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Electrochemical Model-Based State of Charge and
Capacity Estimation for a Composite

Electrode Lithium-Ion Battery
Alexander Bartlett, James Marcicki, Simona Onori, Giorgio Rizzoni, Xiao Guang Yang, and Ted Miller

Abstract— Increased demand for hybrid and electric vehicles
has motivated research to improve onboard state of charge (SOC)
and state of health estimation (SOH). In particular, batteries
with composite electrodes have become popular for automotive
applications due to their ability to balance energy density,
power density, and cost by adjusting the amount of each
material within the electrode. SOH algorithms that do not use
electrochemical-based models may have more difficulty main-
taining an accurate battery model as the cell ages under varying
degradation modes, such as lithium consumption at the solid-
electrolyte interface or active material dissolution. Furthermore,
efforts to validate electrochemical model-based state estimation
algorithms with experimental aging data are limited, partic-
ularly for composite electrode cells. In this paper, we first
present a reduced-order electrochemical model for a composite
LiMn2O4-LiNi1/3Mn1/3Co1/3O2 electrode battery that predicts
the surface and bulk lithium concentration of each material in
the composite electrode, as well as the current split between each
material. The model is then used in dual-nonlinear observers to
estimate the cell SOC and loss of cyclable lithium over time.
Three different observer types are compared: 1) the extended
Kalman filter; 2) fixed interval Kalman smoother; and 3) particle
filter. Finally, an experimental aging campaign is used to compare
the estimated capacities for five different cells with the measured
capacities over time.

Index Terms— Battery, estimation, Kalman filter, state of
charge (SOC), state of health (SOH).

NOMENCLATURE

A Current collector area (m2).
De Liquid diffusion coefficient (m2/s).
Di Solid diffusion coefficient (m2/s).
F Faraday’s constant (C/mol).
I Current (A).
Lc Total cell thickness (m).
Li Electrode thickness (m).
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Lsep Separator thickness (m).
Np Number of particles in the particle filter.
Q Process noise covariance.
R Sensor noise covariance.
R̄ Universal gas constant (J/K/mol).
Rc,i Ohmic resistance (�).
Ri Particle radius (m).
T Cell temperature (K).
Ui Electrode open-circuit voltage (V).
V Cell voltage (V).
Ve Liquid-phase voltage across the cell (V).
c̄i Bulk particle concentration (mol/m3).
ce,i Electrolyte concentration (mol/m3).
cmax,i Electrode saturation concentration (mol/m3).
cs,i Concentration at the particle surface (mol/m3).
i0,i Exchange current density (A/m2).
ie Liquid-phase current density (A/m2).
ji Solid-phase current density (A/m2).
ki Reaction rate constant (m2.5/mol0.5/s).
r Coordinate along the particle radius,

originating at the particle center.
t Time (s).
t+0 Transference number ().
x Coordinate through-the-thickness of the cell,

originating at the anode current collector.
α Symmetry factor ().
βi Current split factor ().
γ Activity coefficient in electrolyte ().
εam,i Active material volume fraction ().
εe Liquid volume fraction ().
εi Active material volume split ().
ηi Kinetic overpotential (V).
σe Electrolyte conductivity (S/m).
φe Electrolyte potential (V).
φi Electrode potential (V).
Subscript i Refers to electrode p, n, LMO, or NMC.

I. INTRODUCTION

VEHICLE electrification continues to be a key topic of
interest for automotive manufacturers, with lithium-ion

batteries being the technology of choice for hybrid and electric
vehicles. State of charge (SOC) and state of health (SOH)
estimates are essential inputs to the vehicle’s battery manage-
ment system (BMS) in order for the battery pack to operate
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efficiently and safely [1]. Knowledge of SOC allows the BMS
to predict the available instantaneous power, while ensuring
the battery is operating within safe limits. SOH can be defined
in a variety of ways, but typically refers to the degrada-
tion of capacity and increase in internal resistance as the
battery ages.

Traditionally, SOC and SOH estimates are made with the
use of lookup tables or equivalent circuit models (ECMs)
consisting of various circuit elements arranged in series or
parallel combinations such that the circuit output voltage
dynamics mimic that of the battery. Although ECMs are
computationally inexpensive, considerable effort must be made
to parameterize these models, as the parameters are typically
the functions of SOC, temperature, current direction, and
battery life [2], [3]. In addition, ECM parameters have little
physical meaning, and associated aging models must rely
on empirical correlations between SOH and damage factors,
such as total current throughput, operating temperature, and
depth of discharge [4]. Nonetheless, ECMs have been used
successfully for SOC and SOH estimation using extended
Kalman filters (EKFs) and other methods [5]–[10].

Recently, increased attention has been given to electrochem-
ical models for SOC and SOH estimation. These models are
based on the first principles in porous electrode theory [11]
and therefore have the potential to predict cell performance
more accurately, as well as provide more information about the
internal battery states such as lithium concentrations and reac-
tion overpotentials. However, uncertainty in electrochemical
parameters can limit the accuracy of the model and resulting
state estimates [22]. Furthermore, electrochemical models rely
on partial differential equations (PDEs) to describe lithium
diffusion and potential gradients throughout the electrode and
electrolyte. Solution methods for PDEs can be computationally
expensive, making them illsuited for most practical onboard
control and estimation algorithms. A common approximation,
known as the single particle model (SPM), is to neglect the
spatial variation of concentration and potential throughout the
cell and treat each electrode as a single spherical particle,
subject to an appropriately scaled, spatially constant current
flux. To further facilitate control and estimation, researchers
have used various model-order reduction techniques to reduce
the PDEs governing diffusion in the spherical particles to
low-order ordinary differential equations (ODEs). A reduced-
order electrochemical model linearized over a typical operating
range was used in [13] in a Kalman filter to estimate the
lithium bulk and surface concentration. The authors showed
that rather than enforcing strict limits on cell voltage to
avoid damaging the battery, enforcing limits on lithium surface
concentration and solid/electrolyte potential difference allowed
the cell voltage limits to be exceeded without risking electrode
saturation/depletion and lithium plating. In [14], an averaged
SPM with discretization of the diffusion PDEs was used in
a Kalman filter to estimate the bulk and surface concentra-
tions of the positive electrode. The authors recognized weak
observability of the complete cell model that includes both
electrodes (since the only available measurement depends on
the difference between the electrode potentials), and therefore
only applied the observer to the positive electrode states.

