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a b s t r a c t

In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over
data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real
driving scenarios. The aging model is then used to construct the severity factor map, used to characterize
relative aging of the battery under different operating conditions. This is used as a battery degradation
criterion within a multi-objective optimization problem where battery aging minimization is to be
achieved along with fuel consumption minimization. The method proposed is general and can be applied
to other battery chemistry as well as different vehicular applications. Finally, simulations conducted
using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e.,
the severity factor map and the aging model, can be effectively used in a multi-objective optimization
problem to predict and control battery degradation.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Global concerns over pollution and greenhouse gas emissions,
increasingly stringent vehicle emission regulations and fluctuating
prices of depleting non renewable petroleum resources have
encouraged research in sustainable and clean alternatives for
modern transportation systems [1]. Hybrid electric vehicles (HEVs)
typically have two sources of power, an electric motor and internal
combustion engine, and battery and fuel/fuel tank their respective
energy storage devices.

The extra degree of freedomoffered by the hybrid architecture is
exploited to achieve better fuel economy and lower exhaust
emissions. Most of the research on energy management strategies
design in HEVs has been mainly focused on minimizing fuel con-
sumption under a global constraint of charge sustainability [2]. It is
well understood, though, that battery performance significantly
affects the long term operation of a hybrid vehicle in terms of ex-
pected monetary savings and desired energy efficiency of the
powertrain system. The strategies developed and implemented on
HEVs thus far have not posed any consideration on extending
battery life. Only recently, researchers have started being con-
cerned about battery wear within a vehicle energy management
nori@clemson.edu (S. Onori).
framework [3], and the issue of modeling battery aging for inclu-
sion in a model-based supervisory control has gained more atten-
tion [4].

The design, integration, and control of the energy storage sys-
tem to match the life of a vehicle becomes a new engineering
challenge. A possible approach to tackle this challenge can be found
in the design of a supervisory control strategy that includes a bat-
tery aging model in the minimization function [5].

Mathematically, this can be described as a multi-objective
optimization problem aimed at minimizing fuel while ensuring
that the battery matches the life of the vehicle. The first formal
attempt of investigating the inclusion of battery aging (in terms of
capacity degradation) in the energymanagement problem for HEVs
was presented in Ref. [4]. However, the limitation of the approach
proposed was in the use of a postulated battery aging model from
the manufacturer's datasheet and not from application-driven ag-
ing data. A second attempt was presented in Ref. [5], where the
authors designed a HEV energy management strategy using the
aging model from Ref. [6]. However, this strategy does not predict
capacity loss under realistic driving scenarios, and does not include
the dependence on one of the main aging factors, i.e. state-of-
charge (SOC). In Ref. [7], an anode Solid Electrolyte Interface (SEI)
layer growth model from Ref. [8] was used to obtain a resistive film
growth rate map that was integrated in the optimal control design
of power management for a PHEV while including battery aging.
Contributions in this area of research are very limited due to the
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Nomenclature

Symbols and descriptions
Qnom Nominal Capacity
Voc Open Circuit Voltage
R Internal Resistance
SOC State of charge
I current
Ic Current rate normalized to battery charge capacity
q internal temperature
SOC Average state of charge
Ic Average current rate
q Average battery internal temperature
Qloss Normalized capacity loss
Qbatt Remaining battery capacity
p Vector of severity factors
Ah Accumulated charge throughput
z Power law exponent
z� Optimum power law exponent
sfunct Severity factor function
s�funct Optimum severity factor function
smap Severity factor map
Ea Activation energy
Rg Universal gas constant
a; b; h Model parameters
ε Total error
Qdata
loss;%;i Capacity loss at the ith Ah throughput

