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Abstract: In this work, state of charge (SOC) and state of health (SOH) 
estimation algorithms for battery management system are proposed and 
compared. These algorithms are developed on a battery pack designed 
specifically for light electric vehicle (electric scooter or bicycles) applications. 
The advanced battery management system is designed in order to evaluate the 
instantaneous charge available in the battery and at the same time to monitor 
the slowly varying battery aging parameters. Two SOC estimation algorithms 
are proposed: an extended Kalman filter (EKF) and an adaptive extended 
Kalman filter (AEKF). With the adaptive version of Kalman filter a proper 
value of the model noise covariance is adaptively set using the information 
coming from the online innovation analysis. In the second part of this paper, a 
new estimation algorithm based on least squares is proposed to estimate the 
battery SOH. A general framework for a combined evaluation of SOC/SOH is 
discussed. 

Keywords: estimation; battery; Kalman filter; e-bike; battery management 
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1 Introduction 

Light electric vehicles, such as electric bikes (e-bike) or scooters, offer many benefits 
over their traditional counterparts as they can go further than conventional bicycles with 
little effort. They can be quickly recharged anywhere a power supply is available, or low 
(in state of charge – SOC) batteries can be swapped in no time instantly with fully 
charged batteries. 

Lithium-ion batteries have become the battery of choice not only for hybrid and 
electric cars, but also for electric bicycle and scooter applications. The key drivers are 
their high specific energy, energy density, cycle/calendar life as well as their reduced 
need for maintenance as compared to flooded lead acid batteries. 

As technology advances, batteries are now also required to communicate with other 
components within the vehicle such as the motor controller to maximise range and 
acceleration. An accurate estimation of the energy available inside the battery is essential 
to optimise powertrain operation and prevent stranding the rider. Lastly, knowing the 
remaining energy also helps prevent overcharge and over discharge of batteries, vital to 
safe use and long life of lithium-ion batteries. 

The battery SOC is generally used as a metric to quantify the amount of energy left in 
a battery compared with the energy it had when it was full and it gives the user an 
indication of how much longer a battery will continue to perform before it needs 
recharging. Battery state of health (SOH), on the other hand, represents the level of 
degradation of the battery due to the aging phenomena. In this paper, the problem of SOC 
and SOH monitoring by the battery management system (BMS) is addressed. In the first 
part of this work, the SOC estimation problem is discussed in detail. In the second part, 
an estimation algorithm for capacity monitoring is proposed and estimation results are 
shown. A general approach to monitor the battery SOH combined with the SOC 
estimation is also discussed. 

The easiest way to estimate the actual SOC is by evaluating the ratio between the 
amount between the energy stored in the battery and the battery capacity. The main 
drawback of this approach, though, is that the numerical integration done in-vehicle is 
very sensitive to the SOC initial condition, not always accurately known. Moreover, the 
result of the integration can easily drift or diverge due to the presence of additional noise 
(Chicago Electric Bicycles LLC, http://www.chicagoelectricbicycles.com). 

For, different methods falling in the category of indirect methods have been 
developed in the literature to estimate SOC (Pang et al., 2001; Chang, 2013; Coleman  
et al., 2007; Chiasson and Vairamohan, 2005; Barbarisi et al., 2006; Piller et al., 2001; 
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Rubagotti et al., 2009; Plett, 2004; Lee et al., 2008; Vasebi et al., 2007; He et al., 2011; 
Han et al., 2009). For instance, SOC can be computed starting from open circuit voltage, 
VOCV, measurement (Chiasson and Vairamohan, 2005). Both for lead-acid and most  
Li-ion batteries, the SOC estimation with this method is straight-forward due to the linear 
relationship of the VOCV with respect to the SOC. By contrast, when the relationship VOCV 
(SOC) shows a flat region for a large range of SOC values, it is harder to translate the 
VOCV measurement to SOC values (Chang, 2013; Coleman et al., 2007). 

Indirect methods can also be developed using reduced state-space electrochemical 
models. Online SOC estimation is performed together with the identification of the model 
parameters using model-based methods for state estimation (Barbarisi et al., 2006;  
Di Domenico et al., 208). Other methods have been used in literature, such as artificial 
neural networks and impedance spectroscopy. These methods usually require a large 
computational effort and very accurate measurements (Piller et al., 2001) which make 
them suitable for laboratory application only (Chang, 2013). 

For on-board vehicle applications, as in the case of e-bike, SOC estimation is 
performed from real-time measurements (voltage and current) using model-based 
methods. In this paper, two model-based estimation algorithms are developed and 
compared: extended Kalman filter (EKF) and an adaptive extended Kalman filter 
(AEKF), using an experimentally validated equivalent circuit-based model (ECM) of the 
battery (Taborelli and Onori, 2014). 

The EKF has been successfully used to estimate the state vector of a nonlinear  
state-space system model subject to noise. When using EKF, the state estimation is 
performed based on a comparison between the output obtained from the model and the 
measured quantities from the plant sensors. The state-space model is defined in such a 
way the state and the output equations are affected by Gaussian white noises. These 
noises are defined in terms of mean and covariance and a complete knowledge of these 
statistical properties is assumed (Fathabadi et al., 2009). The choice of constant values for 
these parameters has direct effect on the estimation performance and is not always 
straightforward. It is often the case to treat the noise covariance on the state and the 
output equation as design parameters. For example, a large covariance on the output 
means noisy measurements and a ‘slow’ response of the filter. By contrast, a larger 
covariance on the state is related to uncertainties on the model and reliable 
measurements, leading to a ‘fast’ filter convergence. 

In battery applications, examples of SOC estimation using EKF are in Rubagotti et al. 
(2009), Plett (2004), Lee et al. (2008) and Vasebi et al. (2007). 

The main drawback of EKF resides in the fact that the correct value of the process 
covariance matrix is needed. To address this issue, in this paper we pursue the design of 
the AEKF. In AEKF, the covariance of the process noise is not assumed to be constant, 
but adaptively updated as new measurements are available. 

AEKF has been applied in different research fields, such as robotic applications, track 
reactor monitoring and internal navigation system/global positioning systems (INS/GPS). 
An adaptive update of the covariance matrix improves the estimation results as opposed 
to a fixed choice. For example, in Jetto et al. (1999), an AEKF is implemented to estimate 
the position of a mobile robot, considering a covariance matrix with a fixed structure, 
apart from a scaling factor which is adaptively changed, and in Fathabadi et al. (2009), 
the adaptive filter is used to deal with asynchronous measurement in a tank reactor. The 
AEKFs have been successfully used to solve the INS/GPS position tracking problem as 
well (Hide et al., 2003, 2004; Ding et al., 2006; Mohamed and Schwarz, 1999). 
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The AEKF algorithm has been used for battery SOC estimation of a generic Li-ion 
battery in Charkhgard and Farrokhi (2010) where the process covariance matrix is 
updated online with a dedicated estimator. In He et al. (2011), an electric vehicle battery 
is studied and the adaptive algorithm is activated only when the SOC estimation is 
diverging in order to keep it stable. In Han et al. (2009), a solution similar to the one 
proposed in this paper is developed for a lead-acid battery. 