Loss of spatial information through-the-thickness of the cell
is avoided in [2], [16], and [17] using observers capable of
handling PDE-based models, although these approaches add
to the computational cost. Moura et al. [17] also discussed
the weak observability of the complete battery system, and
approximated the cathode states at their equilibrium, since the
average positive concentration can be related to the average
negative concentration via conservation of lithium.

There have been a few attempts to use electrochemical-
based models for online SOH estimation using
dual-SOC/parameter estimation. In [18], the active material
fractions of each electrode are estimated along with the bulk
and surface SOC, using an unscented Kalman filter. SOH
estimation was done in [15], [17], and [19] by applying
least squares techniques to estimate the model parameters
associated with aging; however, the computational effort
required by these approaches may limit their applicability
to onboard estimation. In addition, electrochemical model-
based SOH estimation algorithms that are validated with
experimental aging data are scarce in the literature, and to the
best of the authors’ knowledge, no such studies have been
conducted on cells with composite electrodes. Composite
electrodes add to the complexity of the electrochemical
model, particularly if it is desired to estimate the SOC and
SOH of each electrode material individually.

In this paper, a reduced order electrochemical model is
used for SOC/SOH estimation on a composite LiMn2O4-
LiNi1/3Mn1/3Co1/3O2 (LMO-NMC) cathode cell with a
graphite anode. The model is based on the SPM with added
liquid-phase dynamics, but considers two particles in parallel
to represent the composite cathode. This paper then presents
a novel numerically inexpensive method for solving for the
current split and resulting SOC of each cathode particle
(part of preliminary work presented in [20]), and a novel
combined SOC/SOH estimation algorithm to estimate capacity
fade resulting from loss of cyclable Li. Finally, the estimation
algorithm is validated with experimental aging data, by com-
paring three different observer types (EKF, Kalman smoother,
and particle filter).

II. MODEL DEVELOPMENT

The model used in this paper is based on the traditional
SPM with the addition of liquid-phase diffusion
dynamics to improve model accuracy under high current.
Similar models have been presented many times
in [2], [13], [14], [16], [18], and [23], however, in order to
accommodate the composite LMO-NMC positive electrode,
the positive electrode is modeled as two particles acting in
parallel (as shown in Fig. 1). Therefore, the potentials of
each positive electrode particle model are equal, but the
current is split between each particle according to its dynamic
effective impedance. This idea of representing a composite
electrode as two particles acting in parallel has been presented
in [20] and [23].

In the simplest case (at steady state), the measured cell
voltage V is just the difference between each electrode open-
circuit voltage (OCV) evaluated at their respective steady-state
concentrations, i.e., V = Up(c̄p) − Un(c̄n). However, as the



386 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 24, NO. 2, MARCH 2016

Fig. 1. Schematic of the electrochemical model with a single negative
electrode particle and two positive electrode particles acting in parallel.

cell is charged or discharged, various sources of overpotential
cause the measured voltage to deviate from this steady-state
solution. The overpotentials can be categorized as acting in
either the solid (electrode) or liquid (electrolyte) phase, as
outlined in Table I, and submodels for each phase can be
developed. The dynamic cell voltage (9) is then obtained by
subtracting the solid- and liquid-phase overpotentials from the
electrode OCVs.

A. Electrode Submodel

The governing equations for Li concentration and electrode
potential are shown in (1)–(5) for a given particle i . Subscript i
refers to the negative particle, positive LMO particle, or
positive NMC particle: n, LMO, or NMC, respectively.
Fick’s law of mass diffusion in spherical coordinates (4)
governs the concentration throughout a spherical particle. The
boundary conditions for this PDE are set so as to require
symmetry about the particle center and impose a flux at the
particle surface, dictated by the current density ji(t).

The single particle approximation removes the spatial
dependence of the current density, allowing it to be defined
only as a function of time for a given particle. To form the
current density, the applied current is multiplied by a current
split factor βi defined as the fraction of current flowing to
a given particle within an electrode. For the single particle
negative electrode βn = 1, but for the multiple particle
positive electrode, βLMO and βNMC vary dynamically and are
calculated at each time step, as shown in Section III-A. The
current is normalized by the electrode volume, including a
parameter εi representing the active material volume fraction
split. Again, for the single particle negative electrode εn = 1;
however, for the multiple particle positive electrode, fitting
experimental data gave a material split of εLMO = 0.64
and εNMC = 0.36 [23].

The electrode potential (5) is calculated by subtracting the
kinetic and ohmic overpotentials from the OCV, evaluated at
the particle surface concentration.

B. Electrolyte Submodel

Similar to the solid phase, the liquid phase contains sources
of concentration and ohmic overpotential. The concentration
of Li throughout the electrolyte is governed by Fick’s law in
Cartesian coordinates (6), with a source term related to the
current density. Since ji(t) is considered piecewise constant
within a given electrode and zero in the separator, (6) is
solved separately in each region, subject to coupling bound-
ary conditions that match the concentration and flux at the
electrode/separator interfaces.

To obtain the liquid-phase voltage across the entire cell,
(7) is integrated directly from x = 0 to x = Lc, where ie(t)
is considered constant in the separator and linearly decreasing
to zero from the electrode/separator boundaries to the current
collectors.

III. MODEL SOLUTION METHOD

The concentrations of Li in the solid and liquid phases
are governed by PDEs; however, this is undesirable if the
model is to be used for onboard estimation. Instead, the Padé
approximation method for model-order reduction proposed
in [22] and [24] was leveraged here to approximate the
PDE-based model with a system of low-order ODEs.

A. Solid-Phase Solution

In the solid phase, the important metrics for tracking cell
SOC and available power are the particle bulk concentration
and particle surface concentration, respectively. A first-order
linear transfer function between the bulk concentration and
input current is obtained simply by integrating (4) in the
Laplace domain from r = 0 to r = Ri . However, in the
case of surface concentrations, a Padé approximation is used
to obtain a low-order linear transfer function relating surface
concentration to input current for each particle [12], [24].
A third-order approximation is used for the solid-phase PDE,
since it gives good accuracy in the frequency range typically
seen in a vehicle drive profile [23], while still mitigating the
computational effort required for higher order models.