Qmodel
loss;%;i Capacity loss from proposed aging model at the

i� thAh throughput
z Average power law exponent
R2 Goodness of fit coefficient

SSres Residual sum of squares
SStot Total sum of squares
EOL end-of-life
Ic;nom Nominal current rate
SOCnom Nominal state of charge
qnom Nominal battery temperature
G Total charge throughput of the battery operated under

nominal load cycle
g Total charge throughput of the battery operated under

a given load cycle
SEI Solid electrolyte interface
vsmap

vIc
Sensitivity of severity factor map with respect to
current rate

vsmap

vq Sensitivity of severity factor map with respect to
battery internal temperature

vsmap

vSOC Sensitivity of severity factor map with respect to
battery state of charge

CVT Continuous variable transmission
Treq Torque request
Tem Electric machine torque
Tice Engine torque
Tbr Brake torque
TCVT CVT torque
uem Electric machine speed
uice Engine speed
vveh Vehicle speed
_mf Instantaneous fuel consumption rate
Pbatt power
u Control variable
ca Transformation coefficient
qamb Ambient temperature
Aheff Effective charge throughput
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lack of formal modeling tools to deal with battery degradation. In
order to properly cast a multi-objective optimization problem that
accounts for battery life and fuel consumption, a control-oriented
battery aging model is needed that is predictive enough for the
application under study. In this paper, the life cycle model from
Ref. [9] is improved to predict degradation for HEV battery. In
particular, themodel is validated, for the first time, against Lithium-
iron phosphate (LiFePO4)-graphite battery used in the field. In
addition, a methodology to design aging degradation maps suited
for multi-objective optimization is proposed. HEV batteries un-
dergo frequent charge/discharge cyclingwhich tend to decrease the
charge capacity and output power that the battery can deliver [10].
The capacity drop, in general, is due to parasitic side reactions,
structural degradations, positive-electrodematerial dissolution, SEI
layer formation and loss of contact between the electrode and the
current collector [11]. These batteries usually undergo two different
types of aging: cycle life aging and calendar aging. In this paper,
only the cycle life aging is considered for which two main families
of modeling approaches have been proposed in literature:

� Electrochemical aging models: These are physics based models
describing the actual phenomena of diffusion [8] and charge
transport of ions of lithium inside a battery [12]. The main ad-
vantages of these models are their accuracy and their ability to
simulate aging under different operating conditions. Their lim-
itations, on the other hand, are in their need for a detailed
knowledge of the agingmechanisms and the high CPU time [13].
The integration of these models inside a Battery Management
System (BMS) for real time control is currently under research
[14].

� Semi-empirical aging models: Typically these are phenomeno-
logical models developed from data obtained in a laboratory
through large scale testing under different aging conditions.
Although these models have lower predictability than their
electrochemical counterpart as they only describe how the ag-
ing mechanisms manifests and do not capture their physics,
they are suitable for estimation-control applications as they
require low computation time to predict degradation and can be
easily integrated within a BMS. In Ref. [6], a semi-empirical
aging model was proposed and calibrated over wide tempera-
ture and current range (Depth of discharge dependence is
neglected in the model); in Ref. [15], a similar model is experi-
mentally validated to predict aging at low SOC of operation at
constant temperature; in Ref. [16], an aging model was devel-
oped to predict capacity degradation both during discharging
and fast charging; a cell degradation study was performed in
Ref. [17] that combines driving and vehicle-to-grid (V2G) usage
for PHEV batteries; and finally, in Ref. [18], a lifetime prediction
model for lithium-ion batteries is validated on profiles defined
by the VDA (German association of the automotive industry).

The focus of this paper is on life cycle semi-empirical battery
aging models.

This paper is organized in the following way. In Section 2, the
identification steps conducted to design the newly calibrated aging
model are presented. In Section 3, the derivation of the severity



Table 1
Data for LiFePO4 battery cell (ANR26650) from A123 systems.

Description Parameter Value

Nominal Capacity Qnom 2.5 Ah
Open Circuit Voltage Voc 3.3 V
Internal Resistance R 10 mU

Cell Weight mcell 76 g
Cell Diameter f 26 mm
Cell Height h 65 mm

Table 2
Data are specified in terms of average state of charge, SOC, average C-rate, Ic , and
average battery temperature, q for both Profiles A and B [21] and Profile C [22].

