance spectroscopy. These methods usually require a large
computational effort and very accurate measurements (Piller et al., 2001) which make
them suitable for laboratory application only (Chang, 2013).

For on-board vehicle applications, as in the case of e-bike, SOC estimation is
performed from real-time measurements (voltage and current) using model-based
methods. In this paper, two model-based estimation algorithms are developed and
compared: extended Kalman filter (EKF) and an adaptive extended Kalman filter
(AEKF), using an experimentally validated equivalent circuit-based model (ECM) of the
battery (Taborelli and Onori, 2014).

The EKF has been successfully used to estimate the state vector of a nonlinear
state-space system model subject to noise. When using EKF, the state estimation is
performed based on a comparison between the output obtained from the model and the
measured quantities from the plant sensors. The state-space model is defined in such a
way the state and the output equations are affected by Gaussian white noises. These
noises are defined in terms of mean and covariance and a complete knowledge of these
statistical properties is assumed (Fathabadi et al., 2009). The choice of constant values for
these parameters has direct effect on the estimation performance and is not always
straightforward. It is often the case to treat the noise covariance on the state and the
output equation as design parameters. For example, a large covariance on the output
means noisy measurements and a ‘slow’ response of the filter. By contrast, a larger
covariance on the state is related to uncertainties on the model and reliable
measurements, leading to a “fast’ filter convergence.

In battery applications, examples of SOC estimation using EKF are in Rubagotti et al.
(2009), Plett (2004), Lee et al. (2008) and Vasebi et al. (2007).

The main drawback of EKF resides in the fact that the correct value of the process
covariance matrix is needed. To address this issue, in this paper we pursue the design of
the AEKF. In AEKF, the covariance of the process noise is not assumed to be constant,
but adaptively updated as new measurements are available.

AEKF has been applied in different research fields, such as robotic applications, track
reactor monitoring and internal navigation system/global positioning systems (INS/GPS).
An adaptive update of the covariance matrix improves the estimation results as opposed
to a fixed choice. For example, in Jetto et al. (1999), an AEKF is implemented to estimate
the position of a mobile robot, considering a covariance matrix with a fixed structure,
apart from a scaling factor which is adaptively changed, and in Fathabadi et al. (2009),
the adaptive filter is used to deal with asynchronous measurement in a tank reactor. The
AEKFs have been successfully used to solve the INS/GPS position tracking problem as
well (Hide et al., 2003, 2004; Ding et al., 2006; Mohamed and Schwarz, 1999).
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The AEKF algorithm has been used for battery SOC estimation of a generic Li-ion
battery in Charkhgard and Farrokhi (2010) where the process covariance matrix is
updated online with a dedicated estimator. In He et al. (2011), an electric vehicle battery
is studied and the adaptive algorithm is activated only when the SOC estimation is
diverging in order to keep it stable. In Han et al. (2009), a solution similar to the one
proposed in this paper is developed for a lead-acid battery.

In this work, the problem of designing advanced BMSs is addressed for a Li-ion
battery system developed by A/lCell Technologies." The main purpose is to design a
reliable algorithm for an accurate detection of SOC and to propose a method to monitor
the battery aging. These algorithms are developed for the new categories of light vehicle
such as e-bikes. In Section 2, the battery pack structure is discussed and the mathematical
model is introduced. In Section 3, the model parameters are identified: for the battery
pack resistance identification two methods are discussed and the dependence on SOC is
discussed. The SOC estimation algorithms, i.e., EKF and AEKF are presented in
Section 4 along with simulation results obtained from experimental data. In Section 5, the
problem of SOH estimation is addressed: an algorithm for battery capacity estimation is
designed and a generalised framework for combined SOC/SOH estimation is proposed.
Capacity estimation preliminary results obtained from experimental data collected from
an aging campaign are shown. Conclusions and future work are outlined in Section 6.

2 Battery modelling

In this section, a description of the battery pack is provided and a mathematical model of
the battery is defined.

2.1 Battery pack topology

The battery pack used in the e-bike application studied in this paper is made of 40 LG
ICR18650MGT1 cells. The cells have a nominal voltage of 3.7 V and a rated capacity of
2.6 Ah. In order to achieve the voltage and capacity requirements, the battery pack has
the /0s4p topology: ten modules connected in series, each of them composed by four
cells in parallel as shown in Figure 1.

Figurel Battery pack topology 10s4p
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The ten modules in series will provide a total battery pack voltage of V,,, = 37 V,
whereas the pack rated capacity is QO,., = 10.4 Ah, being the pack current / the same in
each module. In this work, we model the battery pack as an average cell equivalent to a
single module, as shown in Figure 2: all battery pack quantities are referred to as average
cell quantities.

Figure2 Battery pack modelled as an average cell: equivalence between the average cell and a
single module
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The average cell current is equivalent to the battery pack current / measured by the BMS
and a measurement of the voltage across each module, V;, is available. The average cell
voltage, V, is computed by the BMS as the average of the ten voltage measurements
across the ten modules:

r==—> (1)

It is possible to calculate the average voltage as in (1) since voltage unbalances were not
registered between the modules and voltages V; are all similar. The rated capacity of the
average cell is equivalent to the rated capacity of the battery pack, i.e., Onom = 10.4 Ah.

2.2 Battery model

In order to develop a model-based SOC estimator, a mathematical model for the average
cell is defined. In literature, two categories of models have been proposed for lithium-ion
batteries: electrochemical models (Di Domenico et al., 2008; Gomadam et al., 2002; Gu
and Wang, 2000) and ECMs (Rubagotti et al., 2009; Tremblay et al., 2007). The ECMs
are the ones mostly used for BMS application and system integration today (Gao et al.,
2002), due to the low computational requirement (Ceraolo, 2000). One limitation of this
kind of models, though, is the difficulty to trace the battery aging phenomena back to the
ECM parameters. This is one of the reasons why electrochemical model are being
pursuing. Electrochemical models give a physics-based description of the battery
processes which take place inside the battery and ultimately, they allow the battery aging
phenomena to be described in detail. At the same time, though, they are computational
demanding for BMS use, at least with the present technology. The link between ECM and
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electrochemical models is found in Ceraolo (2000), where electrochemical impedance
spectroscopy technique is used to define the model electric impedances (Zhang et al.,
2004; Moss et al., 2008). The identification of electric parameters of ECM is not always
straightforward, as dependence on SOC, temperature and current amplitude is often
included.

In this study, a second order ECM is considered to model the average cell, as shown
in Figure 3.

Figure3 Equivalent circuit representation of the average cell model
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At ot
Viir (k+1) = e ™" Vpe (k) + Rpy (1 —e ™ )I(k)

where k is the discrete time instant.

The first equation represents the SOC dynamics, in which At is the discrete time step.
The input current /(k) is considered positive during discharging and negative during
charging. The two RC branches (Rcr, Ccr and Rpy;, Cpy) are used to model the dynamic
response of the battery average cell and 7¢cr = RcrCer and 7p;r = Rp;/Cp;r are the respective
time constants. The parallel branches represent the charge transfer (C7T) and diffusion
(Dif) phenomena inside the battery. In Moss et al. (2008), a detailed representation of
these phenomena is addressed: diffusion and CT properties are described with more
impedance elements and with specific dependence on the input current.