The electrode particle submodel is formulated in state space
as follows:

ẋi = Ai xi + Bi (t)u (10)

Ai =

⎡
⎢⎢⎣

0 1 0
0 0 1

0
1

b3,i

b2,i

b3,i

⎤
⎥⎥⎦

Bi (t) =

⎡
⎢⎢⎣

0
0

∓
(

βi (t)Ri

3FALiεam,iεi

)
1

b3,i

⎤
⎥⎥⎦

[
cs,i

c̄i

]
=

[
a0,i a1,i a2,i

a0,i a0,i b2,i a0,i b3,i

]
xi

φi = Ui (cs,i) ± ηi (cs,i , βi (t)u) ± Rc,iβi (t)u (11)

where both the bulk and surface concentrations are written as
linear combinations of the states xi , the input u is current,
and the output electrode potential is a nonlinear function of
the states and input. Note that only the linear combination of
the states has any physical meaning, and the states themselves
simply represent the dynamics of the third-order Padé approx-
imation. Although there are two separate transfer functions for
bulk and surface concentration (first and third orders, respec-
tively), both metrics can be written as linear combinations
of the same three states through some algebraic manipulation
(as shown in [24]). In other words, there are six total states in
the multiple particle positive electrode submodel, and three
states in the single particle negative electrode submodel.
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TABLE I

GOVERNING EQUATIONS FOR THE SOLID PARTICLE AND LIQUID SUBMODELS

The states are updated in discrete time using a finite difference
solution. Constants a0,i , a1,i , a2,i , b2,i , and b3,i are obtained
from the third- order Padé approximation, and are the functions
of the particle radius and diffusion coefficient [12], [24].

Since the positive electrode consists of two particles acting
in parallel, the potentials for each particle are equal and the
current is multiplied by a current split factor βi . For the
positive electrode, βi must be solved at each time step to
determine how the current is allocated with the constraint that
the currents going to each particle sum to the total current
(i.e., βLMO + βNMC = 1). The βi term appears nonlinearly
in the output equation, so one possible solution method is to
guess the value of each βi , calculate the particle potentials,
and iterate until the two particle potentials converge to the
same value. This approach could be implemented using a
standard nonlinear solver; however, it may not be ideal for
online estimation since it requires iteration at each time
step. Alternatively, an approximated solution is obtained more
quickly using the following linearization procedure.

1) At each time step k, advance the states and concentra-
tions forward in time using the finite difference method

xi,k = (Id + 
t Ai )xi,k−1 + 
t Bi,k−1uk−1[
cs,i,k

c̄i,k

]
=

[
a0,i a1,i a2,i

a0,i a0,i b2,i a0,i b3,i

]
xi,k (12)

where Id is the identity matrix, 
t is the time step
(fixed at 0.1 s), and the current splits in B are from the
previous time step.

2) Construct a set of three (non)linear equations, two for
the output potentials of each particle and one enforcing
that the current splits sum to 1

f1 = φp,k = ULMO(cs,LMO,k)

−ηLMO(cs,LMO,k, βLMO,k Ik)

−Rc,LMOβLMO,k Ik

f2 = φp,k = UNMC(cs,NMC,k)

−ηNMC(cs,NMC,k, βNMC,k Ik)

−Rc,NMCβNMC,k Ik

f3 = Ik = βLMO,k Ik + βNMC,k Ik (13)

where φp is the total potential of either particle.

3) Remove the nonlinear dependence on βi in f1 and f2 by
taking a Taylor series expansion about the current splits
at the previous time step

φp,k ≈ f1|βLMO,k−1

+ ∂ f1

∂βLMO

∣∣∣∣
βLMO,k−1

(βLMO,k − βLMO,k−1)

φp,k ≈ f2|βNMC,k−1

+ ∂ f2

∂βNMC

∣∣∣∣
βNMC,k−1

(βNMC,k − βNMC,k−1). (14)

4) Finally, the current splits and potential can be written as
the solution to a matrix inversion problem
⎡
⎢⎢⎢⎢⎢⎣

∂ f1

∂βLMO

∣∣∣∣
βLMO,k−1

0 −1

0
∂ f2

∂βNMC

∣∣∣∣
βNMC,k−1

−1

Ik Ik 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

βLMO,k

βNMC,k

φp,k

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− f1|βLMO,k−1 + ∂ f1

∂βLMO

∣∣∣∣
βLMO,k−1

βLMO,k−1

− f2|βNMC,k−1 + ∂ f2

∂βNMC

∣∣∣∣
βNMC,k−1

βNMC,k−1

Ik

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

In addition to the current splits, solving (15) also gives
a value for the linearized output electrode potential φp,k ;
however, this value is discarded at this point. Instead, the
original nonlinear output (11) is used to calculate the electrode
potential, thereby avoiding the voltage prediction inaccuracies
seen with the linearization process. In this way, the errors asso-
ciated with the output linearization only affect the calculation
of βi , and not the calculation of the output voltage (apart from
the indirect effect from βi ).

Fig. 2 shows the predicted current split and result-
ing SOC for each cathode material for a constant
1C discharge. The predicted voltage shows good agreement
with the measured voltage (more rigorous validation of the
model was done in [23]). More LMO is utilized initially
at high voltages, until it is nearly depleted, at which point
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Fig. 2. (a) Model prediction of the cell voltage compared with the
measured voltage. (b) Current split factor βi for each material. (c) Normalized
concentration for each material for a 1C constant current discharge.

NMC carries the bulk of the current for the remainder of
the discharge. This result is consistent with an in si tu
X-ray diffraction (XRD) study of a composite LMO-NMC
cathode [25].

One drawback of this electrode model with parallel particles
is that, for instances, when the current abruptly changes in
magnitude and/or direction, the calculated βi for a given par-
ticle can greatly exceed 1 (resulting in a large negative βi for
the other particle). While it is unclear if this occurrence makes
physical sense, it typically lasts for only a few time steps
before the βi s return to more sensible values between 0 and 1.
Furthermore, these are usually instances when the total current
is near zero, so a large βi does not translate into a large current
going to a given particle.

It should also be noted that if the state estimate has not
yet converged, there will be some error in the calculation
of βi , since it relies on the current state estimate. This would
in turn cause an error in the state estimate calculated at the
next time step. However, this does not affect the stability of
the state estimate. Even if there is an extreme error in βi ,
eventually the concentration estimate of one of the materials
will become saturated, which will decrease βi for that material,
thereby driving the estimate back toward the correct value.
Instead, calculation of βi using an unconverged state estimate
can be categorized as a model error, which may affect the
estimate accuracy, but will not cause the estimate to become
unstable. Furthermore, in a real automotive application, there
are periodic instances when the current is near zero, and the
influence of βi is negligible. During these times, the state
estimate can converge accurately, thereby minimizing the error
in βi once the current resumes.