Data SOC ½%� Ic ½1=h� q ½�C�
Profile A 38.5 2.82 36
Profile B 42.0 3.00 38
Profile C 68.0 6.00 45
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factormap from the agingmodel is illustrated in detail. In Section 4,
the emphasis is laid on the sensitivity of the severity factor map
with respect to aging parameters. In Section 5, it is shown how the
severity factor map is being used in the formulation and develop-
ment of a multi-objective optimization problem for an HEV for
which a description of the vehicle simulator is provided along with
simulation results. Conclusions are provided in Section 6.

2. Battery aging model

The cycle life of a battery is usually characterized in a laboratory
environment where the battery is subjected to standard/synthetic
test profiles that do not necessarily mimic real cycling conditions.
In Ref. [6], a three step pulse power characterization profile was
used for large scale cycle life experiments of the LiFePO4 (26650)
batteries under different constant operating conditions. The aging
model proposed in Ref. [6] was identified over these data sets and
the dependence on SOC neglected. In Ref. [15], square wave current
profiles were used to characterize the capacity degradation of the
same type of battery used in PHEV applications during a charge
sustaining mode at low SOC. The aging model was not validated
across different temperatures, and capacity loss dependence on
temperature was modeled using an Arrhenius-like equation. In
Ref. [16], a standardized load profile was used to carry out an
experimental aging campaign over a wide range of depth of
discharge (DOD), temperature and current rate (or C-rate Ic1) of
operation. Although, the capacity loss behavior was investigated as
a function of the above parameters, a comprehensive aging model
accounting for all aging factors all together was not provided.

Ic ¼ jIj½A�
Qbatt ½Ah�

(1)

In this work, the damage accumulation model used to predict
battery cycle life ([6] and [19]) is calibrated on battery aging data
obtained from a charge sustaining HEV and includes SOC, temper-
ature and current rate dependence. The calibration is conducted
using graphite-LiFePO4 cells, whose specification is shown in
Table 1. The result, shown later in Section 2.1, is a semi-empirical
control-oriented aging model that predicts graphite-LiFePO4 bat-
tery degradation used in charge-sustained HEVs.

The damage accumulation models proposed of [9] and [6]
decouple the effect of the aging factors, i.e. current rate, Ic, tem-
perature, q, and SOC, from the accumulated damage expressed in
terms of ampere-hour throughput or total number of cycles [20].
With the coherence of this framework, the parameters of the ca-
pacity loss model are identified using the data reported in Table 2,
where the information for Profile A and B are obtained from
Ref. [21] and Profile C is obtained from Ref. [22]. The data of Profile
A represents the battery operation in an actual city driving condi-
tions in Gothenburg, Sweden, whereas Profile B illustrates battery
1 Current rate, Ic or C-rate, with units [1/h], is defined as the ratio of current (I) to
the battery capacity ðQbattÞ.
usage in a load cycle designed over a stochastic process model for
HEVs. The data of profile C is an outcome of experimental testing of
batteries with load profiles from a real HEV driving cycle. These
three profiles are applied to the battery shown in Fig. 1 and are
specified in terms of average state of charge, SOC, average current
rate, Ic and average battery temperature, q. In this paper, the
normalized capacity loss, Qloss [%] is used as a measure of battery
degradation:

Qlossðp;AhÞ ¼ 100$
Qbattð0Þ � Qbattðp;AhÞ

Qbattð0Þ
(2)

where p is the vector of aging factors ðIc; q; SOCÞ [19], Ah is the
accumulated charge throughput, i.e. the total amount of charge that
can flow in and out of the battery during its operation, Qbattð0Þ is
the capacity of a new battery that is equal to the nominal battery
capacity and Qbattðp;AhÞ is the capacity of an aged battery. The
functional form of the capacity loss model can be expressed ac-
cording to [9] as:

Qlossðp;AhÞ ¼ sfunctðpÞ$Ahz (3)

where z is the power law exponent that represents Ah throughput
dependence, and sfunctðpÞ is a nonlinear function of severity factors,
called the severity factor function, that can be expanded as:

sfunctðpÞ ¼ ða$SOC þ bÞ$exp
� �Ea þ h$Ic
Rg$ð273:15þ qÞ

�
(4)

where a, b define SOC dependence, hmodels the Ic dependence, Rg
is the universal gas constant [23], Ea is the activation energy equal
to 31,500 [J mol�1] [6], SOC is in fraction and battery temperature, q
is in [�C]. The exponential dependence of sfunct on Ic and q is similar
to [6] while a new linear dependence on SOC is introduced in the
newly calibrated and extended model. In the next section a pro-
cedure to identify the four parameters ðz;a;b; hÞ over the experi-
mental data of Table 2 is presented.