The output equation relates the average output voltage V(k) to the voltage drop across
the equivalent circuit elements, as follows:

V(k)=Vocy (SOC(k)) =Ver (k) =V (k) = Ryl (k) (€)

where Vocr (SOC) is the average cell open circuit voltage function of SOC and R, is the
battery cell internal resistance.

Defining the state vector as x(k) = [SOC(k) Vcr(k) VD,-j(k)]T , the model input
u(k) = I(k) and output y(k) = V(k), the discrete-time nonlinear state space model of the
battery can be written as:
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{x(k +1) = Ax(k)+ Bu(k) @

w(k) = g (x(k), u(k))
The nonlinearity of the model is in the output equation (3), in that the open circuit voltage

is not linear with respect to the state x(k). The state equation, on the other hand, is linear
with system matrices defined as:

At
1 0 0 Ohom
_ A _ A
A=|0 e wr 0 |; B= RCT(I—e fm) 5)
A _ A
0 0 e™ RD,]-(I—e oif )

The battery cell model (4) is defined as a function of: the dynamic parameters Rcr, Cer;
Rpis, Cpips the open circuit voltage Vocy and the resistance R,. The identification of these
parameters is discussed in the following section.

3 Parameter identification

All the experimental tests, both at cell and pack level, were performed at A//Cell
Technologies and were conducted at ambient temperature.

The tests are described using the C-rate, which is the rate of charge or discharge
current in normalised form:

1)

nom

[1/h]

C-rate =

The general expression C/xx indicates that the number of hours to completely discharge
the battery at a constant current is xx.

3.1 Open circuit voltage

The relationship between Vocy and soc has been identified by subjecting the battery to a
constant current discharge of C/20 from a fully charged battery.> Due to the very small
current used to discharge the battery the voltage drop on the internal impedance can be
considered negligible so that the measured voltage can be approximated to Vocy.

Figure4 Open circuit voltage: identified Vycp function of SOC (see online version for colours)

4.5 T T




Advanced battery management system design for SOC/SOH estimation 9

The Voc(SOC) characteristic is shown in Figure 4, where the SOC is evaluated through
Coulomb counting.

3.2 Dynamic parameters

In order to identify the dynamic parameters Rcr, Cer, Rpyand Cp; an identification test
has been performed on the battery cell at the beginning of life (BOL). The parameter
identification test consists in a series of symmetrical discharge-charge current pulses
performed at different SOC (Lam et al., 2011; Lin et al., 2014). The test current profile is
shown in Figure 5(a) and the corresponding battery voltage response is shown in
Figure 5(b). A zoomed current pulse is shown in Figure 5(c) performed at SOC = 50%
and the corresponding voltage zoom is in Figure 5(d).

The current pulses have a duration of 10 s each, with an amplitude of £ 1C. Between
two consecutive pulses, a C/40 constant current is used to discharge the battery until to
the following SOC level. The identification procedure applied to identify the dynamic
parameters has shown that the dependence of these on SOC is negligible, although the
wide SOC range swept.

The least squares (LSs) method was used for the identification, where the value of the
parameters are identified minimising the sum S of the squared difference between the
experimental measured voltage V., (k) in Figure 5(b), and the voltage predicted by the

model (4):

Ty
min() = min| " [V&,(/)-g (x(/), u()] (©)

J=T

where T and T are the initial and final time instants of the experimental test. In (6), the
model input u(j) corresponds to the measured current in Figure 5(a), while the state x(j) is
evaluated integrating the model (2) starting from the test initial condition: SOC(0) = 50%,
Ver(0) = Vpif0)=0 V.

The identified parameters values are reported in Table 1.

Tablel Dynamic parameters values
Rer 1.6 mW
ter= RCTCCT 3.68s
Rpi 7.7 mW
1= RoyCoir 84.34 s

3.3 Resistance

To obtain the model resistance, two methods were investigated:
1 real-time estimation through an EKF
2 identification with LS method.

Both methods are described and compared in the following. A dedicated identification
test, referred to as Ry-identification test, was designed and performed at pack-level at
BOL for the sole purpose of identifying the resistance.
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Figure5 Dynamic parameters identification test, (a) battery current 75,(k) (b) measured voltage

Vo (k) (c) Zoom of battery current /4, (k) around a pulse performed at SOC = 50%
(d) Zoom of the measured voltage at SOC = 50% (see online version for colours)
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3.3.1 Extended Kalman filter

In this subsection, EKF is used to estimate the model resistance Ry. Although, the EKF is
a well-known algorithm largely used (Welch and Bishop, 1995; Plett, 2004a, 2004b) to
estimate the state of a dynamic system characterised by noisy measurements, it can also
be used to perform real-time system parameter identification (Plett, 2004b).

The discharge test current profile /&, (k) is shown in Figure 6(a) and the average cell
voltage response VX,(k) is in Figure 6(b). During the test, the battery is completely

discharged, starting from a fully charged condition.
Figure6 Ro-identification test, (a) average cell current I&,(k) (b) measured average cell voltage,
called V% (k) (see online version for colours)
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(b)

With reference to the e-bike application, only discharge scenario is evaluated, since
regeneration is not possible for this application.

In addition to the resistance identification, the EKF is used to identify the battery
capacity Oy, at BOL.*

Following the same structure proposed in Plett (2004b), the parameters to identify are
included in the parameter vector 6:

0= [RO Qnom ]T (7)
Hence, the state space battery model (4) can be written as:
{x(k +1, 0) = Ax(k) + B(O)u(k)

8
y(k, 0) = g (z(k), u(k), 0) ®)
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where the dependence of the model equations on the parameters vector 6 is now made
explicit.

The EKF is a model-based method for state estimation. To identify the vector of
parameters, 6 has to be made as state of a proper state space model. For this reason, 6 is
modelled as:

Ok +1) = 6(k) +vy (k) 9

where vy ~ A/(0,Qy) is a Guassian white noise, with zero mean and covariance Q.

Model (9) is justified by the fact that the aging parameters Ry and Q,,, vary slowly
compared to the system dynamics (4) thus to be assumed constant over the duration of
Ry-identification test. The noise v, models the uncertainties associated with the model (9).
Given that the constant dynamic behaviour of 6 is accurate, the covariance of vy is set to
be small.

The output equation is a function of the system parameters 6:

Vo (k, 0) = g (x(k), u(k), 0(k))+wp (k) (10)

where wy ~ A(0, Ry) is a Gaussian white noise with zero mean and covariance Ry,

which represents the model output noise.
The EKF is based on the implementation of prediction step and correction step
(Rubagotti et al., 2009); a summary of EKF algorithm equations is shown in Table 2.