To summarize the solution method for the composite
positive electrode: at each time step k, the states are updated

in discrete time using the calculated values for βi,k−1 at the
previous time step (10), the values for βi,k at the current
time step are then calculated using the linearization method
outlined above (15), and finally the output potentials are
calculated using the updated states and precalculated values
for βi,k (11).

B. Liquid-Phase Solution
Equation (8) governs the liquid-phase voltage across the cell

and depends on the Li-ion concentrations in the liquid at each
electrode. Therefore, the PDE governing Li concentration is
solved at each electrode end (x = 0 and x = Lc) using a
first-order Padé approximation. This results in two first-order
transfer functions relating liquid-phase concentration at each
electrode to the current input. Only a first-order approximation
is needed for the liquid phase concentration, since it shows
a very good accuracy throughout the frequency range of
interest [22]. In state space, the two states in xe represent the
liquid concentrations at each electrode, the input u is current,
and the output voltage is a nonlinear function of the states
and input

ẋe = Aexe + Beu (16)

Ae =

⎡
⎢⎢⎣

1

b1,e,p
0

0
1

b1,e,n

⎤
⎥⎥⎦

Be =
(

1 − t+0
FALcεe

) ⎡
⎢⎢⎣

− 1

b2,e,p
1

b2,e,n

⎤
⎥⎥⎦

[
c̄e,p

c̄e,n

]
= [

1 1
]

xe

Ve = u
( 1

2 L p + Lsep + 1
2 Ln

)

σe A

+2R̄T
(
1 − t+0

)

F
(1 + γ ) ln

(
c̄e,n

c̄e,p

)
. (17)

Again, the constants b1,e,p, b1,e,n, b2,e,p, and b2,e,n are
obtained from the first-order Padé approximation [12].

IV. SYSTEM OBSERVABILITY

In order to design an observer, the system must be shown
to be observable (or at least detectable) to ensure that the
state estimates converge to the true states in a finite time [26].
Observability of a system requires that the state trajectory
can be uniquely reconstructed based solely on the knowledge
of the output measurements and inputs. Local observability
of a nonlinear system can be shown with the use of
Lie derivatives [26]. The Lie derivatives L f for a nonlinear
system with state dynamics ẋ = f (x, u) and output equation
y = g(x, u) form the vector

l(x, u) =

⎡
⎢⎢⎢⎢⎣

y

ẏ
...

y(n−1)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

g

ġ
...

g(n−1)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

L0
f

L1
f

...

Ln−1
f

⎤
⎥⎥⎥⎥⎦

. (18)
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Fig. 3. Block diagram of the algorithm for estimating the positive electrode
states. The negative electrode and liquid phase are simulated open loop in
order to generate a pseudomeasurement of the positive electrode potential.
Alternatively, the negative electrode states could be estimated by simulating
the positive electrode open loop.

The observability matrix is obtained by taking the Jacobian of
the Lie derivative vector

O =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂L0
f

∂x1
. . .

∂L0
f

∂xn
...

...

∂Ln−1
f

∂x1
. . .

∂Ln−1
f

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

An observability matrix with full rank implies that the states
are locally observable. However, performing this exercise
on the complete battery model, including both positive and
negative electrodes, results in an observability matrix with full
rank but with a high (two-norm) condition number (≈1010) for
typical parameter and input values. This is an intuitive result,
as it should be difficult to uniquely identify the states of both
electrodes if the only available measurement is the difference
between positive and negative electrode potentials.

To help facilitate observer design, the degree of
observability can be improved using one of the two methods.
In the first method, the states of only one electrode are
estimated at a given time, while the liquid phase and opposite
electrode states are simulated open loop. For example, if the
positive electrode states are to be estimated, the negative
electrode and liquid-phase potentials are calculated using the
open-loop model. These potentials are subtracted from the
measured cell voltage to obtain a pseudomeasurement of
positive electrode potential. This pseudomeasurement is then
used as feedback in the observer to estimate the positive
electrode states. The process is outlined in Fig. 3 for esti-
mating the positive electrode states. However, clearly, since
the liquid phase and one electrode are simulated open loop,
any initial condition and model errors in these submodels will
be projected forward to adversely affect the opposite electrode
estimate.

An alternative to relying on an open-loop simulation of
one electrode is to use a steady-state approach, where the
bulk concentration of one electrode is related to the bulk
concentration of the other, via conservation of lithium

c̄ p
cmax,p

− y f

y0 − y f
=

c̄n
cmax,n

− x f

x0 − x f
(20)

where y0 to y f is the normalized concentration operating
range of the positive electrode and x0 to x f is the oper-
ating range of the negative electrode, as shown in Fig. 6.
Note that x0 and y0 are the normalized concentrations at the
upper voltage limit, while x f and y f correspond to the

lower voltage limit. This steady-state approach was applied
in [14] and [17] to estimate the cell SOC. The advantage
of this method is that it enforces conservation of lithium
in the cell, which is a good approximation over a given
drive cycle. However, this approach neglects the diffusion
dynamics of one electrode, which may have implications in
estimation of available power. In addition, like the open-loop
method, it relies on accurate initialization of the normalized
concentration operating range of each electrode, so any errors
in the x0, x f , y0, and y f parameters will adversely affect the
state estimates.

Both the open-loop and steady-state approaches essentially
limit the estimated states to one electrode, and by doing so,
the condition number of the observability matrix is reduced
by several orders of magnitude (down to ≈106). In this paper,
results using the open-loop approach are shown, although
testing of both methods revealed only slight differences in the
SOC and capacity estimation results.