In this work, the problem of designing advanced BMSs is addressed for a Li-ion 
battery system developed by AllCell Technologies.1 The main purpose is to design a 
reliable algorithm for an accurate detection of SOC and to propose a method to monitor 
the battery aging. These algorithms are developed for the new categories of light vehicle 
such as e-bikes. In Section 2, the battery pack structure is discussed and the mathematical 
model is introduced. In Section 3, the model parameters are identified: for the battery 
pack resistance identification two methods are discussed and the dependence on SOC is 
discussed. The SOC estimation algorithms, i.e., EKF and AEKF are presented in  
Section 4 along with simulation results obtained from experimental data. In Section 5, the 
problem of SOH estimation is addressed: an algorithm for battery capacity estimation is 
designed and a generalised framework for combined SOC/SOH estimation is proposed. 
Capacity estimation preliminary results obtained from experimental data collected from 
an aging campaign are shown. Conclusions and future work are outlined in Section 6. 

2 Battery modelling 

In this section, a description of the battery pack is provided and a mathematical model of 
the battery is defined. 

2.1 Battery pack topology 

The battery pack used in the e-bike application studied in this paper is made of 40 LG 
ICR18650MG1 cells. The cells have a nominal voltage of 3.7 V and a rated capacity of 
2.6 Ah. In order to achieve the voltage and capacity requirements, the battery pack has 
the 10s4p topology: ten modules connected in series, each of them composed by four 
cells in parallel as shown in Figure 1. 

Figure 1 Battery pack topology 10s4p 
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The ten modules in series will provide a total battery pack voltage of Vnom = 37 V, 
whereas the pack rated capacity is Qnom = 10.4 Ah, being the pack current I the same in 
each module. In this work, we model the battery pack as an average cell equivalent to a 
single module, as shown in Figure 2: all battery pack quantities are referred to as average 
cell quantities. 

Figure 2 Battery pack modelled as an average cell: equivalence between the average cell and a 
single module 

 

The average cell current is equivalent to the battery pack current I measured by the BMS 
and a measurement of the voltage across each module, Vi, is available. The average cell 
voltage, V, is computed by the BMS as the average of the ten voltage measurements 
across the ten modules: 

10

1

1
10 i

i

V V
=

= ∑  (1) 

It is possible to calculate the average voltage as in (1) since voltage unbalances were not 
registered between the modules and voltages Vi are all similar. The rated capacity of the 
average cell is equivalent to the rated capacity of the battery pack, i.e., Qnom = 10.4 Ah. 

2.2 Battery model 

In order to develop a model-based SOC estimator, a mathematical model for the average 
cell is defined. In literature, two categories of models have been proposed for lithium-ion 
batteries: electrochemical models (Di Domenico et al., 2008; Gomadam et al., 2002; Gu 
and Wang, 2000) and ECMs (Rubagotti et al., 2009; Tremblay et al., 2007). The ECMs 
are the ones mostly used for BMS application and system integration today (Gao et al., 
2002), due to the low computational requirement (Ceraolo, 2000). One limitation of this 
kind of models, though, is the difficulty to trace the battery aging phenomena back to the 
ECM parameters. This is one of the reasons why electrochemical model are being 
pursuing. Electrochemical models give a physics-based description of the battery 
processes which take place inside the battery and ultimately, they allow the battery aging 
phenomena to be described in detail. At the same time, though, they are computational 
demanding for BMS use, at least with the present technology. The link between ECM and 
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electrochemical models is found in Ceraolo (2000), where electrochemical impedance 
spectroscopy technique is used to define the model electric impedances (Zhang et al., 
2004; Moss et al., 2008). The identification of electric parameters of ECM is not always 
straightforward, as dependence on SOC, temperature and current amplitude is often 
included. 

In this study, a second order ECM is considered to model the average cell, as shown 
in Figure 3. 

Figure 3 Equivalent circuit representation of the average cell model 

 

The state space formulation in discrete time domain is: 

( )
( )

( 1) ( ) ( )

( 1) ( ) 1 ( )

( 1) ( ) 1 ( )Dif Dif

nom

t t
τCT τCTCT Ct CT

t δt
τ τ

Dif Dif Dif

tSOC k SOC k I k
Q

V k e V k R e I k

V k e V k R e I k

Δ Δ
− −

Δ
− −

Δ⎧ + = −⎪
⎪
⎪
⎨ + = + −⎪
⎪
⎪ + = + −⎩

 (2) 

where k is the discrete time instant. 
The first equation represents the SOC dynamics, in which Δt is the discrete time step. 

The input current I(k) is considered positive during discharging and negative during 
charging. The two RC branches (RCT, CCT and RDif, CDif) are used to model the dynamic 
response of the battery average cell and τCT = RCTCCT and τDif = RDifCDif are the respective 
time constants. The parallel branches represent the charge transfer (CT) and diffusion 
(Dif) phenomena inside the battery. In Moss et al. (2008), a detailed representation of 
these phenomena is addressed: diffusion and CT properties are described with more 
impedance elements and with specific dependence on the input current. 

The output equation relates the average output voltage V(k) to the voltage drop across 
the equivalent circuit elements, as follows: 

( ) 0( ) ( ) ( ) ( ) ( )OCV CT DifV k V SOC k V k V k R I k= − − −  (3) 

where VOCV (SOC) is the average cell open circuit voltage function of SOC and R0 is the 
battery cell internal resistance. 

Defining the state vector as x(k) = [SOC(k) VCT(k) VDif(k)]T, the model input  
u(k) = I(k) and output y(k) = V(k), the discrete-time nonlinear state space model of the 
battery can be written as: 
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( )
( 1) ( ) ( )
( ) ( ), ( )

x k Ax k Bu k
y k g x k u k

+ = +⎧⎪
⎨ =⎪⎩

 (4) 

The nonlinearity of the model is in the output equation (3), in that the open circuit voltage 
is not linear with respect to the state x(k). The state equation, on the other hand, is linear 
with system matrices defined as: 

( )
( )

1 0 0

0 0 ; 1

0 0 1

CT CT

Dif Dif

nom

t t
τ τ

t t
τ τ

Dif

t
Q

A e B RCT e

e R e

Δ Δ
− −

Δ Δ− −

Δ⎡ ⎤−⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5) 

The battery cell model (4) is defined as a function of: the dynamic parameters RCT, CCT; 
RDif, CDif, the open circuit voltage VOCV and the resistance R0. The identification of these 
parameters is discussed in the following section. 

3 Parameter identification 

All the experimental tests, both at cell and pack level, were performed at AllCell 
Technologies and were conducted at ambient temperature. 

The tests are described using the C-rate, which is the rate of charge or discharge 
current in normalised form: 

( )- [1/ ]
nom

I kC rate h
Q

=  

The general expression C/xx indicates that the number of hours to completely discharge 
the battery at a constant current is xx.2 

3.1 Open circuit voltage 

The relationship between VOCV and SOC has been identified by subjecting the battery to a 
constant current discharge of C/20 from a fully charged battery.3 Due to the very small 
current used to discharge the battery the voltage drop on the internal impedance can be 
considered negligible so that the measured voltage can be approximated to VOCV. 

Figure 4 Open circuit voltage: identified VOCV function of SOC (see online version for colours) 
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The VOCV(SOC) characteristic is shown in Figure 4, where the SOC is evaluated through 
Coulomb counting. 