Table?2 EKF algorithm for parameters identification: prediction step and correction step

Prediction step:

0-(k)=0(k-1) (11a)
Br(k)=P(k-1)+0, (11b)
Correction step:
Lo(k) = B ()Co (k) (Co (k) By (K)Co (k)" +Ry) ™ (12a)
O0k) = 0-(k) + Ly (k) V&, (k) — g (x(k), uh), 0-(h)) | (12b)
By(k) = (1 = Ly (k)Cy (K)) By () (120)

The estimated parameters vector is 0 and Py is the covariance matrix of the estimation
error defined as: ey(k)=6— 6. In the prediction step, the estimated state 6 and matrix Py

are projected to the next time step using the model equation in (9), and the noise
covariance Qy. The superscript minus indicates that these quantities in (11a) and (11b)
have not yet been corrected using the measurements (Rubagotti et al., 2009). In the

correction step, the parameter vector estimation 6 and the covariance P, are corrected by
using the information from the measurements V&, and the adapted Kalman gain L,. In
this way, 6 is the parameters vector estimated in order to reduce the difference between
the experimental voltage V.8, (k) and the model response g(x(k), u(k), o (k)). It has to

be noted that the model state x(k) is needed to evaluate this last term: it is computed
integrating the system equations (2) using the dynamic parameters identified in
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Subsection 3.2, starting from the initial conditions of the Ry-identification test, namely
SOC(0) = 100%, Vcr(0) = Vpid0)=0 V.

The matrix Cy, used in (12a) and (12c¢), is the linearisation of the nonlinear output
equation (10), with respect to the vector of parameters 6:

dg (x(k), u(k), 6(k))|

Co(k)=
0 (k) 20 i

(13)

As also shown in Plett (2004b), since g(x(k), u(k), 6(k)) is a nonlinear function of both the
parameters vector 8(k) and the model state x(k), (13) can be written as:

dg(x,u,0)| _ Og(x,u.0)| , og(x,u,0)| [ dx (13)
|, o | a1 \dol,
] (15)
k-1
dx

The term 45 is initialised at 0 and evolves following the dynamics in (15). In this work,

since the vector 0 is defined as in (7), through (14) and (15) the matrix Cy(k) can be
computed as:

dx
do

dx
k-1)+A| —
k- &

_dB(0)
. 0

k-1

At (k —1)
Qr%om (k - 1)
Cy(k)=[I(k) 0]+C(k)||0 0 + A% (16)
0 0

where C = w and 4 is the dynamic matrix of the battery model in (5).

106 0
The values used for the state and output noise covariances are Oy = { 0 104} and

Ry =10. The noise v, has a weak effect on the constant dynamics of the parameters, while
a larger output covariance is accepted for wy, in order to consider generic uncertainties on
the overall battery model.

In Figure 7, the estimated resistance Ry is shown as a function of time (dashed line).

In Figure 8, it is shown a comparison between the experimental voltage VX, (k) and the
output voltage I}mod (k) obtained from the average cell model when the estimated

resistance R, is used and the test current I%, in Figure 6(a) is given as an input. To
quantify how close the model output is to the measurements, the voltage error épgr is
evaluated as:

Exr (k) = V&, (k) ~ Vinoa (k) (17)

The error éggr is shown in Figure 9 and its RMS value® is shown in Table 3.
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Figure7 Resistance Ry: comparison between 1%0 estimated with EKF and R, identified with LS
approach, function of time (see online version for colours)
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The capacity value Q,,,,m estimated with this approach is practically constant over the

simulation time window, and equivalent to the nominal value Q,,, = 10.4 Ah, which
confirms the nominal capacity value at BOL used in the battery model.
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In Figure 7, dependence of R, on SOC is noticeable.

Figure9 Comparison between the voltage error &g (k) and &,5(k) (see online version
for colours)
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3.4 LSs method

In this subsection, a LS method is implemented to identify the resistance dependence
Ry(SOC) on the SOC.

The input and output data from Ry-identification test are divided into SOC batches, as
shown in Figure 6 (vertical dashed lines). The identification procedure is the same as
discussed in Subsection 3.2, but in this case the LS algorithm is applied on a single batch

i. For each batch i, a constant resistance value Ro; is identified minimising the sum of

the squared difference S; between the experimental measured voltages VZ ; and the
voltage predicted by the model output from (4):
Ty o,
min(S;) =min| " (V& () -g(x() u(j). Roy)) (18)
J=To.i

where Ty, and T}; are the initial and final time instants of each batch i respectively. As
shown in Section 2, the output function g(*) has a linear dependence on the parameter

Iéo,i and the input u(k), and it is nonlinear with reference to the model state x(k). To apply
the LS method, the input u(k) and the state x(k) are known at each time instant, the former
from experimental data 7%, (k) [Figure 6(a)] and the latter from the model, computed
integrating equation (2).

For each batch i, the average SOC, SOC,, is calculated, to relate the identified
resistance values ﬁo,i to the corresponding SOC;. The identified resistance R,(SOC) is
shown in Figure 10 function of SOC. Since SOC(k) is a known function of time from the
model equation, in Figure 7 (solid line) R, is shown as a function of time. Comparing
Iéo evaluated with EKF and R, with LS method both as a function of time, from

Figure 7, it can be seen that the two show similar trends over the entire SOC range except
for high SOC (beginning of discharging, 99% SOC) and low SOC values (1% SOC).
Also in the case of LS, the voltage error é,5 is evaluated as the difference between

experimental voltage V.2, (k) and the model output Vmod :
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&5 (k) = V&, (k) = Vinoa () (19)

The voltage Vpoq is obtained as the output of the average cell model, when Ry (SOC) is
used. Viod (k) is compared to the experimental voltage V&, (k) and to the model output

voltage Vinod (k) (using EKF to estimate the resistance) in Figure 8. The error é;5 is

shown in Figure 9.
In Table 3, the RMS value of éz¢r and é;5 are compared.

Table3 Validation RMS error, comparison between EKF method and LS approach

Error RMS value
éexr (k) 0.01702 V?
é.s (k) 0.02160 V>

Figure10 Resistance Ry(SOC) function of SOC (see online version for colours)
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Although the two estimation methods studied in this section provide very close
performance, as also shown by the RMS values of épxr and é;5 in Table 3, the
resistance identified with EKF (see, Figure 7 shows meaningful values in a SOC range
from 95% to 5%. Outside of this SOC range the unmodelled dynamics affects the EKF
estimation performances. For these reasons, in this work we chose to use the resistance

identified with the LS method R,(SOC).

Model validation

In order to validate the model, a validation test designed performed on the battery pack at
BOL. This test represents a generic usage scenario for the battery, related to the light
electric-vehicle application.

The validation test is a discharge test, through 1%, (k), performed from a fully
charged condition [see, Figure 11(a)]. It is made by a series of steps at three different
levels of C-rate, up to a maximum current value of 2C. The average cell output voltage
V&, (k) measured by the BMS is shown in Figure 11(b).
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The model validation results are shown in Figure 11(b), where the experimental
voltage VX, (k) is compared with the model output voltage Viod(k) evaluated with (3)
using the values of the parameters identified previously. The mismatch between the
modelled and the measured voltage after the voltage relaxed beyond 4,000s
[Figure 11(b)] is due to the fact that model is experimentally calibrated and accurate over
a predefined range of SOC, and beyond that point, its predictability is lost.