Even though the estimated states are limited to just
one electrode whose electrode submodel must be shown
to be observable with respect to a pseudomeasurement
of its output potential. The electrode submodel has lin-
ear state dynamics (10) with a nonlinear output (11). The
goal is to show that all three states in the submodel are
observable, allowing for the estimation of both the surface
and bulk electrode concentrations cs,i and c̄i . The OCV
term Ui is often calculated via lookup table or by an
empirical functional fit; however, to make calculating the
Lie derivatives easier computationally, a cubic spline is used to
evaluate the OCV at a given concentration. The cubic spline
is continuously differentiable at the spline transitions up to
the second derivative, so proving the observability for a given
spline segment guarantees observability for the entire
OCV curve. Substituting an arbitrary cubic spline segment for
the OCV term, the electrode submodel becomes

ẋi = f (xi , u) = Ai xi + Bi (t)u (21)

y = g(xi , u)

=
(

s3,i c3
s,i

c3
max,i

+ s2,i c2
s,i

c2
max,i

+ s1,i cs,i

cmax,i
+ s0,i

)

−ηi (cs,i , βi u) − Rc,iβi u (22)

where s0,i , s1,i , s2,i , and s3,i are the OCV cubic spline
coefficients, and cs,i is a linear function of the states, as
shown in (10).

The resulting Lie derivatives and observability matrix are
too lengthy to show here, in particular due to differentiating the
hyperbolic sine function in ηi , but the process is outlined in the
Appendix. The observability matrix has full rank for nonzero
parameter values, proving that the electrode particle submodel
is locally observable with respect to a psuedomeasurement
of its potential. Although the both positive and negative
electrodes are observable, the negative electrode states are
more sensitive to model or sensor errors. This is due to the flat
shape of the negative electrode OCV in certain concentration
ranges, where a small error in voltage can produce a large
error in estimated concentration. The implications of the flat
negative OCV will be discussed in Section VII-B.
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Fig. 4. Model prediction of the cell voltage compared with the measured
voltage for the CD current profile used in the aging campaign, as shown
in Fig. 10(a).

V. EXPERIMENTAL DATA COLLECTION

An aging campaign was conducted using 15-Ah
(nominal) automotive pouch cells with a composite
LMO-NMC cathode and graphite anode cycled under
different operating conditions. The cells were cycled using
the charge depleting (CD) current profile defined by the
United States Advanced Battery Consortium [27], which is
representative of a plug-in hybrid vehicle (PHEV) application.
The CD current profile is shown in Fig. 10, and was repeated
until the cell reached 45%, 35%, or 25% SOC. Each
CD cycle was followed by a constant current constant
voltage (CCCV) charge at a C/3, 3C/2, or 5C charge rate.
All cells were maintained at a constant of 30 °C by Peltier
junctions. Periodic capacity assessments were conducted
at approximately every 2000–5000 Ah of throughput. The
capacity assessments involved an initial 1C CCCV charge
to 4.15 V, followed by a 1C discharge to 2.8 V, followed
by a second 1C CCCV charge. The measured capacity was
taken as the average of the discharge and charge capacities.
The electrode OCVs (as shown in Figs. 5 and 8) and the
parameter values from [23] were used to calibrate the model.

An example of the open-loop model fit for the dynamic
CD profile used in the experimental aging campaign is shown
in Fig. 4. The root-mean-squared error over this test is 14 mV
with a maximum error of 75 mV.

It should be noted that no significant resistance rise
was observed in the cells used in this paper, allowing the
impedance-related model parameters to be treated as constant.
The change in 1-s resistance was generally less than 0.1 m�
over the course of the aging campaign. However, for different
aging conditions or electrode chemistries, resistance rise can
be significant and online estimation of these parameters may
be required to maintain model accuracy.

VI. OBSERVER DESIGN

Three different observer types are used for state esti-
mation in order to compare their estimation accuracy and

Fig. 5. Initial and final concentrations are defined at the upper and lower
cell voltage limits. The overall initial and final normalized concentrations
y0 and y f correspond to a cell SOC (top axis) of 1 and 0, respectively.

computational effort. Specifically, the EKF, fixed interval
Kalman smoother, and particle filter are implemented and
compared. The implementation of each observer can be found
in the literature, but brief descriptions will be given here.

The EKF [5], [6], [30] is an extension of the Kalman filter,
optimal for linear systems, to nonlinear systems where the
process and sensor noise are assumed to be uncorrelated,
white, and Gaussian. As is typical of model-based observers,
the EKF involves both a prediction step and a correction
step. In the prediction step, open-loop predictions of the
state vector and output are obtained from the model. The
state prediction is then adjusted in the correction step by
utilizing feedback from the measurement. The feedback gain
(optimal for a linear system) is calculated at each time step,
based on the knowledge of the model and noise covariance
matrices. For nonlinear systems, calculation of the observer
gain relies on a linearization of the nonlinear system dynamics
and output equation. In practice, the process and sensor noise
covariance matrices are not necessarily known, and there may
be significant model errors. Therefore, the noise covariances
are typically used as tuning factors to achieve the desired
observer behavior for a particular system.

The fixed interval Kalman smoother (or forward–backward
smoother) has the potential to improve upon the traditional
EKF by essentially running the filter twice, once forward in
time and once backward in time, over a fixed interval of
measurements [30], [35]. Once both forward and backward
estimates are obtained, they are combined in an optimal way
to minimize the estimation error covariance. The resulting
smoothed estimate has a smaller estimate error covariance than
either of the forward or backward estimates individually. The
obvious disadvantage of this method, other than the added
computational effort, is that the estimation can no longer
be performed in real time. It is necessary to wait until all
the measurements within the interval become available before
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TABLE II

TUNING PARAMETERS FOR EACH OBSERVER TYPE

even the initial smoothed state estimate can be obtained.
However, for SOH estimation this is not a significant problem,
since in practice aging parameters change very slowly and
need not be continuously updated in real time.

The particle filter is a Monte Carlo method used for state
estimation by representing the posterior probability density
function (pdf), i.e., the conditional pdf of the state given
a measurement, by a set of weighted random samples or
particles [30]–[32]. Each particle is assigned a weight based on
the likelihood that it represents the true state. The advantage
of the particle filter is that it does not require linearization of
the nonlinear model, nor does it require that the process and
sensor noise be Gaussian. Choosing the number of particles
to sample Np represents a tradeoff between estimate accuracy
and computational effort.

The relevant parameters for each observer are outlined
in Table II, and were tuned to achieve a desired compromise
between model error robustness, state convergence time, and
computational effort.