3.2 Dynamic parameters 

In order to identify the dynamic parameters RCT, CCT, RDif and CDif, an identification test 
has been performed on the battery cell at the beginning of life (BOL). The parameter 
identification test consists in a series of symmetrical discharge-charge current pulses 
performed at different SOC (Lam et al., 2011; Lin et al., 2014). The test current profile is 
shown in Figure 5(a) and the corresponding battery voltage response is shown in  
Figure 5(b). A zoomed current pulse is shown in Figure 5(c) performed at SOC = 50% 
and the corresponding voltage zoom is in Figure 5(d). 

The current pulses have a duration of 10 s each, with an amplitude of ± 1C. Between 
two consecutive pulses, a C/40 constant current is used to discharge the battery until to 
the following SOC level. The identification procedure applied to identify the dynamic 
parameters has shown that the dependence of these on SOC is negligible, although the 
wide SOC range swept. 

The least squares (LSs) method was used for the identification, where the value of the 
parameters are identified minimising the sum S of the squared difference between the 
experimental measured voltage exp ( )PV k  in Figure 5(b), and the voltage predicted by the 
model (4): 

( )
0

2
expmin( ) min ( ) ( ), ( )

fT
P

j T

S V j g x j u j
=

⎛ ⎞
⎜ ⎟⎡ ⎤= −⎣ ⎦⎜ ⎟
⎝ ⎠
∑  (6) 

where T0 and Tf are the initial and final time instants of the experimental test. In (6), the 
model input u(j) corresponds to the measured current in Figure 5(a), while the state x(j) is 
evaluated integrating the model (2) starting from the test initial condition: SOC(0) = 50%, 
VCT(0) = VDif(0) = 0 V. 

The identified parameters values are reported in Table 1. 
Table 1 Dynamic parameters values 

RCT 1.6 mW 
tCT = RCTCCT 3.68 s 
RDif 7.7 mW 
tDif = RDifCDif 84.34 s 

3.3 Resistance 

To obtain the model resistance, two methods were investigated: 

1 real-time estimation through an EKF 

2 identification with LS method. 

Both methods are described and compared in the following. A dedicated identification 
test, referred to as R0-identification test, was designed and performed at pack-level at 
BOL for the sole purpose of identifying the resistance. 
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Figure 5 Dynamic parameters identification test, (a) battery current exp ( )PI k  (b) measured voltage 

exp ( )PV k  (c) Zoom of battery current exp ( )PI k  around a pulse performed at SOC = 50% 
(d) Zoom of the measured voltage at SOC = 50% (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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3.3.1 Extended Kalman filter 

In this subsection, EKF is used to estimate the model resistance R0. Although, the EKF is 
a well-known algorithm largely used (Welch and Bishop, 1995; Plett, 2004a, 2004b) to 
estimate the state of a dynamic system characterised by noisy measurements, it can also 
be used to perform real-time system parameter identification (Plett, 2004b). 

The discharge test current profile exp ( )RI k  is shown in Figure 6(a) and the average cell 
voltage response exp ( )RV k  is in Figure 6(b). During the test, the battery is completely 
discharged, starting from a fully charged condition. 

Figure 6 R0-identification test, (a) average cell current exp ( )RI k  (b) measured average cell voltage, 

called exp ( )RV k  (see online version for colours) 

 
(a) 

 
(b) 

With reference to the e-bike application, only discharge scenario is evaluated, since 
regeneration is not possible for this application. 

In addition to the resistance identification, the EKF is used to identify the battery 
capacity Qnom at BOL.4 

Following the same structure proposed in Plett (2004b), the parameters to identify are 
included in the parameter vector θ: 

[ ]0
T

nomθ R Q=  (7) 

Hence, the state space battery model (4) can be written as: 

( )
( 1, ) ( ) ( ) ( )

( , ) ( ), ( ),
x k θ Ax k B θ u k

y k θ g z k u k θ
+ = +⎧

⎨ =⎩
 (8) 
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where the dependence of the model equations on the parameters vector θ is now made 
explicit. 

The EKF is a model-based method for state estimation. To identify the vector of 
parameters, θ has to be made as state of a proper state space model. For this reason, θ is 
modelled as: 

( 1) ( ) ( )θθ k θ k v k+ = +  (9) 

where ~ (0, )θ θv QN  is a Guassian white noise, with zero mean and covariance Qθ. 
Model (9) is justified by the fact that the aging parameters R0 and Qnom vary slowly 
compared to the system dynamics (4) thus to be assumed constant over the duration of 
R0-identification test. The noise vθ models the uncertainties associated with the model (9). 
Given that the constant dynamic behaviour of θ is accurate, the covariance of vθ is set to 
be small. 

The output equation is a function of the system parameters θ: 

( )( , ) ( ), ( ), ( ) ( )θ θy k θ g x k u k θ k w k= +  (10) 

where ~ (0, )θ θw RN  is a Gaussian white noise with zero mean and covariance Rθ, 
which represents the model output noise. 

The EKF is based on the implementation of prediction step and correction step 
(Rubagotti et al., 2009); a summary of EKF algorithm equations is shown in Table 2. 
Table 2 EKF algorithm for parameters identification: prediction step and correction step 

Prediction step: 
ˆ ˆ( ) ( 1)θ k θ k− = −  (11a) 

( ) ( 1)θ θ θP k P k Q− = − +  (11b)

Correction step: 

( ) 1( ) ( ) ( ) ( ) ( ) ( )T T
θ θ θ θ θ θ θL k P k C k C k P k C k R −− −= +  (12a) 

( )exp
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ), ( ), ( )R

θθ k θ k L k V k g x k u k θ k− −⎡ ⎤= + −⎣ ⎦  (12b)

( )( ) ( ) ( ) ( )θ θ θ θP k I L k C k P k−= −  (12c) 

The estimated parameters vector is θ̂  and Pθ is the covariance matrix of the estimation 
error defined as: ˆ( ) .θe k θ θ= −  In the prediction step, the estimated state θ̂  and matrix Pθ 
are projected to the next time step using the model equation in (9), and the noise 
covariance Qθ. The superscript minus indicates that these quantities in (11a) and (11b) 
have not yet been corrected using the measurements (Rubagotti et al., 2009). In the 
correction step, the parameter vector estimation θ̂  and the covariance Pθ are corrected by 
using the information from the measurements exp

RV  and the adapted Kalman gain Lθ. In 

this way, θ̂  is the parameters vector estimated in order to reduce the difference between 
the experimental voltage exp ( )RV k  and the model response ˆ( ( ), ( ), ( )).g x k u k θ k−  It has to 
be noted that the model state x(k) is needed to evaluate this last term: it is computed 
integrating the system equations (2) using the dynamic parameters identified in 
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Subsection 3.2, starting from the initial conditions of the R0-identification test, namely 
SOC(0) = 100%, VCT(0) = VDif(0) = 0 V. 