2.1. Parameter identification

In this section a two-step identification procedure for the ca-
pacity loss model (3) is presented. A power law dependence on
accumulated charge throughput ðAhÞ and exponential dependence
on temperature based on Arrhenius law [6], are assumed. A
nonlinear least square-based approach is used to identify model
parameters using the experimental data shown in Table 2.
Fig. 1. A123 LiFePO4 cylindrical cell [28].



Fig. 2. Curve fitting of identified aging model with the experimental data.

Table 4
Optimal values of a and b.

aðSOCÞ bðSOCÞ
SOC ½%� < 45 2896.6 7411.2
SOC ½%� �45 2694.5 6022.2

Table 5
Predicted capacity loss for a given profile with R2.

Data Aging model R2

Profile A Qloss ¼ 0:0480$Ah0:57 0.9189
Profile B Qloss ¼ 0:0530$Ah0:57 0.9587
Profile C Qloss ¼ 0:0747$Ah0:57 0.9798
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The MATLAB® nonlinear identification toolbox is used to iden-
tify the model parameters by minimizing the total error, ε:

ε ¼
h
Qdata
loss;%;i � Qmodel

loss;%;i

i
�
z�; s�funct

�
¼ argmin

Xn
i¼1

���ε���2 (5)

whereQdata
loss;%;i is the capacity loss at the i� th Ah throughput, Qmodel

loss;%;i
is the capacity loss obtained from the proposed aging model at i�
th Ah throughput, and z� and s�funct are the optimal model
parameters.

� Step 1: The identification process is applied over agingmodel (3)
to identify the z and sfunct parameters from the capacity loss
data from the three profiles. The values of the parameters for the
three load profiles are reported in Table 3. It can be observed
that the values of z are close to each other. The average value of z
(¼ 0.57) is chosen for further identification of the aging model.

� Step 2: In this step, the parameters of the severity factor func-
tion, namely a; b and h from (4), are identified. In theQloss model,
(3), the average value of power law exponent, z, identified in
step 1 is used:

Qloss;% ¼ ða$SOC þ bÞ$exp
� �Ea þ h$Ic
Rg$ð273:15þ qÞ

�
$Ahz (6)

The identified capacity model (6), is shown in Fig. 2 against
experimental data points. The optimal values of a and b, are re-
ported in Table 4; for h, a value equal to 152.5 results in the best
fitting. The goodness of fit of the identified model to the experi-
mental data is quantified by a coefficient R2, that is defined as:

R2 ¼ 1� SSres
SStot

(7)

where SSres ¼
Pn

i¼1ε
2 is the residual sum of squares and

SStot ¼
Pn

i¼1ðQdata
loss;%;i � Qdata

loss;%Þ2 is the total sum of squares [24], and

Qdata
loss;% is the average of the capacity loss data. For each of the load

profiles, the identified aging model and the respective R2 value are
reported in Table 5.
2.2. Severity factor function versus severity factor map

The severity factor function characterizes the severity of the
aging of a battery under different operating conditions of SOC, Ic,
and q. Given any aging conditions the magnitude of this factor can
be greater or less than 1. Its values are different, in general, for
different HEV batteries. The severity factor map, smap [19], char-
acterizes the relative aging of a battery under different operating
conditions. It is defined as the ratio of the total accumulated charge
throughput (under nominal cycle) to the total charge throughput
under actual operating conditions until the end-of-life, EOL, of the
battery is reached. From Ref. [19], the severity factor map is given
by:
Table 3
Values of z and sfunct in step 1.