VII. METHODS FOR SOC/SOH ESTIMATION

A. Estimating Cell SOC

Estimating the states of one of the electrode particle
submodels gives an estimate of both bulk and surface concen-
trations of the particle; however, without the use of in si tu
XRD or similar techniques, it is only possible to experimen-
tally validate the bulk concentration estimate by comparing it
against Coulomb counting, or integrating the measured current
over time

SOCexp = SOC0 − 1

3600C

∫ t f

t0
I (t)dt . (23)

The initial SOC0 is taken from a cell level OCV–SOC lookup
table and the cell capacity C is obtained from the experimental

capacity in ampere-hours measured between the two voltage
limits. In this paper, the positive electrode state estimates
are validated with Coulomb counting because the positive
electrode is typically the power limiting electrode. In addition,
the positive electrode OCV is steeper than the negative in
most concentration ranges, so the positive state estimates are
generally less sensitive to voltage errors. Since the observer
estimates the electrode concentrations of each composite mate-
rial (ranging from 0 to the saturation concentration of the
electrode material), some effort must be made to convert the
concentration estimates to a cell level SOC (ranging
from 0 to 1, defined at the cell voltage limits) in order to
compare the result with Coulomb counting. The positive elec-
trode bulk concentration estimates for each of the composite
materials are first converted to an overall positive electrode
bulk SOC estimate via conservation of lithium within the
electrode

ˆSOCp = c̄LMOεLMO + c̄NMCεNMC

cmax,LMOεLMO + cmax,NMCεNMC
. (24)

This overall positive electrode bulk SOC operates between an
initial and final value y0 and y f corresponding to the upper and
lower voltage limits. The initial and final values y0 and y f are
the functions of the initial and final values of each composite
material

y0 = y0,LMOcmax,LMOεLMO + y0,NMCcmax,NMCεNMC

cmax,LMOεLMO + cmax,NMCεNMC
(25)

y f = y f,LMOcmax,LMOεLMO + y f,NMCcmax,NMCεNMC

cmax,LMOεLMO + cmax,NMCεNMC
. (26)

Finally, the estimated cell level ˆSOC is calculated by

ˆSOC = 1 − ˆSOCp − y0

y f − y0
. (27)

An example of this procedure is shown in Fig. 5 for a
constant current discharge. Once a cell level SOC estimate is
calculated, it can be validated against the experimental SOC
from Coulomb counting.

B. Estimating Capacity

Unlike with SOC estimation, capacity estimates do not
necessarily need to be made in real time, since capacity only
changes significantly over months or years of usage. This gives
some flexibility in making capacity estimates, and it is possible
to wait for ideal conditions before making an estimate.

For the composite LMO-NMC cells tested, previous work
used differential capacity analysis to show the dominant aging
mechanism to be solid-electrolyte interface (SEI) layer growth
at the negative electrode [23]. Although other mechanisms,
such as loss of active material, may become significant during
later stages of life [33], [34] or at high temperatures, only loss
of cyclable lithium is considered in this paper. The SEI layer
grows as a result of a lithium-consuming side reaction between
the electrolyte solvent and the electrode material. This causes
a shift in the normalized concentration operating ranges of the
positive (y0 to y f ) and negative (x0 to x f ) electrodes, shown
in Fig. 6, as the electrodes becomes less lithiated overall.
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Fig. 6. Example of a shift in the electrode operating range from a new to
an aged cell, as cyclable lithium is lost to SEI growth. In each electrode, the
operating range tends to shift to a less lithiated state.

Again, x0 and y0 correspond to the upper voltage limit, while
x f and y f correspond to the lower voltage limit.

The normalized concentration operating range of either
electrode can be converted to a capacity in ampere-hours by

C = (x0 − x f )cmax,nFALnεam,nεn/3600

= FALpεam,p

3600
((y f,LMO − y0,LMO)cmax,LMOεLMO

+ (y f,NMC − y0,NMC)cmax,NMCεNMC). (28)

This is the realizable capacity between the two cell voltage
limits and so is identical for each electrode. Therefore, an
estimate of the normalized concentration range of a given
electrode can be used to obtain an estimate of cell capacity.
First, it should be noted that a direct estimate of the lower
concentration limit x f or y f cannot be relied upon, since a
complete discharge of the battery is not expected in practice.
The upper concentration limit x0 or y0, however, can be
expected to be reached during regular charging. Again, since
estimation is only performed on one electrode at a time,
determining which electrode normalized concentration range
to estimate presents an interesting dilemma. The positive
electrode states are less sensitive to voltage errors due to
the steep positive OCV curve, but the shift in y0 for a
given δC is very small and difficult to detect. Conversely,
the negative electrode states are more sensitive to voltage
errors due to a flatter OCV curve, but the shift in x0 is
large and easier to detect. Through experimentation, it was
determined that the latter approach gave the best results, as the
problems due to the flat OCV can be mitigated with careful
selection of when to make an estimate. Therefore, the loss
in capacity is determined by estimating the shift in x0. Since
the concentration corresponding to x f is not encountered in
practice x f is related to x0 by a lookup table, via offline

Fig. 7. Demonstration of the increased negative electrode estimation error
in regions where the OCV is flat. A perfect model is assumed in order to
generate pseudodata. A constant 10-mV voltage measurement bias is applied
to the pseudodata voltage. The pseudodata are then used as the measurement
in the EKF to estimate the negative electrode states.

Fig. 8. Negative electrode OCV (measured from half cell experiment),
showing regions where the OCV is flat or steep.

simulation of the model during a low rate constant current
discharge. For various values of x0 corresponding to the upper
voltage limit, the model is simulated to determine the x f

corresponding to the lower voltage limit.
1) Estimating Capacity From an Estimate of x0: Estimating

x0 and x f is not as straightforward as simply estimating
the electrode concentration at a given point in time. The
negative electrode OCV has regions that are relatively flat,
which implies sensitivity to voltage model or sensor error.
This can be demonstrated by estimating the negative electrode
states for a CD cycle, where a perfect model is assumed but
a 10-mV voltage measurement bias is introduced (Fig. 7).
The negative electrode normalized concentration estimate is
poor in regions where the OCV is flat (Fig. 8), but converges
toward the true value in regions where the OCV is steeper.
The steep OCV regions are around normalized concentrations
of 0.58–0.65 and 0.22–0.35, with the latter region being
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Fig. 9. Block diagram of the combined cell SOC/SOH estimation algorithm.

the steeper of the two. However, the goal is to estimate x0
(essentially, the negative electrode initial condition, if the cell
begins at a fully charged state), which is typically greater
than 0.65, and may lie in a flat region of the OCV. This can
be observed in Fig. 7, as the estimate is unable to accurately
converge from an initial condition error at the beginning of the
discharge. Therefore, to obtain an estimate of x0, the strategy
is to wait until the estimate is likely converged (i.e., wait until
a steep OCV region is reached), and then calculate the initial
state by Coulomb counting backward in time starting from the
converged state.