The matrix Cθ, used in (12a) and (12c), is the linearisation of the nonlinear output 
equation (10), with respect to the vector of parameters θ: 

( )
ˆ ( )

( ), ( ), ( )
( )θ

θ θ k

dg x k u k θ k
C k

dθ −=
=  (13) 

As also shown in Plett (2004b), since g(x(k), u(k), θ(k)) is a nonlinear function of both the 
parameters vector θ(k) and the model state x(k), (13) can be written as: 

( , , ) ( , , ) ( , , )
k k k k

dg x u θ g x u θ g x u θ dx
dθ θ x dθ

∂ ∂ ⎛ ⎞
= + ⎜ ⎟∂ ∂ ⎝ ⎠

 (14) 

1 1

( ) ( 1)
k k k

dx dB θ dxu k A
dθ θ dθ− −

⎛ ⎞
= − + ⎜ ⎟∂ ⎝ ⎠

 (15) 

The term dx
dθ  is initialised at 0 and evolves following the dynamics in (15). In this work, 

since the vector θ is defined as in (7), through (14) and (15) the matrix Cθ(k) can be 
computed as: 

[ ]
2

( 1)0
( 1)

( 1)( ) ( ) 0 ( ) 0 0
0 0

nom

θ

tI k
Q k

dx kC k I k C k A
dθ

⎡ Δ − ⎤⎡ ⎤
⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥ −⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦

 (16) 

where ( , , )g x i θ
xC ∂
∂=  and A is the dynamic matrix of the battery model in (5). 

The values used for the state and output noise covariances are 
6

4

10 0
0 10θQ
−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 

Rθ = 10. The noise vθ has a weak effect on the constant dynamics of the parameters, while 
a larger output covariance is accepted for wθ, in order to consider generic uncertainties on 
the overall battery model. 

In Figure 7, the estimated resistance 0R̂  is shown as a function of time (dashed line). 
In Figure 8, it is shown a comparison between the experimental voltage exp ( )RV k  and the 

output voltage modˆ ( )V k  obtained from the average cell model when the estimated 

resistance 0R̂  is used and the test current exp
RI  in Figure 6(a) is given as an input. To 

quantify how close the model output is to the measurements, the voltage error EKFe  is 
evaluated as: 

exp modˆ( ) ( ) ( )R
EKFe k V k V k= −  (17) 

The error EKFe  is shown in Figure 9 and its RMS value5 is shown in Table 3. 
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Figure 7 Resistance R0: comparison between 0R̂  estimated with EKF and 0R  identified with LS 
approach, function of time (see online version for colours) 

 

Figure 8 Comparison between average cell experimental voltage exp ( ),RV k  model output voltage 

mod
ˆ ( )V k  evaluated with 0

ˆ ( )R EKF  and mod ( )V k  evaluated with 0 ( )R LS  (see online 
version for colours) 

 

The capacity value ˆnomQ  estimated with this approach is practically constant over the 
simulation time window, and equivalent to the nominal value Qnom = 10.4 Ah, which 
confirms the nominal capacity value at BOL used in the battery model. 
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In Figure 7, dependence of 0R̂  on SOC is noticeable. 

Figure 9 Comparison between the voltage error ( )EKFe k  and ( )LSe k  (see online version  
for colours) 

 

3.4 LSs method 

In this subsection, a LS method is implemented to identify the resistance dependence 
R0(SOC) on the SOC. 

The input and output data from R0-identification test are divided into SOC batches, as 
shown in Figure 6 (vertical dashed lines). The identification procedure is the same as 
discussed in Subsection 3.2, but in this case the LS algorithm is applied on a single batch 
i. For each batch i, a constant resistance value 0,iR  is identified minimising the sum of 
the squared difference Si between the experimental measured voltages exp,

R
iV  and the 

voltage predicted by the model output from (4): 

( ) ( )( )
,

0,

2
0,exp,min min ( ) ( ), ( ),

f i

i

T
R

i ii
j T

S V j g x j u j R
=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑  (18) 

where T0,i and Tf,i are the initial and final time instants of each batch i respectively. As 
shown in Section 2, the output function g(·) has a linear dependence on the parameter 

0,iR  and the input u(k), and it is nonlinear with reference to the model state x(k). To apply 
the LS method, the input u(k) and the state x(k) are known at each time instant, the former 
from experimental data exp ( )RI k  [Figure 6(a)] and the latter from the model, computed 
integrating equation (2). 

For each batch i, the average SOC, SOCi, is calculated, to relate the identified 
resistance values 0,iR  to the corresponding SOCi. The identified resistance 0 ( )R SOC  is 
shown in Figure 10 function of SOC. Since SOC(k) is a known function of time from the 
model equation, in Figure 7 (solid line) 0R  is shown as a function of time. Comparing 

0R̂  evaluated with EKF and 0R  with LS method both as a function of time, from  
Figure 7, it can be seen that the two show similar trends over the entire SOC range except 
for high SOC (beginning of discharging, 99% SOC) and low SOC values (1% SOC). 

Also in the case of LS, the voltage error LSe  is evaluated as the difference between 
experimental voltage exp ( )RV k  and the model output mod :V  
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exp mod( ) ( ) ( )R
LSe k V k V k= −  (19) 

The voltage modV  is obtained as the output of the average cell model, when 0 ( )R SOC  is 

used. mod ( )V k  is compared to the experimental voltage exp ( )RV k  and to the model output 

voltage modˆ ( )V k  (using EKF to estimate the resistance) in Figure 8. The error LSe  is 
shown in Figure 9. 

In Table 3, the RMS value of EKFe  and LSe  are compared. 

Table 3 Validation RMS error, comparison between EKF method and LS approach 

Error RMS value 

( )EKFe k  0.01702 V2 

( )LSe k  0.02160 V2 

Figure 10 Resistance 0 ( )R SOC  function of SOC (see online version for colours) 

 

Although the two estimation methods studied in this section provide very close 
performance, as also shown by the RMS values of EKFe  and LSe  in Table 3, the 
resistance identified with EKF (see, Figure 7 shows meaningful values in a SOC range 
from 95% to 5%. Outside of this SOC range the unmodelled dynamics affects the EKF 
estimation performances. For these reasons, in this work we chose to use the resistance 
identified with the LS method 0 ( ).R SOC  

Model validation 

In order to validate the model, a validation test designed performed on the battery pack at 
BOL. This test represents a generic usage scenario for the battery, related to the light 
electric-vehicle application. 

The validation test is a discharge test, through exp ( ),VI k  performed from a fully 
charged condition [see, Figure 11(a)]. It is made by a series of steps at three different 
levels of C-rate, up to a maximum current value of 2C. The average cell output voltage 

exp ( )VV k  measured by the BMS is shown in Figure 11(b). 
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The model validation results are shown in Figure 11(b), where the experimental 
voltage exp ( )VV k  is compared with the model output voltage Vmod(k) evaluated with (3) 
using the values of the parameters identified previously. The mismatch between the 
modelled and the measured voltage after the voltage relaxed beyond 4,000s  
[Figure 11(b)] is due to the fact that model is experimentally calibrated and accurate over 
a predefined range of SOC, and beyond that point, its predictability is lost. 

The validation error eV(k) given by the difference between the experimental voltage 
exp ( )VV k  and the model output voltage Vmod(k) is: 

exp mod( ) ( ) ( )V Ve k V k V k= −  (20) 

with an RMS value for eV(k) of 0.0419 V2. 