Data z sfunct

Profile A 0.60 0.0347
Profile B 0.51 0.1000
Profile C 0.60 0.0578
smapðIc; q; SOCÞ ¼
G
�
Ic;nom; qnom; SOCnom

�
gðIc; q; SOCÞ ¼

Z EOL

0

������InomðtÞ
������dt

Z EOL

0

������IðtÞ
������dt

(8)

where gðIc; q; SOCÞ is the total charge throughput of the battery
operated under the given pattern of Ic, q and SOC; while
GðIc;nom; qnom; SOCnomÞ is the total charge throughput of the battery
operated under nominal load cycle conditions. In this study,
Ic;nom ¼ 2.5 [1/h], qnom ¼ 25 �C, SOCnom ¼ 35% are chosen as nominal
operating conditions under which the battery is assumed to have
maximum cycle life. While sfunct can be directly extracted from the
data (through identification, as shown in the previous section), the
same is not true for smap. However, it can be obtained and designed
from the sfunct itself by means of the procedure presented in the
next section.
3. Building severity factor map from aging model

In this section, the design of the severity factor map using the
aging model is proposed. The application of this map is particularly
suitable for formulating energy management problems (both in
HEVs and PHEVs) where battery degradation is a concern. In this
paper, the multi-objective optimization framework presented in
Section 5 uses the severity factor map as a battery degradation
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index. The steps involved in obtaining the map from the aging
model are detailed below.

� Step 1: Define EOL condition: Using the aging model in (3), the
EOL conditionwhen a battery reaches 20% of capacity loss at the
nominal operating conditions ðIc;nom; qnom; SOCnomÞ is defined.

20 ¼ sfunct
�
Ic;nom; qnom; SOCnom

�
$Gz (9)
� Step 2: Calculating maximum battery life: The sfunct calculated
under nominal operating conditions is used in (9) to calculate
the unknown, G, that defines the maximum battery life:

G ¼
"

20
sfunct

�
Ic;nom; qnom; SOCnom

�
#1=z

(10)

The predicted maximum battery life, G, obtained from (6) using
(10) is equal to 92,342 Ah.

� Step 3: Battery life under different severity factors: For a given
set of severity factors (Ic; q; SOC), the estimated value of battery
life, defined by g, is obtained using (9) under the battery EOL
condition:

g ¼
"

20
sfunctðIc; q; SOCÞ

#1=z
(11)

The set of g points can be obtained using different values of
severity factors.

� Step 4: Creation of smap: Finally, the severity factormap, (8), is a
collection of points obtained by taking the ratio of G and g ob-
tained in step 3 and step 4.

The map shown in Fig. 3 is a function of Ic; q, and SOC. It is
computed offline for temperatures ranging from q ¼ 10 �C to 50 �C,
SOC range ½20%; 80%], and current rate Ic ¼ ½2C; 20C; 28C�. The
severity factor map plays a similar role of an engine fuel con-
sumption map when used in a model-based optimization frame-
work aimed at minimizing fuel and battery degradation.

The effect of current rate on battery aging weighs more than the
effect of temperature and SOC. This is shown in Fig. 3, where the
curvature of smap increases significantly with Ic. This implies that
Fig. 3. Severity factor map for three different current rate: Ic ¼ 2C, 20C and 28C.
the aging of the battery is accelerated under high Ic values. A high
stress zone and low stress zone are defined on the map in order to
differentiate between different severity conditions with respect to
different degrees of aging.

Temperature has two different effects on the battery's perfor-
mance [25]. As temperature increases the efficiency of the battery
increases due to the decrease in battery's equivalent internal
resistance. Simultaneously, it also aggravates battery aging by
accelerating the rate of unwanted side reactions, leading to the
growth of SEI layer on the electrodes. As shown in Fig. 4, the
severity factor map rises with temperature.

