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This paper presents an adaptive supervisory controller, based on Pontryagin’s Minimum Principle (PMP),
for on-line energy management optimization of a plug-in hybrid electric vehicle. Using minimum driving
information, such as the total trip length and the average cycle speed, the proposed algorithm relies on
adaptation of the control parameter from state of charge feedback. The proposed strategy is referred in
the paper to as Adaptive-PMP (A-PMP). The new controller is applied to a detailed forward vehicle sim-
ulator of the plug-in hybrid Chevrolet Volt manufactured by General Motors, where an experimentally
validated LG Chem battery model is used. The strategy we propose aims at achieving a blended trajectory
of the state of charge to minimize the consumed fuel, resulting in an overall better performance than the
actual Charge Depleting/Charge Sustaining (CD/CS) strategy currently used on-board of the vehicle. A
comparative analysis of three strategies, i.e., the optimal one (PMP), the proposed one (A-PMP) and the
in-vehicle one (CD/CS), is conducted in simulation which shows that improvement above 20% in fuel con-
sumption may be achieved when the proposed algorithm is used instead of the current on-board strategy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Rising fuel price, pollutant emissions and an increasing concern
for global warming have initiated a development process within
the automotive industry towards electrified powertrains. Energy
efficient transportation involves the introduction and use of
advanced vehicle powertrains, i.e. hybrid and electric vehicles or
vehicles running on alternative fuel, which are regarded today as
promising technologies to displace a significant amount of
petroleum relative to conventional vehicles [1]. Previous research
has shown that optimization of hybrid vehicles is crucial for
reaching high overall vehicle efficiency. Energy management con-
trol [2–5] and component design optimization [6–8], are the two
major areas of research in the context of hybrid vehicles.

In today’s hybrid vehicles, heuristic rule-based control strate-
gies are used for on-board energy management [5,9,10], which call
for simple implementation, low memory requirements and high
computational efficiency. However, the heuristic-based design
does not transfer from vehicle to vehicle resulting in an
architecture-dependent rule development process (requiring ad-
hoc design) with a sometimes high calibration effort. Model-based
control design, on the other hand, has been shown to improve fuel
economy. Recent research has, in fact, turned toward the develop-
ment of strategies that are based on optimal control principles and
that can guarantee optimality of the power split under a different
range of operating conditions as well as transportability of the
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Fig. 1. Kinematic architecture of the Chevrolet Volt, Grebe and Nitz [21].

Table 1
Main characteristics of the vehicle.

Curb weight 1715 kg
Engine – SI 1.4 l maximum power 63 kW@4800 rpm
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strategies to different vehicle architectures and component sizes
leading to a lower calibration effort.

This paper focuses on the design of a novel model-based energy
management strategy for reducing fuel consumption in a plug-in
hybrid electric vehicle (PHEV) when minimum information on
the traveled trip is available. PHEVs are hybrid electric vehicles
(HEVs) where the electrochemical energy storage device, bigger
than in the case of charge-sustaining HEVs, can be powered at
home by plugging it on electricity.

The GM Chevrolet Volt (or Opel Ampera in Europe) is the first
PHEV-402 in the market. The implemented discharge strategy con-
sists of operating the vehicle as an electric vehicle until the battery
is depleted and then proceeding in charge sustaining operation as
a conventional HEV using the internal combustion engine. This strat-
egy is referred to as the Charge Depleting/Charge Sustaining (CD/CS)
strategy. However, if the length of the trip is greater than the nomi-
nal electric range, the overall energy cost (electricity and gasoline)
can be reduced if the battery is discharged more gradually, such that
it is depleted towards the end of the trip [11]; this type of strategy is
often called a blended strategy as the use of electricity and gasoline
is blended over the entire trip length. Milder usage of the battery
(lower C-rates and Ah-throughput) results from the implementation
of a blended strategy, with the consequence of a slower battery
aging process [12]. On the other hand, though, a blended policy
can only be used if the trip details, such as distance, velocity and alti-
tude profiles are known a priori.