The validation error ¢’(k) given by the difference between the experimental voltage
V& (k) and the model output voltage V() is:

" (k) = Ve (k) = Vinoa (k) (20)
with an RMS value for " (k) of 0.0419 V2.

Figure1l Validation test, (a) average cell current; (b) comparison between measured average cell
voltage, called VY, (k), and the average cell model output voltage V(k) (see online
version for colours)
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4 SOC estimation algorithms

The SOC estimation problem for an e-bike application is addressed in this section, with
the purpose to define an algorithm suitable for on board implementation to improve the
battery usage and the vehicle power management. Two algorithms are proposed for the
SOC estimation: EKF and AEKF.

4.1 Extended Kalman filter

The EKF method is proposed to estimate the SOC of the battery system described by the
nonlinear model (4). When including the process and measurement Gaussian noises,
model (4) assumes the general form:

{x(kﬂ) = Ax(k)+ Bu(k) + v(k) o

Viky=g (x(k), u(k)) +w(k)

where v(k) ~ A7(0, Q) and w(k)~ A/ (0, R) are Gaussian white noises with zero mean
and covariance matrix Q for the model state equation and R for the output relation,
respectively. A description of the Kalman prediction and correction steps was given in
Section 3.3. The estimator equations are summarised in Table 4.

The quantity (k) is the estimated state, and L(k) and P = E[e(k) - e(k)"] are the
Kalman gain and the covariance matrix of the estimation error, defined as:
e(k) = x(k)—x(k).

The matrix C(k) = &0

ox

o’ used in the filter equations (23a) and (23c), is the

linearised output matrix g(x, ) around the point (X~ (k), u(k)), and Ve,(k) in equation
(23b) is the actual voltage measured by the BMS.

The covariance matrix Q of the process noise is designed under the assumption that
there is no correlation between the noise on the cross state components (Vasebi eta 1.,
2007), leading to a diagonal structure. The state noise v(k) represents the model
uncertainties as well as the approximation due to the neglected nonlinearities (Lee et al.,
2008).

Table4 Summary of EKF algorithm equations

Prediction step:

X (k)= Ax(k —1)+ Bu(k —1) (22a)
P (k)y=AP(k-1)A" +Q (22b)
Correction step:
L(k) = P~ (k)C(k)" (C(k)P~(k)C(k)" + R)f1 (23a)
(k) = 2 (k) + LK) [V (k) = g (3 (K), u(k)) | (23b)

P(k) = (I = L(k)C(k)) P~ (k) (23¢)
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1,000- R 0 0
The proposed matrix Q= 0 0.1-R 0 |, defined with reference to the
0 0 0.01-R

matrix R, has a higher weight on the first component of the state vector, i.e., the SOC.
The output noise covariance R is evaluated using the experimental data and
considering the model voltage error ¢é;5(k) computed with (19): from a statistical

analysis of the error itself, it can be shown that &,5(k) is well-approximated by a

Gaussian distribution with zero mean and the covariance value R = 4.666 — 107,
In the next subsection an adaptive version of the EKF is presented.

4.2 Adaptive extended Kalman filter

The AEKF proposed in this work is based on the work developed in Mohamed and
Schwarz (1999) for INS/GPS application. An adaptive update of matrix Q can help in
overcoming the uncertainties in the state noise representing model uncertainties due to
the identification process and nonlinearities not modelled.

Usually, the estimation performances of the adaptive solution are evaluated through
the information represented by the innovation sequence d(k). The innovation d(k) is
defined as:

d(k) = Ve (k) =g (2 (k), u(k)) 24)

which is the difference between the experimental voltage Ve, (k) measured by the BMS
and the predicted value g(x~(k), u(k)). In d(k) the predicted voltage is computed by the

model output equation when the state in the prediction step x~ (k) is taken into account.
The innovation covariance matrix is computed as:

N
D(k)= %Zd(z’)d(z’)r (25)

i=ip

using a moving average of the innovation d(k) in (24), within a moving estimation
window of size N, where iy = k— N + 1 is the first instant of the window.

Matrix ﬁ(k) represents the actual performance of the estimation process, so that it is

a crucial element to be used in defining the adaptive law for matrix Q. The choice of the
window length N becomes a design parameter for the algorithm: it must be not so small
to correctly represent the estimation performances and at the same time, for on-board
implementation, it has to consider the memory available on a physical board.

Starting from the evaluation of ﬁ(k), the innovation-based adaptive Kalman filter

can be used, as demonstrated in Mohamed and Schwarz (1999)]. The innovative
contribution in Mohamed and Schwarz (1999) is the formulation of the filter in terms of
maximum likelihood (ML) estimator. The advantage of this approach is to define the
traditional EKF estimator function of some adaptive parameters, usually the process and
measure noise covariances Q and R. A ML equation is also defined, as function of the
same adaptive parameters. In this work, the only adaptive parameter considered is the
process noise covariance matrix (J. The ML equation represents the mathematical
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condition which allows to derive an adaptive law for the matrix Q function of the
innovation covariance matrix ﬁ(k). Under the assumption that the measurement noise

covariance R is taken as constant, the ML equation in Mohamed and Schwarz (1999) can
be transformed in:

N
Ok) = %z ARGDAZ() + P(k)— AP(k —1) AT (26)

i=ip
where AX is the state correction:
Ax(k) = x(k)—x~ (k) @27
evaluated as the difference between the state before and after updates. From (23b):

Ax(k) = L(k)d (k) (28)
Substituting (28) into (26), Q(k) can be computed as (Mohamed and Schwarz, 1999):
O(k) = L(k)D(k)L(k)" (29)

Thus, the AEKF algorithm for the SOC estimation uses the same equations of the EKF
summarised in Table 4, with the difference that equation (22b) is now implemented using

O(k) in (29) as:

P~(k+1)= AP(k) A" + O(k)

4.3  Simulation results

EKF and AEKF algorithms are tested over two experimental tests: the Ro-identification

test of Figure 6 and the validation test of Figure 11 where Veﬁp and Ve‘,fp are the measured

voltages in those cases. We refer to SOCrxr and SOC e as the estimated SOC
evaluated with EKF and AEKF algorithms, respectively. A comparison between the
estimation results is shown in Figure 12 with reference to the Ry-identification test and in
Figure 14 for the validation test. As a reference for the comparison, SOC obtained with
Coulomb counting method (SOC,,) is considered, defined by the discrete-time dynamic
equations:

At

SOC..(k+1) = SOC.. (k) - ——I(k) (30)

nom

In both cases, in order to test the convergence of the filters, the model state was estimated
starting from the initialisation state values equal to x(0) = [0.4 0 017, corresponding to an
initial SOC(0) = 0.4, while the actual SOC level is close to 1, since the battery is fully
charged in both tests. In Figure 16, a zoom of initial dynamics of SOCEKF and SOC AEKF

is shown, with reference to the Ry-identification test. A rapid convergence of both EKF
and AEKEF to the SOC = 1 is shown.
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Figure12 Comparison between SOC estimation results with reference to the Ry-identification test
(Figure 6): reference Coulomb counting SOC,.(k), SOCxr (k) estimated with EKF

and SOC "exr (k) estimated with AEKF (see online version for colours)
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Figure13 Comparison between SOC estimation error ezgr(k) and e, zx(k) with reference to the
Ro-identification (Figure 6) (see online version for colours)
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The EKF and AEKF estimation errors are defined as the difference between SOC.,. from
Coulomb counting and the estimated states of charge sOC, ek and soc AEKF »

respectively:
exxr (k) = SOC,c (k) = SOCkr (k) (31)
€ AEKF (k) =80C.. (k) - SOCAEKF (k) (32)

The estimation errors are shown in Figure 13 for the Ry-identification test and in
Figure 15 for the validation test.

As shown in Figures 13 and 15, using EKF the SOC estimation error egg k) is within
the 5% range with respect to the SOC,.. This result is tied to the performance of the
model in reproducing the battery behaviour: the more accurate the model is, the lower the



22 C. Taborelli et al.

estimation error. By contrast, when the model response is less close to the measurements
and in particular at low SOC values, also the estimation becomes poorer [Figure 8 and
Figure 11(b)].

With the AEKF an improvement in the estimation performance is achieved, as shown
in Figures 12 and 14. For both tests considered, the estimation error e gx+k) remains
close to 1% (Figures 13 and 15), which represents an improvement when compared to the
EKF, thanks to the adaptive update of the covariace Q. In this way, the uncertainty of the
model are adaptively compensated since Q(k) changes following the estimation error.
Also at low SOC, the estimation is improved.

As far as the convergence, both filters show a fast response. In AEKF, in particular,

the convergence time depends on the initial choice of Q(O) in the initialisation phase: the

value Q(O) =, corresponding to the constant Q used for the EKF, is chosen.

Figure14 Comparison between SOC estimation results with reference to the validation test
(Figure 11): reference Coulomb counting SOC.,.(k), SOCxr (k) estimated with EKF

and SOC exr (k) estimated with AEKF (see online version for colours)
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Figure15 Comparison between SOC estimation error ezxr(k) and e, zx-(k) with reference to the
validation test (Figure 11) (see online version for colours)
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Figure16 Zoom of the initial dynamics of SOCEKF and SéCAEKF with reference to the
Ry-identification test (see online version for colours)
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5 Aging parametersestimation

Over the battery lifespan the internal capacity slowly decreases leading to the capacity
fade phenomenon. The knowledge of the actual value of the battery capacity is an
important factor to optimise the battery usage as it allows to accurately estimate the
actual residual charge available. In particular, for electric vehicle applications, the
problem of capacity estimation is of great interest (Baronti et al., 2013; Kim and Cho,
2011; Remmlinger et al., 2011) as it is directly related to the driving range over vehicle
life.

In this section, we present a novel capacity estimation technique hereinafter called
Q-estimation algorithm. A dual layer estimation structure is provided for a combined
SOC and Q evaluation, according to the structure shown in Figure 17, where the SOC
estimation is obtained from AEKF. The Q-estimation algorithm provides AEKF filter
with an update value of the battery capacity, given the actual level of aging. Since the
capacity varies very slowly, this value can be estimated and updated with a slower
temporal resolution compared with the SOC estimator.

Figure17 Dual layer estimator structure
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A similar structure of the dual layer algorithm for SOC and Q,,, estimation is proposed in
Rubagotti et al. (2009) and Plett (2004b), with the capacity being estimated by EKF. In
these works, a dynamic model of battery capacity is needed to track the evolution of
degradation over time. The experimental tests for capacity model identification are
lengthy; in addition, the aging behaviour is related to the temperature, SOC and C-rate
conditions at which the aging tests are performed.

The Q-estimation algorithm proposed in this paper provides, on the other hand, an
estimation of battery capacity using the measurements collected by the BMS during
battery operation. The description of the Q-estimation algorithm is carried out using the
continuous time version of the state space model of the battery seen in (2), namely

SOC(t) = 10
batt
. 1 1
Ver (1) =- Ver () +——1(@) (33)
RerCer Cer
. 1 1
Vg (0= = ———— Vi (0 + ——1(2)
o RpirCpjr o Coir

with model output equation:
V() =Vocy (SOC(t)) = Ver () =V (1) = Ry (SOC(1)) - 1(2) (34)
where both V¢ and the internal resistance R, are function of SOC.

Let us now define the time derivative of the model output voltage V(¢):

okl SOCU)~Ter (1)~ Vo (1) R0
oSoC SOC(t) asocC SOC(t) (35)

SOC()I(t)~ Ry (SOC(1)) ()

V()=

Since V(¢) is function of the time derivative of all the state components, in (35) we can
substitute SOC(t), Ver (k) and Vi (t) given in (33). Thus, V(¢) is written as an explicit
function of:

e actual capacity value Qp.y

e battery current /(¢) and its time derivative 7(z)

e voltages across the RC-branches, V¢r(f) and Vpy(?)

Ry
SOC(t) asoClsoc(r) "
all of these quantities experimental maps have been identified that can be used once
the actual value of SOC is known.

e SOC, which appears in the term Ry(SOC) and also in 22

asocC

The instantaneous values of SOC(¥), V¢1(f) and Vp(f) are not physically measurable, but
they are estimated from AEKF discussed in Section 4.2. The estimated values are

referred to as S@C(t), Ver (¢) and I}Dif ).
In addition to the estimated state vector, the battery current /() and the measured
voltage V(f) are known at each time instant t, along with their time derivative /(¢) and
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V(t) which are computed starting from the measurements. Hence, the only unknown
parameter in (35) is the capacity value Q. In particular V(t) results to be a linear

function of the unknown parameters Q.. In order to define a LS estimation problem,
equation (35) can be rearranged and written as:

W(t)=A@)-p (36)
where
e  pis the unknown parameters:

1

e (37)
Qbatl
e (¢) is function of estimated and measured quantities, defined as:
. 1 . 1 .
W(t)=V()- Ver (8) ————Vpi (t)
RerCer Rpir Cpyr
(38)

Cer  Cpy

+(L + L] 1)+ Ry (SOC(1)) i (1)

e A(?) is function of estimated and measured quantities which multiply the unknown
parameters in (37):

102

a0 =5 ; 250C
SOC(1)

72
2S0C I(1) (39)

SOC(1)

Note that the definition of W(¢) in (38) (and later in the definition of W, in (57)) depends
on the derivative of the measured output V() which might be affected by measurements
noise. To attenuate the effect of noise on the measurements differentiators with improved
noise suppression can be used (Anderson and Moore, 1979; Benesty and Chen, 2011).
The problem of estimating the unknown parameter p is cast into a linear LS problem,
in the form shown in (36). The unknown parameter p is estimated when an excitation
signal is given as an input to the system. For this reason, a time window of length # is
defined, with n a design parameter. The Q-estimation algorithm consists in the estimation
of the unknown capacity over each time window during the battery lifespan. Over the
designed time window, W(f) and A(¢) are function of estimated or measured quantities as
shown in (38) and (39) and W(f) and A(¢) are evaluated at each time instant ¢, t, ..., t,:

W(n) A(n)
pran=| " i aw) = 1); (40)
W) A1)

where #; and ¢, are the first and the last time instant inside the designed window,
respectively.
The LS problem (36) can be written in the following matrix form:

[7(©)]=[40]-p (41)



26 C. Taborelli et al.

This matrix formulation helps in reducing the numerical errors related to the
measurements of V(¢) and I(¢), to the computations of their time derivatives and to the
state estimation performed with AEKF.