Shown in Fig. 5 are the severity factor maps for three different
values of SOC that almost overlap with each other over the domain
of chosen values for Ic and q. The SOC has very little effect on battery
degradation.
4. Sensitivity of severity factor map with aging parameters

In this section the relative impact of aging parameters on ca-
pacity degradation is presented through a sensitivity study of the
severity factor map.
4.1. Sensitivity with respect to current rate, Ic

The sensitivity of the severity factor map with respect to current
rate, Ic is defined as:

vsmap

vIc
¼ 1

z
$

�
h

Rg

�
$
G

g
$

1
273:15þ q

(12)

Fig. 6 shows the sensitivity function (12) with respect to Ic for
different values of SOC (top figure) and q (bottom figure). It can be
observed that the higher the current rate, the higher is the sensi-
tivity for a given temperature and state of charge. This is due to the
exponential dependence of capacity loss on Ic. This suggests that for
healthy operation of the battery, it would be advisable to keep the
current rate below a certain threshold to avoid accelerated
degradation.
4.2. Sensitivity with respect to battery temperature, q

The sensitivity of the severity factor map with respect to q is
defined as:
Fig. 4. Severity factor map for three different temperatures: q ¼ 15 �C, 30 �C and 45 �C.



Fig. 5. Severity factor map for three different state of charge: SOC ¼ 35%, 50% and 70%.

Fig. 6. Sensitivity of severity factor map with respect to Ic with different q (top) and
SOC (bottom).

Fig. 7. Sensitivity of severity factor map with respect to q at SOC ¼ 50% (top) and
Ic ¼ 20C (bottom).

Fig. 8. Sensitivity of Severity factor map with respect to SOC at q ¼ 40 �C (top) and
Ic ¼ 10C (bottom).
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vsmap

vq
¼ 1

z
$
G

g
$

	
Ea � h$Ic

Rg



$

1

ð273:15þ qÞ2
(13)

From the top plot of Fig. 7 one learns that at a given temperature
the magnitude of sensitivity increases with Ic, which is in accor-
dance to the sensitivity trend with respect to Ic shown in Fig. 6.
From the bottom plot, it can be noticed that the upward shift of the
sensitivity curves is very small for different SOC values.

4.3. Sensitivity with respect to state of charge, SOC

Sensitivity of severity factor map with respect to SOC is defined
as:

vsmap

vSOC
¼ a

z
$
G

g
$

	
1

a$SOC þ b



(14)

The trend of smap over the domain of SOC values is almost
constant (Fig. 8), which reiterates that SOC is not a crucial aging
parameter for life estimation of battery in a charge sustaining HEV.
5. Vehicle simulator layout including battery aging

The main objective of this section is to illustrate the inclusion of a
battery aging model in the model-based optimization framework for
energymanagement in a parallel hybrid vehicle. The simulator used in
this study, adopted from Ref. [26], is characterized by the information
flow shown in Fig. 9. It comprises of the following subsystems:

(i) Driver model: The driver is modeled as a simple PID controller
that compares the desired vehicle speed (from the drive cycle
input) to the actual vehicle speed. Based on the error in the
speed, braking and throttle commands are generated from the
model such that the vehicle follows the desired speed profile.

(ii) Energy management strategy: It is a supervisory controller,
which decides how to split the total torque request from the
driver, Treq, between the electric machine torque, Tem, and
engine torque, Tice, such that the total torque required is
satisfied. The input to the controller are the feedback signals,
namely, electric machine speed, uem, internal combustion



Fig. 9. Layout of HEV simulator used in our study. The battery aging model is used in the Powertrain module to assess the actual state of battery health, whereas the severity factor
map is used in the Energy Management Strategy module in a similar manner as the engine fuel consumption map is used. The optimization algorithm interrogates both maps to
make the decision as to what the optimal operating points to operate the powertrain are.
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engine speed, uice, battery SOC, current vehicle speed, vveh,
both from the powertrain and driver modules. The other
controller output is brake torque, Tbr and CVT torque, TCVT .

(iii) Powertrain and vehicle model: The combined model of the HEV
powertrain and vehicle comprises various subsystems, such as
engine, electric machine, battery pack, battery aging models
(i.e., the capacity loss model identified in the previous sections),
transmission, brakes, wheels, fuel tank and vehicle dynamics.
The details of those subsystems can be found in Ref. [26].

The HEV battery aging model and the severity factor map are
both used within the hybrid vehicle simulator to solve the optimal
control problem of minimum fuel consumption and minimum
battery wear. As shown in Fig. 9, the battery aging model is used in
the powertrain module by the BMS (Battery Management System)
for state of health estimation, and the severity factor map is instead
used in the supervisory controller design, just like an engine map.