In [13], it is shown that when the road grade profile is approxi-
mately flat then it is possible to obtain close-to-optimal energy
cost, given the trip length is known. However, a quasi-linear
battery discharge profile is no longer optimal if the topography is
hilly or mountainous. Not-flat road profiles are considered in
[14], where a tuning of the energy management strategy, account-
ing for variations in potential energy throughout the trip, is pro-
posed. A different approach is considered in [15], where a
reference trajectory for the battery discharge trend is precalculated
with dynamic programming (DP) (using a priori information avail-
able from the navigation system) and tracked during real time
vehicle operation using an Adaptive-ECMS strategy [2,16,17]. A
similar idea was also used in [18] for a charge-sustaining HEV,
where the reference battery discharge profile is determined as a
function of vehicle position with the aim of maximizing the
Electric motor maximum power 111 kW@4300 rpm
Generator maximum power 53 kW@4000 rpm
Battery maximum power 110 kW2 PHEV-x indicates a PHEV with a x-mile electric range estimated on a standardized

driving cycle.
recuperated energy, given the knowledge of the topographic
profile of the future road segments and the corresponding average
traveling speeds.

In this paper, we propose a novel model-based energy manage-
ment strategy based on the Pontryagin’s Minimum Principle (PMP)
[19], to minimize the fuel consumed in a PHEV. The developed con-
trol strategy uses minimum information about the trip, i.e. only the
average speed and the traveled distance, the most reliable parame-
ters to be predicted in advance or, most commonly, to be retrieved
from a GPS device when setting up the driving mission at the
beginning of a trip. The proposed strategy, developed for the GM
Chevrolet Volt vehicle, is based on the on-line minimization of
the equivalent cost function where the adaptation of the control
parameter, the co-state, is achieved by means of an improvement
of the adaptation scheme proposed in [17]. It is shown in sim-
ulation that better performances are obtained, in terms of fuel
economy, when the proposed strategy is used against the CD/CS
strategy implemented today on the vehicle.
2. GM Chevrolet Volt Powertrain and vehicle modeling

The powertrain architecture of the Chevrolet Volt consists of the
power-split, planetary-based system, shown in Fig. 1. Figure 1 also
shows the main vehicle components and the mechanical coupling
of the elements of the powertrain system. Three clutches
(C1;C2;C3) allow connecting and disconnecting the internal com-
bustion engine (ICE), the generator (GEN) and the main traction
motor (MOT) [20,21]. Both electric machines (GEN and MOT) can
work in both motoring and generating mode and for both of them
the sign convention is that positive torque and positive electric
power indicate motoring operation.

Vehicle component characteristics are reported in Table 1.
In this work, a detailed model of the Chevrolet Volt built upon

real vehicle data, developed in Matlab�/Simulink� environment
by researchers at the IFP Energies Nouvelles, Sciarretta et al. [22],
Battery energy capacity 16 kWh



Fig. 2. Structure of the forward vehicle simulator for model-in-the-loop development.
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Fig. 3. Electric motor efficiency map [20,21].
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Fig. 4. Generator efficiency map [20,21].
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is used. The level of detail of the vehicle component models and its
forward-looking approach ensures reliable estimation of the fuel
consumption. The simulator consists of longitudinal vehicle
dynamics, battery state of charge (SoC) dynamics, stationary maps
for MOT, GEN and ICE, a transmission model [23] and a supervisory
controller for the in-vehicle energy management. In this paper, an
experimentally validated battery pack model is used for model-in-
the-loop design and simulation, that replaces the battery model
provided with the original vehicle simulator. The replaced battery
model is based on experimental data, from the LG Chem battery
used in the Chevrolet Volt vehicle, collected at the Center for
Automotive Research, The Ohio State University, and presented
in the next Section 2.2. The simulator, whose modular structure
is depicted in Fig. 2, consists of: Driver module, Supervisory
Controller module, Vehicle module.