From (41), the estimated p is obtained to minimise the error function J:

p=argminJ(p) = ([W(©®)]-[40]p)" (W ©)]-[40)] p) (42)
Writing (42) as:

J=[wo] WO~ WOl 40]p-p[ADO] O]+ p[A0] [40]p  43)
the minimisation is done by calculating:

Z—; =2[40)] [W©)]+2[40)] [40)]p=0 (44)

From (44), p is:

p=([40] [40)) [40] o] (45)

The unknown parameter p is thus calculated as a matrix product, once the values all the
quantities in the matrices [ ()] and [A4(¢)] are collected over the designed time window.

5.1 Simulation results

The Q-estimation algorithm has been implemented in simulation and tested with
experimental data. In this section, simulation results are shown and the implementation
details are discussed.

With reference to the e-bike application, during a typical usage condition the battery
is discharged starting from a fully charged condition (SOC = 100%) down to lower level
of SOC.

The Q-estimation algorithm is executed over the time window [, ,] where:

e 1, is the time instant when SOC = 80%
e ¢,is the time when the SOC goes below 40% (SOC is estimated with AEKF).

Over the selected SOC range, the state estimation performed with AKEF shows the lower
estimation error. The matrices [#(#)] and [A(?)] used in the Q-estimation algorithm are
evaluated over a time window corresponding to the [40% 80%] SOC.

The Q-estimation algorithm has been applied to the Ry-identification test shown in

Figure 6 which returns the estimated value of Qba,, =10.3831 Ah, corresponding to a

percentage error of 0.165% from the nominal value Q,,,, = 10.4 Ah.

The Q-estimation algorithm is also tested on an aging scenario where the capacity
decreases over the battery lifespan. An aging campaign was conducted to age the battery
with repetitive charging and discharging cycles. The campaign consists in 500 charging
and discharging cycles. The battery is fully charged through the CC-CV protocol at the
beginning of each cycle. After the charge phase, a constant current discharge of 1C,
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starting from an open circuit voltage of 4.2 V to a lower value of 3.2 V is applied. The
discharge current and the measured voltage for cycle number 1 are shown in Figure 18.

Figure 18 Cycle 1 of the aging campaign, (a) constant current profile of the discharge test
(b) measured average cell voltage (see online version for colours)
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Figure19 Capacity estimation results: normalised values with respect to the BOL capacity
(see online version for colours)

100 T : T T
Estimated Capacity with Q—estimation algorithm|
=== Capacity evaluated as current integral
: I
G | . . ; L[| O ISR | O |
E Ml « ¥ 1
z : S ;
5 KA + L i 4 - ! 1
=1 LT | ". a T.IF‘;
] cpe i T W .
= : : iy o4 LA
= ; ; ! OO | 11 4
g : ‘ I T "y
= I | I b
Z : Py
[ I |
1
85 . ‘ . .
0 100 200 300 400 500

Number of cycles [—]

Note: Comparison between the benchmark capacity values evaluated as the current
integral and the capacity values estimated with Q-estimation algorithm



28 C. Taborelli et al.

It must be outlined that the discharge phase over which the capacity is evaluated, ranging
between 4.2 V and 3.2 V, does not constitute a standard capacity test as it does not cover
the entire SOC range 100%—0%. In fact, over this voltage range, the battery is discharged
by an amount of SOC equal to ASOC,,.. The average ASOC,,.;. value over 500 cycles is
81.84% SOC. Since the current integrals are evaluated on the SOC range ASOC,,;. and
the cycles are performed with constant current, the benchmark capacity is scaled at each
cycle:

100
current integra = 1 t dt —_—
Oz = J 104 Soc

The scaled capacity values have then been used as benchmark to compare the estimation
performed by the Q-estimation algorithm. In Figure 19, a comparison between the
estimated capacity with Q-estimation algorithm and the capacity evaluated as current
integral using the normalisation (46) is shown.

(46)

5.2 SOC and aging parameters estimation. general approach

The algorithm introduced in the previous section can be generalised to include both the
aging parameters and SOC in the estimation. The advantage of this general approach is
the estimation of SOC obtained at the same time with an update of the model parameters.
In this way, a separated algorithm for SOC estimation does not need to be implemented
as well as a battery aging model is not necessary.

For simplicity, in order to present the general SOC/SOH estimation framework, we
consider the simple case of 1st order ECM, defined in continuous-time as:

10)

batt (47)

, 1 1
Vl(t)——mVl(t)Jral(l)

SOC(1) = —

where the first equation represents the SOC dynamics and the second is the dynamics of
the voltage across the parallel of resistance R; and capacitance C; (we assume one R,C
branch in this case, but extension to the general case of two or more branches is easily
performed). The model input is the battery current I(¢), positive during discharging and
negative during charging, while Oy, is the battery capacity. The battery output voltage is
thus defined in continuous-time domain by the equation:

V() =Vocr (SOC) = V(1) = Ryau 1 (1) (48)

where Vocy is the open circuit voltage generator in the 1st order ECM, in series with the
battery resistance R, and the parallel of R, and C;.

The generalised estimation algorithm is based on LS method and combines the
estimation of SOC and the aging parameters, capacity Oy, and resistance Ry, related to
capacity fade and power fade phenomena. In particular, the internal resistance R, is
modelled as Ry,; = Ry + AR, where Ry is the nominal resistance identified on a battery at
BOL and AR is the positive resistance increase overtime.