The energy management strategy developed in Ref. [4] is
applied in this paper. The aim of this strategy is to find the tradeoff
between two objectives: minimization of fuel consumption and
minimization of battery degradation (through the coefficient
l2½0; 1�) while respecting HEV charge sustainability constraints at
the end of a trip. The objective function is expressed as:

J ¼
Ztf
t0

l$ _mf ðuðtÞÞ

þ ð1� lÞ$ca
G
$smapðIðuðtÞÞ; qðtÞ; SOCðtÞÞ$

����IðuðtÞÞ
����dt (15)
where _mf is the instantaneous fuel consumption rate [g/s],
uðtÞ ¼ PbattðtÞ is the control variable, and ca is a transformation
coefficient that makes the amount of battery aging dimensionally
compatible with the fuel consumption. In Ref. [4], ca is defined as a
ratio of battery replacement cost to the cost of 1 kg of gasoline; l is a
weighting parameter varying between ½0;1� that gives relative
importance to the two costs. To account for battery life usage, the
severity factor map, smap is used in (15). The optimal control
problem is solved by the Pontryagin's Minimum Principle (PMP).
Details of the PMP algorithm are in the Appendix section.
5.1. Simulation results

Fig. 10 shows the distribution of severity factor map operating
points obtained by simulating a FUDS driving cycle at qamb ¼ 30 �C.
As FUDS is a mild driving cycle, 64% of the smap operating points are
in the low Ic region (less than 1) which is shown in the inset plot in
Fig. 10.

The effect of l on battery capacity loss simulated over the FUDS
cycle is shown in Fig. 11. The top plot shows the evolution of Qloss;%
with respect to time while the bottom plot shows the trend with
respect to Ah-throughput (or charge throughput). As expected, the
capacity loss increases with l because the cost associated with fuel
consumption in (15) increases. As l increases, the supervisory
controller produces a power split such that the proportion of bat-
tery power utilized is more than the engine power in the total
power request from the driver (l ¼ 0:5 defines the situation where
the split is the same), resulting into amore pronounced aging of the
battery as shown in Fig. 11. This is validated using the Pareto curves
shown in Fig. 12, which are obtained over different driving cycles.
The fuel consumption difference from the conventional vehicle
(condition corresponding to l ¼ 0) increases as l increases, leading



Fig. 10. Distribution of severity factor map operating points at qambient ¼ 30 �C ob-
tained over FUDS driving cycle.

Fig. 11. Qloss over FUDS cycle with different l a) with respect to time b) with respect to
Ah-throughput; at qamb ¼ 30+C

Fig. 12. Pareto curves for different driving cycles e NEDC, FUDS, and US06. Higher
amount of aging is obtained as l increases for all driving cycles.

Fig. 13. Current rate over FUDS for a) l ¼ 0.3, Ic ¼ 1.3459; b) l ¼ 1, Ic ¼ 1.5243.

Fig. 14. Battery temperature over FUDS for l ¼ 0.3 and l ¼ 1.
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to higher battery degradation. This trend is consistent over
different driving cycles.

Shown in Fig. 13 is the comparison of instantaneous vari-
ation of current rate over FUDS with different l. At l ¼ 1,
battery is subject to higher average values of Ic as the opti-
mizer suggests to use the battery more than the engine, and
degradation is not controlled. This, in turn, results in higher
battery temperature for l ¼ 1 compared to l ¼ 0.3, as shown in
Fig. 14.

Fig. 15 shows the different SOC trends over the FUDS cycle for
different values of l starting from SOC ¼ 50%. The variation of SOC
is lesser for l ¼ 0.3 than l ¼ 1, due to lower Ic. In general, though,
the maximum difference between SOC for these two cases is only
about 3% as the sensitivity to SOC is much smaller than the
sensitivity to Ic and q, as shown in Fig. 8. As a result, the overall
conditions in which the battery operates for l ¼ 0.3 are milder
than those for l ¼ 1.
6. Conclusion

In this paper, a battery capacity degradation model that con-
siders the battery Ah throughput as a measure of battery life is
identified over HEV battery data and used to formulate and solve an



Fig. 15. Velocity profile (top). Variation of SOC with l over FUDS (bottom) at
qamb ¼ 30 �C.