The Driver module contains information about the driving cycle,
namely velocity and road grade, and implements a driver model
(PID controller) to track the desired velocity profile, vdes in Fig. 2.
It generates the torque requested at the wheels, Tw, needed to fol-
low the desired speed profile, which is passed onto the Supervisory
Controller module. The development and implementation of the
energy management strategy to be used in the Supervisory
Controller module of the vehicle simulator is the main focus of this
paper and it is discussed in more details in the following sections.
This module generates the setpoints of the actuators which are
sent to Vehicle module. Those are: the torques of the engine and
the electric motor, the speed of the generator, as well as the status
of the three clutches. The setpoint values are applied to the three
machines (MOT, GEN, ICE) and the status of the clutches defines
the mode of operation of the powertrain. This can be one of the fol-
lowing: One-motor EV, Two-motor EV, Range-extender mode and
Power-split mode, as discussed in Section 4. In addition, in the
Vehicle module, the actual vehicle speed, vveh, is obtained by
integration of the vehicle dynamics equations, and fed back to
the Driver and Supervisory Controller modules, together with the
battery SoC.

2.1. Electric machines and internal combustion engine

The electric motor and the generator are modeled by means of
their efficiency maps, shown in Figs. 3 and 4 while the engine is
modeled with the brake specific fuel consumption (BSFC) map,
from which the efficiency map is evaluated, as shown in Fig. 5.

2.2. Battery

The battery pack used in the GM Chevrolet Volt is composed of
288 LG Chem R1S3 Pouch Li-Ion cells, in a 96S 3P pack config-
uration, Parrish et al. [24]. Each cell has a nominal capacity, Q nom,
of 15 Ah and nominal voltage, Voc , of 3.85 V [35].

A set of experimental tests were conducted to characterize the
battery cell over different temperatures (�10 �C, 5 �C, 15 �C, 30 �C,
50 �C) and the entire domain of SoC range (0–100%). Fig. 6 shows
the open-circuit voltage curves for different temperatures, and
Fig. 7 show the battery internal resistance, R0, (a) and battery
capacity over the temperature envelope of [�10 �C � 50 �C], (b).
The zero-th order equivalent circuit of Fig. 8 is used to model
the battery in the vehicle simulator. This model has been demon-
strated to be adequate to predict losses, in face of fast
computational features, which are strictly needed when an
energy-based simulator is used for control design purposes [3,26].

The battery load voltage, VL, is obtained as:

VL ¼ VocðSoCÞ � I � R0ðSoCÞ ð1Þ

where I is the current flowing in and out of the battery terminals
(positive during discharge). In this study, the dependence of model
parameters with the temperature has been neglected. In the case of
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the open-circuit voltage, this assumption is legitimated by
experimental results, (Fig. 6 and [27]). In the case of the resistance,
we leave the investigation of the dependence with respect to the
temperature to future studies. On the other hand, the variation of
battery open circuit voltage and internal resistance with respect
to the SoC is not negligible, as shown in Fig. 6 and 9, and is
accounted for in this study.

2.3. Planetary gear set

The transmission system of the Chevrolet Volt consists of a
planetary gear set, shown in Fig. 1. The electric motor is connected
to the sun, the generator is connected to the ring and the transmis-
sion output to the satellite carrier [21]. The kinematic Willis
relation, Willis [28], links the speeds of ring (xr), sun (xs) and
carrier (xc) as follows:

q �xr þxs ¼ xc � ðqþ 1Þ ð2Þ

where the constant parameter q ¼ 2:24 represents the ratio
between the number of teeth of the ring (Nr) and the teeth of the
sun (Ns). As far as the torques at the gear set are concerned, the
following relationship holds true:

Tr

q
¼ Tc

qþ 1
¼ Ts ð3Þ

with Tr; Ts and Tc being the torques of ring, sun and carrier,
respectively, for which the following relations hold:
Ts ¼ TMOT