Further complicating the problem, any estimation of the
negative electrode requires simulating the positive electrode
model open loop. This requires knowledge of the positive
electrode range y0 and y f , which also change as the cell ages.
However, y0 and y f at a given stage of life are directly related
to x0 and x f according to the following procedures:

1) estimate x0 and x f ;
2) calculate U0,n and U f,n at the initial and final state via

negative OCV lookup;
3) calculate U0,p = 4.15 + U0,n and U f,p = 2.8 + U f,n ,

since the upper and lower cell voltage limits remain at
4.15 and 2.8 V throughout the battery life;

4) calculate y0,LMO, y f,LMO, y0,NMC, and y f,NMC via the
corresponding positive OCV lookup;

5) calculate y0 and y f using (25) and (26).
The complete SOC/SOH estimation procedure is outlined

in Fig. 9. The observer is applied to the positive states to con-
tinuously estimate the cell SOC. Then after every CD cycle,
an estimate of x0 and x f is obtained by waiting until either
the mid-SOC region or low-SOC region is reached. Finally,
capacity is calculated from estimates of x0 and x f .

Essentially, there are dual observers running in parallel,
one that estimates the positive electrode states to obtain cell
SOC Obsp (simulating the negative electrode and liquid-phase
open loop) and one that estimates the negative electrode states
to obtain capacity Obsn (simulating the positive electrode
and liquid-phase open loop). Clearly, the submodels that are
simulated open loop will not be able to correct for initial con-
dition errors. It is therefore the role of the capacity estimation
algorithm to correctly update the x0 and y0 initial conditions
so that the open-loop submodels remain accurate.

The propagation of error in the combined SOC/SOH
estimation algorithm is a particularly important topic to
study. For example, in the SOH estimation block in Fig. 9,

the estimated parameter y0 is fed into the next open-loop
prediction of the positive electrode. It is conceivable that a
small error in a given y0 estimate could contribute to additional
error in the next y0 estimate, and so forth, resulting in a
positive feedback that would greatly amplify the initial error.
An initial investigation into this problem has shown the x0/y0
estimates to be robust enough that this positive feedback is
avoided; however, this topic will be studied further in future
work. Particularly, the error in the SOC/SOH estimates should
be quantified, or at least bounded. One advantage in the
algorithm design is that the only exchange of information
between the two observers comes from the update of x0 and x f

that are fed into the open-loop simulation of the negative elec-
trode used by Obsp. Since the parameters x0 and x f change
only very slowly over hundreds of ampere-hours, they have a
negligible effect on the stability of the cell SOC estimation,
which operates over a much faster time scale.

C. Initializing the Electrodes

Estimates of the electrode composition ranges,
x0, x f , y0, and y f , are used to initialize the electrode
concentrations at the beginning of a given cycle. Assuming
that the cell is at equilibrium at the start of the cycle, the
initial SOC of each electrode is identical, when normalized
by its composition range

ˆSOCp,0 − y f

y0 − y f
= ˆSOCn,0 − x f

x0 − x f
(29)

where ˆSOCp is defined in (24) for the composite electrode
and ˆSOCn is simply equal to c̄n/cmax,n . In addition, the initial
cell voltage must equal the difference between the positive
and negative OCV, evaluated at their respective concentrations.
In the case of the composite positive electrode, both the LMO
or NMC OCVs may be used (forming two separate equations).
Finally, a nonlinear iterative solver is used to solve for the
initial SOC of each electrode active material (three equations
and three unknowns).

VIII. RESULTS

To validate the combined SOC/SOH estimation algorithm,
the estimation was performed on five different automotive
pouch cells aged under different conditions. The five cells
differ in the final SOC that was reached in CD mode and
in the charge rate.

A. SOC Estimate Validation

The cell SOC estimate is compared with SOC from
Coulomb counting in Fig. 10 for Cell 2 under a CD PHEV
cycle taken at the beginning of life (BOL). Only the results
using the EKF are shown, since it requires the least com-
putational effort of the three observer types considered and
is therefore the most practical for real-time SOC estimation.
The cell SOC estimate converges quickly from an imposed
initial condition error, and shows good agreement with the
SOC from Coulomb counting, with a maximum error of less
than 2% during the CD portion of the cycle. Increased estimate
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Fig. 10. Estimation results for Cell 2 over a CD CCCV charge profile.
(a) Imposed current profile. (b) Predicted and measured cell voltage. (c) Cell
SOC estimate and SOC from Coulomb counting, showing convergence from
an initial condition error. (d) Cell SOC estimate error.

error up to 4% is seen during the constant voltage charge due
to poor open-loop model agreement during this portion of the
charge. This level of SOC estimate error is similar among all
the cells tested.

Fig. 11 shows the estimated surface and bulk concentrations
of each individual composite electrode material over the same
PHEV cycle, as well as the current split factor; although again,
these cannot be easily validated experimentally. Note that,
despite the fact that the current split factor exceeds 1 in some
instances, this does not translate into a large current going to
the particle, as these are instances when the total current is
small. In other words, there are no large current spikes going
to a particle that could cause a large error in the state trajectory,
as indicated by Fig. 11(c).

B. Capacity Estimate Validation

For capacity estimation, the x0 estimate is obtained by
waiting for state convergence in a steep OCV region before
Coulomb counting backward to the beginning of the discharge.
Therefore, a single capacity estimate is obtained after each

Fig. 11. Estimation results for Cell 2 over a CD CCCV charge profile.
(a) Estimated bulk and surface normalized concentrations for each composite
material. (b) Current split factor βLMO (βNMC is simply equal to 1—βLMO).
(c) Current (in amperes) going to the LMO particle compared with the total
current.

CD cycle is complete. As noted previously, the low-SOC
region from 0.22 to 0.35 is the preferred region to record the
converged state since it corresponds to a steeper OCV than
the mid-SOC region between 0.58 and 0.65; however, some
cells are not sufficiently discharged to reach the low-SOC
region. In these cases, the converged state estimate is
taken in the mid-SOC region (specifically at 0.6).
Otherwise, if the cell does reach the low-SOC region,
the estimate at mid-SOC is discarded and the converged state
estimate is taken at the midway point between 0.35 and the
lowest concentration reached (assuming the value is not less
than 0.22). Capacity estimates for the five cells are shown
in Figs. 12–16, and are compared with the measured
capacities at periodic assessments. For each capacity estimate,
it is noted whether the estimate relied on a converged state
estimate taken in the low-SOC region or mid-SOC region.
In addition, for each cell, three different estimation methods
(EKF, Kalman smoother, and particle filter) are compared.
The estimation results are summarized in Table III.