2 For simplicity in representing the Hamiltonian function, following variables
should be read as s ¼ sðIc; q; SOCÞ; I ¼ Iðu; SOC; qÞ; S _OC ¼ S _OCðu; SOC; qÞ:
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optimal control problem that aims at finding the tradeoff between
minimization of battery degradation and fuel consumption. The
method to build the severity factor map from the battery aging
model is presented, and can be used in a supervisory control setting
in the same manner that the engine BSFC map is used. This paper
has linked, in a methodical way, the research on battery aging and
battery models with a system level optimization. The severity
factor map is used as a battery aging index in the multi-objective
optimization problem for energy management with consideration
of battery aging. The optimal solution provides important insights
about the interdependency of battery aging and energy manage-
ment, and enables the exploration of tradeoff between fuel econ-
omy and capacity loss.
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Appendix

Energy Management using battery aging

In this appendix the formulation of optimal control problem
used in this paper and its solution are presented [4].

Problem formulation

The objective of the energymanagement strategy is tominimize
fuel consumption of the vehicle while minimizing the degradation
of the battery. In this problem the cost function is expressed as a
weighted sum of fuel consumption and battery life, as in (15).While
the minimization is performed, the following system dynamics
need to be satisfied:

S _OCðuðtÞ; SOC; qÞ ¼ �hcoulðuðtÞ; qÞ
IðuðtÞ; SOC; qÞ
Qbattðq; tÞ

(16)
where control input uðtÞ ¼ PbattðtÞ and hcoul is the coloumbic effi-
ciency of the battery. The total power requested at the wheels,
PreqðtÞ, is an external input whose instantaneous value is known a
priori [4], and expressed as:

PreqðtÞ ¼ PICEðtÞ þ PbattðtÞ (17)

The local constraints are the physical constraints on the pow-
ertrain components, as shown below:

8>><
>>:

Local constraints :
Pbatt;min � PbattðtÞ � Pbatt;max

PICE;min � PICEðtÞ � PICE;max ct2
h
t0; tf

i
Pmot;min � PmotðtÞ � Pmot;max

(18)

where ð,Þmin and ð,Þmax are the minimum and maximum value of
power at each instant of time. The battery power limits are variable
because they depend on battery open-circuit voltage, Voc, and in-
ternal resistance, R0. The global constraints on SOC are to enforce
charge-sustainability, while the local constraints are the boundary
limits on the SOC profile.(

Local constraint : SOCmin � SOCðtÞ � SOCmax

Global constraint : SOCðt0Þ ¼ SOC
�
tf
�
¼ SOCref

(19)

where SOCref ¼ 50% in this paper, and SOCmin and SOCmax are the
constant minimum and maximum limits for SOC (respectively
chosen to be 30 and 70%). In addition to local and global constraints,
the powertrain constraints are also imposed at each instant such
that the total power requested at the wheels is always satisfied, in
agreement with the mode of operation.
Optimal Solution

The optimal solution of the aforementioned energy manage-
ment problem is found by using Pontryagin's Minimum Principle
(PMP). The principle states that, in order to minimize J, which is a
global quantity, the optimal control u�ðtÞ must minimize instan-
taneously the Hamiltonian function, H defined as2:

H
�
u; Preq

� ¼ l$ _mf
�
u; Preq

�þ ð1� lÞ$ca
G
$s$

���I���þ lSOC$S _OC (20)

where lSOC is the costate variable and the system dynamics (i.e.,
state of charge dynamics) are given in (16). In addition, the dy-
namics of the costate must be subject to:

_lSOC ¼ � vH
vSOC

¼ �l$
v _mf

�
u; Preq

�
vSOC

� ð1� lÞ$ca
G

$
���I���$ vs

vSOC
� lSOC

vS _OC
vSOC

(21)

which are dependent on the gradient of the severity factor map
with respect to SOC. The PMP thus formulated is solved using, for
example, the shooting method, that determines the optimal solu-
tion by an iterative scheme [27].
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