Figure 11 Validation test, (a) average cell current; (b) comparison between measured average cell 
voltage, called exp ( ),VV k  and the average cell model output voltage V(k) (see online 
version for colours) 

 
(a) 

 
(b) 
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4 SOC estimation algorithms 

The SOC estimation problem for an e-bike application is addressed in this section, with 
the purpose to define an algorithm suitable for on board implementation to improve the 
battery usage and the vehicle power management. Two algorithms are proposed for the 
SOC estimation: EKF and AEKF. 

4.1 Extended Kalman filter 

The EKF method is proposed to estimate the SOC of the battery system described by the 
nonlinear model (4). When including the process and measurement Gaussian noises, 
model (4) assumes the general form: 

( )
( 1) ( ) ( ) ( )

( ) ( ), ( ) ( )
x k Ax k Bu k v k
V k g x k u k w k

+ = + +⎧
⎨ = +⎩

 (21) 

where ( ) ~ (0, )v k QN  and ( ) ~ (0, )w k RN  are Gaussian white noises with zero mean 
and covariance matrix Q for the model state equation and R for the output relation, 
respectively. A description of the Kalman prediction and correction steps was given in 
Section 3.3. The estimator equations are summarised in Table 4. 

The quantity ˆ( )x k  is the estimated state, and L(k) and P = E[e(k) · e(k)T] are the 
Kalman gain and the covariance matrix of the estimation error, defined as: 

ˆ( ) ( ) ( ).e k x k x k= −  

The matrix ( , )
ˆ ( ), ( )

( ) ,g x I
x x k u k

C k −

∂
∂=  used in the filter equations (23a) and (23c), is the 

linearised output matrix g(x, u) around the point ˆ( ( ), ( )),x k u k−  and Vexp(k) in equation 
(23b) is the actual voltage measured by the BMS. 

The covariance matrix Q of the process noise is designed under the assumption that 
there is no correlation between the noise on the cross state components (Vasebi eta l., 
2007), leading to a diagonal structure. The state noise v(k) represents the model 
uncertainties as well as the approximation due to the neglected nonlinearities (Lee et al., 
2008). 
Table 4 Summary of EKF algorithm equations 

Prediction step: 

ˆ ˆ( ) ( 1) ( 1)x k Ax k Bu k− = − + −  (22a) 

( ) ( 1) TP k AP k A Q− = − +  (22b)

Correction step: 

( ) 1( ) ( ) ( ) ( ) ( ) ( )T TL k P k C k C k P k C k R −− −= +  (23a) 

( )expˆ ˆ ˆ( ) ( ) ( ) ( ) ( ), ( )x k x k L k V k g x k u k− −⎡ ⎤= + −⎣ ⎦  (23b)

( )( ) ( ) ( ) ( )P k I L k C k P k−= −  (23c) 
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The proposed matrix 
1,000 0 0

0 0.1 0 ,
0 0 0.01

R
Q R

R

⋅⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⋅⎣ ⎦

 defined with reference to the 

matrix R, has a higher weight on the first component of the state vector, i.e., the SOC. 
The output noise covariance R is evaluated using the experimental data and 

considering the model voltage error ( )LSe k  computed with (19): from a statistical 
analysis of the error itself, it can be shown that ( )LSe k  is well-approximated by a 
Gaussian distribution with zero mean and the covariance value R = 4.666 – 10–4. 

In the next subsection an adaptive version of the EKF is presented. 

4.2 Adaptive extended Kalman filter 

The AEKF proposed in this work is based on the work developed in Mohamed and 
Schwarz (1999) for INS/GPS application. An adaptive update of matrix Q can help in 
overcoming the uncertainties in the state noise representing model uncertainties due to 
the identification process and nonlinearities not modelled. 

Usually, the estimation performances of the adaptive solution are evaluated through 
the information represented by the innovation sequence d(k). The innovation d(k) is 
defined as: 

( )exp ˆ( ) ( ) ( ), ( )d k V k g x k u k−= −  (24) 

which is the difference between the experimental voltage Vexp(k) measured by the BMS 
and the predicted value ˆ( ( ), ( )).g x k u k−  In d(k) the predicted voltage is computed by the 
model output equation when the state in the prediction step ˆ ( )x k−  is taken into account. 

The innovation covariance matrix is computed as: 

0

1ˆ ( ) ( ) ( )
N

T

i i

D k d i d i
N =

= ∑  (25) 

using a moving average of the innovation d(k) in (24), within a moving estimation 
window of size N, where i0 = k – N + 1 is the first instant of the window. 

Matrix ˆ ( )D k  represents the actual performance of the estimation process, so that it is 
a crucial element to be used in defining the adaptive law for matrix Q. The choice of the 
window length N becomes a design parameter for the algorithm: it must be not so small 
to correctly represent the estimation performances and at the same time, for on-board 
implementation, it has to consider the memory available on a physical board. 

Starting from the evaluation of ˆ ( ),D k  the innovation-based adaptive Kalman filter 
can be used, as demonstrated in Mohamed and Schwarz (1999)]. The innovative 
contribution in Mohamed and Schwarz (1999) is the formulation of the filter in terms of 
maximum likelihood (ML) estimator. The advantage of this approach is to define the 
traditional EKF estimator function of some adaptive parameters, usually the process and 
measure noise covariances Q and R. A ML equation is also defined, as function of the 
same adaptive parameters. In this work, the only adaptive parameter considered is the 
process noise covariance matrix Q. The ML equation represents the mathematical 
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condition which allows to derive an adaptive law for the matrix Q function of the 
innovation covariance matrix ˆ ( ).D k  Under the assumption that the measurement noise 
covariance R is taken as constant, the ML equation in Mohamed and Schwarz (1999) can 
be transformed in: 

0

1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( 1)
N

T T

i i

Q k x i x i P k AP k A
N =

= Δ Δ + − −∑  (26) 

where x̂Δ  is the state correction: 

ˆ ˆ ˆ( ) ( ) ( )x k x k x k−Δ = −  (27) 

evaluated as the difference between the state before and after updates. From (23b): 

ˆ( ) ( ) ( )x k L k d kΔ =  (28) 

Substituting (28) into (26), ˆ ( )Q k  can be computed as (Mohamed and Schwarz, 1999): 

ˆ ˆ( ) ( ) ( ) ( )TQ k L k D k L k=  (29) 

Thus, the AEKF algorithm for the SOC estimation uses the same equations of the EKF 
summarised in Table 4, with the difference that equation (22b) is now implemented using 
ˆ ( )Q k  in (29) as: 

ˆ( 1) ( ) ( )TP k AP k A Q k− + = +  

4.3 Simulation results 

EKF and AEKF algorithms are tested over two experimental tests: the R0-identification 
test of Figure 6 and the validation test of Figure 11 where exp

RV  and exp
VV  are the measured 

voltages in those cases. We refer to ˆ
EKFSOC  and ˆ

AEKFSOC  as the estimated SOC 
evaluated with EKF and AEKF algorithms, respectively. A comparison between the 
estimation results is shown in Figure 12 with reference to the R0-identification test and in 
Figure 14 for the validation test. As a reference for the comparison, SOC obtained with 
Coulomb counting method (SOCcc) is considered, defined by the discrete-time dynamic 
equations: 

( 1) ( ) ( )cc cc
nom

tSOC k SOC k I k
Q
Δ

+ = −  (30) 

In both cases, in order to test the convergence of the filters, the model state was estimated 
starting from the initialisation state values equal to x(0) = [0.4 0 0]T, corresponding to an 
initial SOC(0) = 0.4, while the actual SOC level is close to 1, since the battery is fully 
charged in both tests. In Figure 16, a zoom of initial dynamics of ˆ

EKFSOC  and ˆ
AEKFSOC  

is shown, with reference to the R0-identification test. A rapid convergence of both EKF 
and AEKF to the SOC = 1 is shown. 