In addition, Vycy is assumed to be a linear function of SOC defined as:
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Vocr =a+/§'~SOC (49)

where o and S are constant parameters.
In order to establish a LS estimation problem, the time derivative of equation (48) is
computed and given by:

V(t) = B-SOC(t)—(Ro + AR) I(t)~ Vi (£) (50)

Vocy
where the terms %

= B9€ and the resistance increment AR is treated as a constant
over the estimation time window. As done in the previous section, the estimation is
performed on a time window of duration n. AR and Q. are slow time-varying
parameters since aging phenomena evolve on a different time scale with respect to

electrical and SOC dynamics.
Substituting the dynamic equation of SOC(¢) and V() defined in (47) into (50):

@) _p, -l(r)—AR-i(t)+%V.(r)—Cil(r) 51)

batt 11 1

Viy=-p

where V(¢) is written as explicit function of current /(£) and its derivative and voltage

V(o).
Voltage V(#) is computed from (48) as:

Vi(t) =+ B-SOC(t)— Ry - I(t) — AR - I(£) ~ V' (t) (52)

where Vocp and the resistance Ry, definitions are substituted. Integrating the SOC model
equation we can write:
1
Qbatt

where SOC(0) is the initial SOC value corresponding to the initial condition when the

S0C(t) = SOC(0) -

j I(x)de (53)
T

estimation is performed, and the form J. dr means that the integral of the battery current
T

is computed over the estimation time window.
Substituting (53) into (52) we obtain:

Vi(t) = a+ B-SOC(0) +

B Q:a,, Ll(r)dz —Ry-1(t)=AR-1() =V ()

(54)

Substituting (54) into (51), the final expression for V(f) is obtained as an explicit
function of the following quantities:

e the unknown quantities to be identified: Oy, AR and SOC(0)
e the known model parameters , S, Ry, R, C;

e  Dbattery current I(t) and its time derivative i@

e battery measured voltage ¥(7) and its time derivative V' (¢).
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Similarly to the procedure shown in the previous section, (51) can be rearranged in a way
to separate unknown quantities to known quantities so to write (51) in the form:

We (1) = A4 (1)- pg (55)

where the subscript g refers to the generalised method presented in this section. The
quantities in (55) are described in the following:

®  p,is the vector of the three unknown quantities to be estimated:

SOC(0)
1
Do = (56)
¢ Qbau
AR
where all the components are taken as constant over the estimation time window.
o W(?) is a scalar known function of measured quantities, defined as:
W, () =V () + ()+R01(t)+1(t)[ —ij—i (57)
G G) RG
e A4,(?) is a vector of measured quantities which multiplies the vector pg of unknown
parameters:
4,0 =| L J' 1(2)de - BIG) —i@) (58)
RC Rl G

Starting from (55) and collecting measurements over an estimation time window of
length n > 3, it is possible to build the matrices:

W, (1) 4 (1)
)= " L 0) = =) (59)
W, (t,,) 4, (1)
where 1, t,, ..., t, are the time instants of the estimation window.

The linear LSs problem here defined is solved following the same procedure used for
the Q-estimation algorithm, and the vector of unknown parameters is thus evaluated as:

pe = (4.0 [40) [40] 7 0] (60)

The estimated SOC (0) corresponds to the initial condition with reference to the first
instant of the estimation window. Using this information together with the current

integral J‘ I(7)dr computed with the current measurements, it is possible to evaluate the
T

SOC at each time instant. The other components of vector p, are the estimated battery

capacity Qb,,,, and the estimated resistance increment AR.
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6 Conclusionsand futurework

In this work, BMS algorithms for battery SOC and SOH estimation have been proposed.
A state space model of a Li-ion battery pack used for e-bikes application was identified
and validated experimentally.

The SOC estimation problem was addressed using: EKF and its adaptive version,
AEKF. These algorithms have been implemented in simulation and tested on
experimental data, and the estimation results were compared. The choice of an adaptive
law for the process noise covariance matrix shows improvements in estimation
performance. In terms of estimation error, the EKF results are into 5% estimation error
range, while with AEKF this range is reduced down to 1%.

A capacity estimation algorithm based on LS approach was proposed to obtain a
capacity monitoring capability over the battery lifespan. This method uses the model state
estimation performed with AEKF. A general framework for combined SOC and SOH
estimation is also presented, where the aging parameters are estimated together with
SOC. As future work, the algorithms designed in this paper will be implemented on a
BMS and tested on-board of vehicle with the real-time measurements.

References

Anderson, B.D.O. and Moore, J.B. (1979) Optimal Filtering, Prentice-Hall, Englewood Cliffs,
New Jersey.

Barbarisi, O., Vasca, F. and Glielmo, L. (2006) ‘State of charge Kalman filter estimator for
automotive batteries’, Control Engineering Practice, Vol. 14, No. 3, pp.267-275, Advances in
Automotive Control.

Baronti, F., Zamboni, W., Femia, N., Rahimi-Eichi, H., Roncella, R., Rosi, S., Saletti, R. and
Chow, M-Y. (2013) ‘Parameter identification of Li Po batteries in electric vehicles: a
comparative study’, in 2013 IEEE International Symposium on Industrial Electronics (ISIE),
May, pp.1-7.

Benesty, J. and Chen, J. (2011) Optimal Time-Domain Noise Reduction Filters: A Theoretical
Study, 1st ed., No. VII, p.1, Springer Briefs in Electrical and Computer Engineering, Springer.

Ceraolo, M. (2000) ‘New dynamical models of lead-acid batteries’, IEEE Transactions on Power
Systems, November, Vol. 15, No. 4, pp.1184-1190.

Chang, W. (2013) ‘The state of charge estimating methods for battery: a review’, ISRN Applied
Mathematics, Article ID 953792.

Charkhgard, M. and Farrokhi, M. (2010) ‘State-of-charge estimation for lithium-ion batteries using
neural networks and EKF’, IEEE Transactions on Industrial Electronics, December, Vol. 57,
No. 12, pp.4178-4187.

Chiasson, J. and Vairamohan, B. (2005) ‘Estimating the state of charge of a battery’, I[EEE
Transactions on Control Systems Technology, Vol. 13, No. 3, pp.465-470.

Chicago Electric Bicycles LLC [online] http://www.chicagoelectricbicycles.com (accessed
09/10/2014).

Coleman, M., Lee, C.K., Zhu, C. and Hurley, W.G. (2007) ‘State-of-charge determination from
EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and
lithium-ion batteries’, /[EEE Transactions on Industrial Electronics, October, Vol. 54, No. 5,
pp-2550-2557.

Di Domenico, D., Fiengo, G. and Stefanopoulou, A. (2008) ‘Lithium-ion battery state of charge
estimation with a Kalman filter based on a electrochemical model’, in CCA 2008, IEEE
International Conference on Control Applications, 2008, September, pp.702—707.



32 C. Taborelli et al.

Ding, W., Wang, D.J. and Rizos, C. (2006) ‘Stochastic modelling strategies in GPS/INS data fusion
process’, in Symposium on GPS/GNSS.

Fathabadi, V., Shahbazian, M., Salahshour, K. and Jargani, L. (2009) ‘Comparison of adaptive
Kalman filter methods in state estimation of a nonlinear system using asynchronous
measurements’, in Proceedings of the World Congress on Engineering and Computer Science,
Vol. 2.

Gao, L., Liu, S. and Dougal, R.A. (2002) ‘Dynamic lithium-ion battery model for system
simulation’, IEEE Transactions on Components and Packaging Technologies, September,
Vol. 25, No. 3, pp.495-505.