The first thing to note is that after each capacity assessment,
the estimates show some small amount of capacity recovery.
This is expected since the cells would typically rest for
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Fig. 12. Capacity estimation results for Cell 1 aged with a CD profile
to 25% SOC charged at C/3.

Fig. 13. Capacity estimation results for Cell 2 aged with a CD profile
to 25% SOC charged at 3C/2.

around a day while the capacity assessments were carried out,
allowing some capacity recovery.

Overall, the capacity estimates are more accurate and have
a lower variance for cells that discharged to the low-SOC
region (Cells 1–3). This result is expected, since the estimates
should be less sensitive to model and sensor errors in the
low-SOC region. In addition, the mid-SOC range is relatively
small (only spans a normalized concentration of 0.07), so it
becomes more difficult to decide when the estimate is truly
converged. Essentially, there is a chance of missing this
mid-SOC region, and taking the estimate too early in the
discharge (when the estimate has not yet converged) or too
late (when the estimate is starting to diverge again). At BOL,
Cells 4 and 5 are not discharged sufficiently to reach the
low-SOC region, so the initial estimates for these cells are
taken in the mid-SOC region. However, as the estimated
x0 decreases over time, the end of the CD cycles begin
to cross the threshold into the low-SOC region, at which

Fig. 14. Capacity estimation results for Cell 3 aged with a CD profile
to 25% SOC charged at 5C.

Fig. 15. Capacity estimation results for Cell 4 aged with a CD profile
to 35% SOC charged at C/3.

point the algorithm switches to estimate in the low-SOC
region. An important point here is that although the estimated
concentration may cross into the low-SOC region, triggering
the switch, the actual cell may not have done so. This is
most likely the case for Cell 5, which is only discharged to
45% SOC. Right before the switch to an estimate at low-
SOC is made, near the end of the test, the estimated capacities
happen to be lower than the measured capacity (at least for
the EKF and smoother). This means that the switch is made
prematurely resulting in additional inaccuracies in the estimate
after the switch is made. That said, the EKF and smoother
eventually switch back to estimating in the mid-SOC region,
tending to oscillate between the two regions. These problems
illustrate the difficulty in relying on an imperfect estimate to
determine if thresholds have been crossed.

In comparing the three observer types, there are no large
differences in the estimate error mean or variance among
the observers. The particle filter tends to produce slightly
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TABLE III

CAPACITY ESTIMATION RESULTS

Fig. 16. Capacity estimation results for Cell 5 aged with a CD profile
to 45% SOC charged at C/3.

more accurate but noisier estimates than the other observers,
particularly when estimating in the mid-SOC region. Overall,
the EKF performs well without the additional compu-
tational effort required for the smoother and particle
filter.

1) Maintaining SOC Accuracy: In addition to estimating
cell capacity, another important objective in estimating the
changes in model parameters corresponding to the dominant
degradation mode within a cell (e.g., x0 as it relates to loss
of cyclable Li) is to maintain an accurate model over time,
thereby maintaining an accurate SOC estimate over time.
Fig. 17 shows how the accuracy of the SOC estimate changes
over time for Cell 2 (the other cells showed a similar result).
The estimated x0 is used to update the model after each
CD cycle, and as described previously, the SOC estimation is
done using the EKF on the positive electrode submodel. The
capacity used to calculate the measured SOC by Coulomb
counting is obtained by interpolating between each periodic
capacity assessment.

Fig. 17. Root mean square and maximum SOC estimate error for Cell 2.
Each point indicates the error over a single CD-CCCV profile.

The SOC estimate error over a given CD-CCCV profile
remains fairly constant throughout the life of the cell,
indicating that the model is being updated correctly with
estimates of x0. Note that the outliers in the plot are instances
where the profile had two CCCV charge portions, over which
the model is less accurate.

IX. CONCLUSION

In this paper, a reduced-order electrochemical model for
a composite electrode battery was applied in a dual-observer
algorithm to estimate SOC and capacity. The estimates were
validated against experimentally measured cell SOC and
capacity over the course of an aging campaign. The capacity
estimation algorithm performs well as long as the cell is
discharged to a sufficiently low SOC, where the negative
electrode OCV is steep and state estimates are less sensitive to
voltage errors. Estimates taken in the mid-SOC range produced
less reliable capacity estimates despite the small window
of relatively steep OCV in this range. There was not
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TABLE IV

EXPRESSIONS FOR LIE DERIVATIVES AND OBSERVABILITY MATRIX

a significant improvement in the capacity estimation
accuracy when using the more computationally expensive
Kalman smoother and particle filter over the simpler EKF.
Further estimation accuracy could be achieved with greater
knowledge of the model parameters, but this paper demon-
strates that the EKF approach is an attractive option for
onboard SOH estimation. Future work in this area will focus
on capacity and available power estimation in the presence of
multiple degradation modes, i.e., if both cyclable lithium and
active material are lost simultaneously.

APPENDIX

MODEL OBSERVABILITY CALCULATIONS

The nonlinear output equation for the single particle system
makes calculation of the Lie derivatives and observability
matrix tedious. An attempt will be made here to at least outline
the process of calculating each element in the observability
matrix, even though the entire matrix cannot be shown.
Zero current will be assumed to reduce the length of the
expressions, thereby eliminating the charge transfer and ohmic
overpotential terms. This results in the following simplifi-
cation of the dynamics and output equation (dropping the
subscript i ):

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

⎤
⎥⎥⎦ = f (x) =

⎡
⎢⎢⎢⎣

0 1 0

0 0 1

0
1

b3

b2

b3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎦ (30)

g(x) = s3c(x)3

c3
max

+ s2c(x)

c2
max

+ s1c(x)

cmax
+ s0 (31)

where the substitution c(x) = a0x1 + a1x2 + a2x3 has
been made. The first Lie derivative and the first row of
the observability matrix are shown in Table IV, without
expanding the other matrix elements. Again, it should be
made clear that the calculation of the complete observabil-
ity matrix, without assuming zero current, was done using
symbolic manipulation software resulting in a matrix with
full rank.
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