   

 

   

   
 

   

   

 

   

    Advanced battery management system design for SOC/SOH estimation 21    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 12 Comparison between SOC estimation results with reference to the R0-identification test 
(Figure 6): reference Coulomb counting SOCcc(k), ˆ ( )EKFSOC k  estimated with EKF 

and ˆ ( )AEKFSOC k  estimated with AEKF (see online version for colours) 

 

Figure 13 Comparison between SOC estimation error eEKF(k) and eAEKF(k) with reference to the 
R0-identification (Figure 6) (see online version for colours) 

 

The EKF and AEKF estimation errors are defined as the difference between SOCcc from 
Coulomb counting and the estimated states of charge ˆ EKFSOC  and ˆ ,AEKFSOC  
respectively: 

ˆ( ) ( ) ( )EKF cc EKFe k SOC k SOC k= −  (31) 

ˆ( ) ( ) ( )AEKF cc AEKFe k SOC k SOC k= −  (32) 

The estimation errors are shown in Figure 13 for the R0-identification test and in  
Figure 15 for the validation test. 

As shown in Figures 13 and 15, using EKF the SOC estimation error eEKF(k) is within 
the 5% range with respect to the SOCcc. This result is tied to the performance of the 
model in reproducing the battery behaviour: the more accurate the model is, the lower the 



   

 

   

   
 

   

   

 

   

   22 C. Taborelli et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

estimation error. By contrast, when the model response is less close to the measurements 
and in particular at low SOC values, also the estimation becomes poorer [Figure 8 and 
Figure 11(b)]. 

With the AEKF an improvement in the estimation performance is achieved, as shown 
in Figures 12 and 14. For both tests considered, the estimation error eAEKF(k) remains 
close to 1% (Figures 13 and 15), which represents an improvement when compared to the 
EKF, thanks to the adaptive update of the covariace Q. In this way, the uncertainty of the 
model are adaptively compensated since ˆ ( )Q k  changes following the estimation error. 
Also at low SOC, the estimation is improved. 

As far as the convergence, both filters show a fast response. In AEKF, in particular, 
the convergence time depends on the initial choice of ˆ (0)Q  in the initialisation phase: the 

value ˆ (0) ,Q Q=  corresponding to the constant Q used for the EKF, is chosen. 

Figure 14 Comparison between SOC estimation results with reference to the validation test 
(Figure 11): reference Coulomb counting SOCcc(k), ˆ ( )EKFSOC k  estimated with EKF 

and ˆ ( )AEKFSOC k  estimated with AEKF (see online version for colours) 

 

Figure 15 Comparison between SOC estimation error eEKF(k) and eAEKF(k) with reference to the 
validation test (Figure 11) (see online version for colours) 
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Figure 16 Zoom of the initial dynamics of ˆ
EKFSOC  and ˆ

AEKFSOC  with reference to the  
R0-identification test (see online version for colours) 

 

5 Aging parameters estimation 

Over the battery lifespan the internal capacity slowly decreases leading to the capacity 
fade phenomenon. The knowledge of the actual value of the battery capacity is an 
important factor to optimise the battery usage as it allows to accurately estimate the 
actual residual charge available. In particular, for electric vehicle applications, the 
problem of capacity estimation is of great interest (Baronti et al., 2013; Kim and Cho, 
2011; Remmlinger et al., 2011) as it is directly related to the driving range over vehicle 
life. 

In this section, we present a novel capacity estimation technique hereinafter called  
Q-estimation algorithm. A dual layer estimation structure is provided for a combined 
SOC and Q evaluation, according to the structure shown in Figure 17, where the SOC 
estimation is obtained from AEKF. The Q-estimation algorithm provides AEKF filter 
with an update value of the battery capacity, given the actual level of aging. Since the 
capacity varies very slowly, this value can be estimated and updated with a slower 
temporal resolution compared with the SOC estimator. 

Figure 17 Dual layer estimator structure 
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A similar structure of the dual layer algorithm for SOC and Qbatt estimation is proposed in 
Rubagotti et al. (2009) and Plett (2004b), with the capacity being estimated by EKF. In 
these works, a dynamic model of battery capacity is needed to track the evolution of 
degradation over time. The experimental tests for capacity model identification are 
lengthy; in addition, the aging behaviour is related to the temperature, SOC and C-rate 
conditions at which the aging tests are performed. 

The Q-estimation algorithm proposed in this paper provides, on the other hand, an 
estimation of battery capacity using the measurements collected by the BMS during 
battery operation. The description of the Q-estimation algorithm is carried out using the 
continuous time version of the state space model of the battery seen in (2), namely 

( )( )

1 1( ) ( ) ( )

1 1( ) ( ) ( )

batt

CT CT
CT CT CT

Dif Dif
Dif Dif Dif

I tSOC t
Q

V t V t I t
R C C

V t V t I t
R C C

⎧ = −⎪
⎪
⎪

= − +⎨
⎪
⎪

= − +⎪
⎩

 (33) 

with model output equation: 

( ) ( )0( ) ( ) ( ) ( ) ( ) ( )OCV CT DifV t V SOC t V t V t R SOC t I t= − − − ⋅  (34) 

where both VOCV and the internal resistance R0 are function of SOC. 
Let us now define the time derivative of the model output voltage V(t): 

( )

0

( ) ( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

OCV
CT Dif

SOC t SOC t

V RV t SOC t V t V t
SOC SOC

SOC t I t R SOC t I t

∂ ∂
= ⋅ − − −
∂ ∂

⋅ −

 (35) 

Since ( )V t  is function of the time derivative of all the state components, in (35) we can 

substitute ( ),  ( )CTSOC t V k  and ( )DifV t  given in (33). Thus, ( )V t  is written as an explicit 
function of: 

• actual capacity value Qbatt 

• battery current I(t) and its time derivative ( )I t  

• voltages across the RC-branches, VCT(t) and VDif(t) 

• SOC, which appears in the term R0(SOC) and also in 
( )

OCVV
SOC SOC t

∂
∂  and 0

( )
.R

SOC SOC t
∂
∂  For 

all of these quantities experimental maps have been identified that can be used once 
the actual value of SOC is known. 