Tr ¼ TGEN þ C3 � TICE

Tc ¼
Tw

f d

ð4Þ
where TMOT and TGEN are the motor and generator torques,
respectively, while f d, is the fixed gear ratio (final drive ratio) of
the differential, which connects the output axle to the wheels.
2.4. Vehicle dynamics

The total force generated by the powertrain in the Vehicle mod-
ule, Fpwt , is applied to the vehicle and the actual speed is then com-
puted by integrating the longitudinal vehicle dynamics equation:
1:1 �m d
dt

vveh ¼ Fpwt þ Ftot ð5Þ
where m is the vehicle mass, incremented by 10% to account for the
rotational inertia of the components, while Ftot represents the total
road load, which accounts for the aerodynamics and rolling resis-
tance forces and the grade force for non-flat roads. The computed
actual vehicle velocity, vveh, is then fed back to the Driver module
where it is compared to the desired vehicle velocity.
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3. Optimal control problem formulation

The energy management problem for the Chevrolet Volt is cast
into a constrained optimization problem aimed at minimizing the
fuel consumed by the vehicle over a given trip while fulfilling the
torque demanded by the driver and meeting the physical
constraints of the powertrain components. Formally, the problem
consists of minimizing the total mass of fuel, during a driving mis-
sion, or equivalently, minimizing the following cost function, J :

J ¼
Z tf

t0

_mf ðuðtÞÞdt ð6Þ

where uðtÞ is the control action, _mf ðuðtÞÞ is the instantaneous fuel
consumption rate and ½t0; tf � is the optimization horizon. Typically,
the choice is made such that uðtÞ ¼ PbattðtÞ is the control input,
Kim et al. [3], where Pbatt is the battery power. Considering a
quasi-static engine model, the fuel consumption is only a function
of the engine torque and speed. As it will be discussed later, these
variables can be related to the control input, Pbatt , and the driver’s
power demand, Pw, that allows to express the fuel consumption
as _mf ðPbatt; PwÞ. The energy management problem, by its very nat-
ure, is a constrained optimization problem, where the objective
function J is minimized under system dynamics constraints,
instantaneous (local) constraints on the state and control, and
finally integral (global) constraints on the state, as outlined in the
following.

System dynamics: The battery SoC is the scalar state variable for
the energy management problem and is predicted using the zero-
th order model discussed in Section 2.2. The choice of SoC as the
only state variable is due to the fact that the other components
dynamics are much faster and it has been demonstrated in [4] that
for the purpose of fuel economy estimation, they can be neglected.

Multiplying Eq. (1) by the current I on both sides, the battery
power, Pbatt , is expressed as:
Pbatt ¼ VL � I ¼ VocðSoCÞ � I � I2 � R0ðSoCÞ ð7Þ

Solving the algebraic equation – (7) – for the current, we obtain:

I ¼
VocðSoCÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VocðSoCÞ2 � 4 � PbattR0ðSoCÞ

q
2R0ðSoCÞ ð8Þ

The variation of the battery SoC is defined by the following
equation:

_SoC ¼ �gc �
I

Q nom
ð9Þ

where gc represents the coulombic efficiency of the battery,
Sciarretta and Guzzella [26] and Qnom is the battery nominal capac-
ity, as already mentioned. Therefore, the system dynamics, namely
the SoC variation, can be expressed as a function of the battery
power by replacing (8) into (9):

_SoC ¼ �gc

VocðSoCÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VocðSoCÞ2 � 4 � Pbatt � R0ðSoCÞ

q
2R0ðSoCÞQ nom

¼ f ðSoCðtÞ; PbattðtÞÞ ð10Þ

The battery power in Eq. (10) can be calculated from the
powertrain as a combination of the motor power, PMOT , and the
generator power, PGEN , as follows:

Pbatt ¼ gc
MOT � PMOT þ gc

GEN � PGEN þ PAUX

¼ gc
MOT � TMOT �xMOT þ gc

GEN � TGEN �xGEN þ PAUX ð11Þ

with PAUX representing the auxiliary loads, gMOT and gGEN , the motor
and generator efficiencies obtained from their corresponding
efficiency maps, and c ¼ 1 in recuperating and c ¼ �1 in motoring.