Gomadam, P.M., Weidner, J.W., Dougal, R.A. and White, R.E. (2002) ‘Mathematical modeling of
lithium-ion and nickel battery systems’, Journal of Power Sources, Vol. 110, No. 2,
pp-267-284.

Gu, W.B. and Wang, C.Y. (2000) ‘Thermal-electrochemical modeling of battery systems’, Journal
of the Electrochemical Society, Vol. 147, No. 8, pp.2910-2922.

Han, J., Kim, D. and Sunwoo, M. (2009) ‘State-of-charge estimation of lead-acid batteries using an
adaptive extended Kalman filter’, Journal of Power Sources, Vol. 188, No. 2, pp.606—-612.

He, H., Xiong, R., Zhang, X., Sun, F. and Fan, J. (2011) ‘State-of-charge estimation of the
lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin
model’, [EEE Transactions on Vehicular Technology, May, Vol. 60, No. 4, pp.1461-1469.

Hide, C., Moore, T. and Smith, M. (2003) ‘Adaptive Kalman filtering for low cost INS/GPS’, The
Journal of Navigation, Vol. 56, No. 1, pp.143-152.

Hide, C., Moore, T. and Smith, M. (2004) ‘Adaptive Kalman filtering algorithms for integrating
GPS and low cost INS’, in Position Location and Navigation Symposium, 2004, PLANS 2004,
April, pp.227-233.

Jetto, L., Longhi, S. and Venturini, G. (1999) ‘Development and experimental validation of an
adaptive extended Kalman filter for the localization of mobile robots’, I[EEE Transactions on
Robotics and Automation, April, Vol. 15, No. 2, pp.219-229.

Kim, J. and Cho, B.H. (2011) ‘State-of-charge estimation and state-of-health prediction of a Li-ion
degraded battery based on an EKF combined with a per-unit system’, [EEE Transactions on
Vehicular Technology, November, Vol. 60, No. 9, pp.4249-4260.

Lam, L., Bauer, P. and Kelder, E. (2011) ‘A practical circuit-based model for Li-ion battery cells in
electric vehicle applications’, in Telecommunications Energy Conference (INTELEC), 2011
IEEFE 33rd International, October, pp.1-9.

Lee, S., Kim, J., Lee, J. and Cho, B.H. (2008) ‘State-of-charge and capacity estimation of
lithium-ion battery using a new open-circuit voltage versus state-of-charge’, Journal of Power
Sources, Vol. 185, No. 2, pp.1367-1373.

Lin, X., Perez, H.E., Mohan, S., Siegel, J.B., Stefanopoulou, A.G., Ding, Y. and Castanier, M.P.
(2014) ‘A lumped-parameter electro-thermal model for cylindrical batteries’, Journal of
Power Sources, 1 July, Vol. 257, pp.1-11, ISSN 0378-7753.

Mohamed, A.H. and Schwarz, K.P. (1999) ‘Adaptive Kalman filtering for INS/GPS’, Journal of
Geodesy, Vol. 73, No. 4, pp.193-203.

Moss, P.L., Au, G., Plichta, E.J. and Zheng, J.P. (2008) ‘An electrical circuit for modeling the
dynamic response of Li-ion polymer batteries’, Journal of the Electrochemical Society,
Vol. 155, No. 12, pp.A986-A994.

Pang, S., Farrell, J., Du, J. and Barth, M. (2001) ‘Battery state-of-charge estimation’, in American
Control Conference, 2001, Proceedings of the 2001, IEEE, Vol. 2, pp.1644—1649.

Piller, S., Perrin, M. and Jossen, A. (2001) ‘Methods for state-of-charge determination and their
applications’, Journal of Power Sources, Proceedings of the 22nd International Power
Sources Symposium, Vol. 96, No. 1, pp.113-120.

Plett, G.L. (2004a) ‘Extended Kalman filtering for battery management systems of LiPB-based

HEV battery packs: part 1. Background’, Journal of Power Sources, Vol. 134, No. 2,
pp.252-261.



Advanced battery management system design for SOC/SOH estimation 33

Plett, G.L. (2004b) ‘Extended Kalman filtering for battery management systems of LiPB-based
HEV battery packs: part 2. Modeling and identification’, Journal of Power Sources, Vol. 134,
No. 2, pp.262-276.

Plett, G.L. (2004c) ‘Extended Kalman filtering for battery management systems of LiPB-based
HEV battery packs: part 3. State and parameter estimation’, Journal of Power Sources,
Vol. 134, No. 2, pp.277-292.

Remmlinger, J., Buchholz, M., Meiler, M., Bernreuter, P. and Dietmayer, K. (2011)
‘State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal
resistance estimation’, Journal of Power Sources, Vol. 196, No. 12, pp.5357-5363.

Rubagotti, M., Onori, S. and Rizzoni, G. (2009) ‘Automotive battery prognostics using dual
extended Kalman filter’, in ASME 2009 Dynamic Systems and Control Conference,
pp.257-263.

Taborelli, C. and Onori, S. (2014) ‘State of charge estimation using extended Kalman filters for
battery management system’, in 20/4 IEEE International Electric Vehicle Conference,
December.

Tremblay, O., Dessaint, L-A. and Dekkiche, A-1. (2007) ‘A generic battery model for the dynamic
simulation of hybrid electric vehicles’, Vehicle Power and Propulsion Conference, VPPC
2007, 9—12 September, IEEE, pp.284, 289.

Vasebi, A., Partovibakhsh, M. and Taghi Bathaee, S.M. (2007) ‘A novel combined battery model
for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid
electric vehicle applications’, Journal of Power Sources, Vol. 174, No. 1, pp.30—40.

Welch, G. and Bishop, G. (1995) An Introduction to the Kalman Filter, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA.

Zhang, S.S., Xu, K. and Jow, T.R. (2004) ‘Electrochemical impedance study on the low
temperature of Li-ion batteries’, Electrochimica Acta, Vol. 49, No. 7, pp.1057-1061.

Notes

1 AllCell Technologies designs and manufactures lithium-ion battery packs for transportation
and renewable energy applications. The company patented a thermal management technology
based on phase change materials, which guarantees heat extraction and an uniform
temperature distribution inside the pack. AllCell designs and produces the hardware and
software component of BMS. AllCell Technologies LLC is located at 2321 W. 41st St.
Chicago, IL 60609 USA.

2 A rate of C/5 correspond to a constant current value able to discharge the battery in 5 hours;
2C is the current corresponding to the double of the capacity, at which the battery is
discharged at 1/2 hours.

3 The constant current-constant voltage (CC-CV) protocol was used to charge the battery: the
battery is charged at a constant current (1C) until the voltage reaches the upper voltage limit,
followed by a phase where voltage is hold at constant value until the current drops to zero.

4 This parameter is estimated in order to verify the accuracy of the battery pack capacity value,
calculated in Subsection 2.1 using the value indicated by constructor for a cell at BOL.

N
5 RMS value of a generic vector x(n) is defined as , %z . ‘x(n)‘2 where N is the number of

elements in vector x(n).