The instantaneous values of SOC(t), VCT(t) and VDif(t) are not physically measurable, but 
they are estimated from AEKF discussed in Section 4.2. The estimated values are 
referred to as ˆ ˆ( ),  ( )CTSOC t V t  and ˆ ( ).DifV t  

In addition to the estimated state vector, the battery current I(t) and the measured 
voltage V(t) are known at each time instant t, along with their time derivative ( )I t  and 
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( )V t  which are computed starting from the measurements. Hence, the only unknown 
parameter in (35) is the capacity value Qbatt. In particular ( )V t  results to be a linear 
function of the unknown parameters Qbatt. In order to define a LS estimation problem, 
equation (35) can be rearranged and written as: 

( ) ( )W t A t p= ⋅  (36) 

where 

• p is the unknown parameters: 

1
batt

p
Q

=  (37) 

• W(t) is function of estimated and measured quantities, defined as: 

( )0

1 1ˆ ˆ( ) ( ) ( ) ( )

1 1 ˆ( ) ( ) ( )

CT Dif
CT CT Dif Dif

CT Dif

W t V t V t V t
R C R C

I t R SOC t I t
C C

= − −

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

 (38) 

• A(t) is function of estimated and measured quantities which multiply the unknown 
parameters in (37): 

0 2

ˆ ˆ( ) ( )
( ) ( ) ( )OCV

SOC t SOC t

V RA t I t I t
SOC SOC

∂ ∂
= − ⋅ ⋅

∂ ∂
 (39) 

Note that the definition of W(t) in (38) (and later in the definition of Wg in (57)) depends 
on the derivative of the measured output V(t) which might be affected by measurements 
noise. To attenuate the effect of noise on the measurements differentiators with improved 
noise suppression can be used (Anderson and Moore, 1979; Benesty and Chen, 2011). 

The problem of estimating the unknown parameter p is cast into a linear LS problem, 
in the form shown in (36). The unknown parameter p is estimated when an excitation 
signal is given as an input to the system. For this reason, a time window of length n is 
defined, with n a design parameter. The Q-estimation algorithm consists in the estimation 
of the unknown capacity over each time window during the battery lifespan. Over the 
designed time window, W(t) and A(t) are function of estimated or measured quantities as 
shown in (38) and (39) and W(t) and A(t) are evaluated at each time instant t1, t2, …, tn: 

[ ]

( )
( )

( )

[ ]

( )
( )

( )

1 1

2 2( ) ; ( ) ;

n n

W t A t
W t A t

W t A t

W t A t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (40) 

where t1 and tn are the first and the last time instant inside the designed window, 
respectively. 

The LS problem (36) can be written in the following matrix form: 

[ ] [ ]( ) ( )W t A t p= ⋅  (41) 
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This matrix formulation helps in reducing the numerical errors related to the 
measurements of V(t) and I(t), to the computations of their time derivatives and to the 
state estimation performed with AEKF. 

From (41), the estimated p̂  is obtained to minimise the error function J: 

[ ] [ ]( ) [ ] [ ]( )ˆ arg min ( ) ( ) ( ) ( ) ( )
T

p J p W t A t p W t A t p= = − ⋅ −  (42) 

Writing (42) as: 

[ ] [ ] [ ][ ] [ ] [ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T TJ W t W t W t A t p p A t W t p A t A t p= − − +  (43) 

the minimisation is done by calculating: 

[ ] [ ] [ ] [ ]2 ( ) ( ) 2 ( ) ( ) 0T TJ A t W t A t A t p
p
∂

= − + =
∂

 (44) 

From (44), p̂  is: 

[ ] [ ]( ) [ ] [ ]
1

ˆ ( ) ( ) ( ) ( )T Tp A t A t A t W t
−

=  (45) 

The unknown parameter p̂  is thus calculated as a matrix product, once the values all the 
quantities in the matrices [W(t)] and [A(t)] are collected over the designed time window. 

5.1 Simulation results 

The Q-estimation algorithm has been implemented in simulation and tested with 
experimental data. In this section, simulation results are shown and the implementation 
details are discussed. 

With reference to the e-bike application, during a typical usage condition the battery 
is discharged starting from a fully charged condition (SOC = 100%) down to lower level 
of SOC. 

The Q-estimation algorithm is executed over the time window [t1 tn] where: 

• t1 is the time instant when SOC = 80% 

• tn is the time when the SOC goes below 40% (SOC is estimated with AEKF). 

Over the selected SOC range, the state estimation performed with AKEF shows the lower 
estimation error. The matrices [W(t)] and [A(t)] used in the Q-estimation algorithm are 
evaluated over a time window corresponding to the [40% 80%] SOC. 

The Q-estimation algorithm has been applied to the R0-identification test shown in 
Figure 6 which returns the estimated value of ˆ 10.3831 Ah,battQ =  corresponding to a 
percentage error of 0.165% from the nominal value Qnom = 10.4 Ah. 

The Q-estimation algorithm is also tested on an aging scenario where the capacity 
decreases over the battery lifespan. An aging campaign was conducted to age the battery 
with repetitive charging and discharging cycles. The campaign consists in 500 charging 
and discharging cycles. The battery is fully charged through the CC-CV protocol at the 
beginning of each cycle. After the charge phase, a constant current discharge of 1C, 
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starting from an open circuit voltage of 4.2 V to a lower value of 3.2 V is applied. The 
discharge current and the measured voltage for cycle number 1 are shown in Figure 18. 

Figure 18 Cycle 1 of the aging campaign, (a) constant current profile of the discharge test  
(b) measured average cell voltage (see online version for colours) 

 
(a) 

 
(b) 

Figure 19 Capacity estimation results: normalised values with respect to the BOL capacity  
(see online version for colours) 

 

Note: Comparison between the benchmark capacity values evaluated as the current 
integral and the capacity values estimated with Q-estimation algorithm 
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It must be outlined that the discharge phase over which the capacity is evaluated, ranging 
between 4.2 V and 3.2 V, does not constitute a standard capacity test as it does not cover 
the entire SOC range 100%–0%. In fact, over this voltage range, the battery is discharged 
by an amount of SOC equal to ΔSOCcycle. The average ΔSOCcycle value over 500 cycles is 
81.84% SOC. Since the current integrals are evaluated on the SOC range ΔSOCcycle and 
the cycles are performed with constant current, the benchmark capacity is scaled at each 
cycle: 

( ) 100( )current integral
cycle cycle

Q I t dt
SOC

= ⋅
Δ∫  (46) 

The scaled capacity values have then been used as benchmark to compare the estimation 
performed by the Q-estimation algorithm. In Figure 19, a comparison between the 
estimated capacity with Q-estimation algorithm and the capacity evaluated as current 
integral using the normalisation (46) is shown. 

5.2 SOC and aging parameters estimation: general approach 

The algorithm introduced in the previous section can be generalised to include both the 
aging parameters and SOC in the estimation. The advantage of this general approach is 
the estimation of SOC obtained at the same time with an update of the model parameters. 
In this way, a separated algorithm for SOC estimation does not need to be implemented 
as well as a battery aging model is not necessary. 

For simplicity, in order to present the general SOC/SOH estimation framework, we 
consider the simple case of 1st order ECM, defined in continuous-time as: 

1 1
1 1 1

( )( )

1 1( ) ( ) ( )

batt

I tSOC t
Q

V t V t I t
R C C

⎧ = −⎪⎪
⎨
⎪ = − +
⎪⎩

 (47) 

where the first equation represents the SOC dynamics and the second is the dynamics of 
the voltage across the parallel of resistance R1 and capacitance C1 (we assume one R1C1 
branch in this case, but extension to the general case of two or more branches is easily 
performed). The model input is the battery current I(t), positive during discharging and 
negative during charging, while Qbatt is the battery capacity. The battery output voltage is 
thus defined in continuous-time domain by the equation: 

1( ) ( ) ( ) ( )OCV battV t V SOC V t R I t= − −  (48) 

where VOCV is the open circuit voltage generator in the 1st order ECM, in series with the 
battery resistance Rbatt and the parallel of R1 and C1. 

The generalised estimation algorithm is based on LS method and combines the 
estimation of SOC and the aging parameters, capacity Qbatt and resistance Rbatt, related to 
capacity fade and power fade phenomena. In particular, the internal resistance Rbatt is 
modelled as Rbatt = R0 + ΔR, where R0 is the nominal resistance identified on a battery at 
BOL and ΔR is the positive resistance increase overtime. 

In addition, VOCV is assumed to be a linear function of SOC defined as: 
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OCVV SOC= + ⋅α β  (49) 

where α and β are constant parameters. 
In order to establish a LS estimation problem, the time derivative of equation (48) is 

computed and given by: 

( )0 1( ) ( ) ( ) ( )V t SOC t R R I t V t= ⋅ − + Δ −β  (50) 

where the terms OCVV SOC
t t

∂ ∂
∂ ∂= β  and the resistance increment ΔR is treated as a constant 

over the estimation time window. As done in the previous section, the estimation is 
performed on a time window of duration n. ΔR and Qbatt are slow time-varying 
parameters since aging phenomena evolve on a different time scale with respect to 
electrical and SOC dynamics. 

Substituting the dynamic equation of ( )SOC t  and 1( )V t  defined in (47) into (50): 

0 1
1 1 1

( ) 1 1( ) ( ) ( ) ( ) ( )
batt

I tV t R I t R I t V t I t
Q R C C

= − − ⋅ − Δ ⋅ + −β  (51) 

where ( )V t  is written as explicit function of current I(t) and its derivative and voltage 
V1(t). 

Voltage V1(t) is computed from (48) as: 

1 0( ) ( ) ( ) ( ) ( )V t SOC t R I t R I t V t= + ⋅ − ⋅ − Δ ⋅ −α β  (52) 

where VOCV and the resistance Rbatt definitions are substituted. Integrating the SOC model 
equation we can write: 

1( ) (0) ( )
Tbatt

SOC t SOC I τ dτ
Q

= − ∫  (53) 

where SOC(0) is the initial SOC value corresponding to the initial condition when the 
estimation is performed, and the form 

T
dτ∫  means that the integral of the battery current 

is computed over the estimation time window. 
Substituting (53) into (52) we obtain: 

1

0

( ) (0)
1 ( ) ( ) ( ) ( )

Tbatt

V t SOC

I τ dτ R I t R I t V t
Q

= + ⋅ +

− − ⋅ − Δ ⋅ −∫
α β

β
 (54) 

Substituting (54) into (51), the final expression for ( )V t  is obtained as an explicit 
function of the following quantities: 

• the unknown quantities to be identified: Qbatt, ΔR and SOC(0) 

• the known model parameters α, β, R0, R1, C1 

• battery current I(t) and its time derivative ( )I t  

• battery measured voltage V(t) and its time derivative ( ).V t  
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Similarly to the procedure shown in the previous section, (51) can be rearranged in a way 
to separate unknown quantities to known quantities so to write (51) in the form: 

( ) ( )g g gW t A t p= ⋅  (55) 

where the subscript g refers to the generalised method presented in this section. The 
quantities in (55) are described in the following: 

• pg is the vector of the three unknown quantities to be estimated: 

(0)
1

g
batt

SOC

p
Q

R

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 (56) 

where all the components are taken as constant over the estimation time window. 

• Wg(t) is a scalar known function of measured quantities, defined as: 

0
0

1 1 1 1 1 1 1

( ) 1( ) ( ) ( ) ( )g
V t RW t V t R I t I t
R C R C C R C

⎛ ⎞= + + + − −⎜ ⎟
⎝ ⎠

α  (57) 

• Ag(t) is a vector of measured quantities which multiplies the vector pg of unknown 
parameters: 

1 1 1 1
( ) ( ) ( ) ( )g

T
A t I τ dτ I t I t

R C R C
⎡ ⎤= − − −⎢ ⎥⎣ ⎦∫
β β β  (58) 

Starting from (55) and collecting measurements over an estimation time window of 
length n ≥ 3, it is possible to build the matrices: 

[ ]

( )
( )

( )

[ ]

( )
( )

( )

1 1

2 2( ) ; ( )

g g

g g
g g

g n g n

W t A t
W t A t

W t A t

W t A t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (59) 

where t1, t2, …, tn are the time instants of the estimation window. 
The linear LSs problem here defined is solved following the same procedure used for 

the Q-estimation algorithm, and the vector of unknown parameters is thus evaluated as: 

[ ] [ ]( ) [ ] [ ]
1

ˆ ( ) ( ) ( ) ( )T T
g g g g gp A t A t A t W t

−
=  (60) 

The estimated ˆ (0)SOC  corresponds to the initial condition with reference to the first 
instant of the estimation window. Using this information together with the current 
integral ( )

T
I τ dτ∫  computed with the current measurements, it is possible to evaluate the 

SOC at each time instant. The other components of vector ˆ gp  are the estimated battery 

capacity ˆbattQ  and the estimated resistance increment ˆ.RΔ  
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6 Conclusions and future work 

In this work, BMS algorithms for battery SOC and SOH estimation have been proposed. 
A state space model of a Li-ion battery pack used for e-bikes application was identified 
and validated experimentally. 

The SOC estimation problem was addressed using: EKF and its adaptive version, 
AEKF. These algorithms have been implemented in simulation and tested on 
experimental data, and the estimation results were compared. The choice of an adaptive 
law for the process noise covariance matrix shows improvements in estimation 
performance. In terms of estimation error, the EKF results are into 5% estimation error 
range, while with AEKF this range is reduced down to 1%. 

A capacity estimation algorithm based on LS approach was proposed to obtain a 
capacity monitoring capability over the battery lifespan. This method uses the model state 
estimation performed with AEKF. A general framework for combined SOC and SOH 
estimation is also presented, where the aging parameters are estimated together with 
SOC. As future work, the algorithms designed in this paper will be implemented on a 
BMS and tested on-board of vehicle with the real-time measurements. 
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Notes 
1 AllCell Technologies designs and manufactures lithium-ion battery packs for transportation 

and renewable energy applications. The company patented a thermal management technology 
based on phase change materials, which guarantees heat extraction and an uniform 
temperature distribution inside the pack. AllCell designs and produces the hardware and 
software component of BMS. AllCell Technologies LLC is located at 2321 W. 41st St. 
Chicago, IL 60609 USA. 

2 A rate of C/5 correspond to a constant current value able to discharge the battery in 5 hours; 
2C is the current corresponding to the double of the capacity, at which the battery is 
discharged at 1/2 hours. 

3 The constant current-constant voltage (CC-CV) protocol was used to charge the battery: the 
battery is charged at a constant current (1C) until the voltage reaches the upper voltage limit, 
followed by a phase where voltage is hold at constant value until the current drops to zero. 

4 This parameter is estimated in order to verify the accuracy of the battery pack capacity value, 
calculated in Subsection 2.1 using the value indicated by constructor for a cell at BOL. 

5 RMS value of a generic vector x(n) is defined as 2

1

1 ( )
N

n
x n

N =∑  where N is the number of 

elements in vector x(n). 