Integral constraints: The integral constraints concern with initial
and final values of SoC, namely SoCðt0Þ and SoCðtf Þ, during PHEV
operation over a given driving profile. These values are:

SoCðt0Þ ¼ 0:95; SoCðtf Þ ¼ 0:3

and they indicate that a fully charged battery is available at the
beginning of the trip and a 30% SoC threshold is selected to limit
the activity of the battery at low state of charge.

Instantaneous constraints: Similarly to the integral constraints
on battery SoC, there are instantaneous constraints imposed on
the state and control variables that need to be satisfied at each
instant of time. These constraints mostly concern with physical
limits, such as the minimum and maximum torque and speed of
ICE, MOT and GEN, and the minimum and maximum battery power
and SoC:

SoCmin 6 SoCðtÞ 6 SoCmax

Pbattmin
6 PbattðtÞ 6 Pbattmax

Txmin
6 TxðtÞ 6 Txmax

xx;min 6 xxðtÞ 6 xx;max; x ¼ ICE;MOT;GEN

ð12Þ

where the subscript min represents the minimum threshold, while
the subscript max represents the maximum threshold for the
variables.

4. Pontryagin’s Minimum Principle

In order to develop an on-line adaptive implementable strategy
we first solve the optimal energy management problem applying
the PMP [19,29], which provides a set of necessary conditions for
the global optimality of a constrained optimization problem. As
conditions on battery efficiency apply, according to [30], the neces-
sary conditions of optimality provided by PMP are also sufficient,
hence, they can be used to find the global optimal solution to the
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energy management problem of PHEVs, provided that the driving
cycle is known a priori.

In the PMP problem formulation the Hamiltonian function, H, is
defined as:

HðSoCðtÞ;uðtÞ; kðtÞÞ ¼ _mf ðuðtÞÞ þ kðtÞ � _SoCðtÞ ð13Þ

where kðtÞ is the co-state associated to the optimization problem

and _SoCðtÞ is given by Eq. (10), Serrao et al. [31]. The PMP allows
reducing the global optimization problem, described in the previous
section, to a local instantaneous problem, consisting in finding the
optimal control sequence u�ðtÞ that minimizes the Hamiltonian
function at each instant of time:

u�ðtÞ ¼ arg min
u

HðSoCðtÞ;uðtÞ; kðtÞÞ ð14Þ

while the state and the co-state evolve according to:

_SoCðtÞ ¼ @H
@k
¼ f ðSoCðtÞ; PbattðtÞÞ ð15Þ

_kðtÞ ¼ � @H
@SoC

¼ �k
@ _SoC
@SoC

ð16Þ

In Eq. (16), the derivative of _mf as a function of the state
variable SoC has been neglected since _mf is not an explicit function
of SoC. Eqs. (15) and (16) represent a system of two first order dif-
ferential equations in the variables SoCðtÞ and kðtÞ, for which two
boundary conditions are required, which are the initial and the
final values of the SoC state, namely SoCðt0Þ and SoCðtf Þ. Despite
being completely defined, this two-point boundary value problem
can be solved only numerically, by using the well-known shooting
method [31].

While minimizing H, constraints are also enforced at each
instant to ensure that the total power demand at the wheels is
satisfied. Since in traction the vehicle can operate in four different
modes – depending on the status of the clutches, C1;C2, and C3 –
the power matching demand constraints are singled out below for
each mode [23]:

1. One-motor EV (C1 ¼ 1;C2 ¼ 0;C3 ¼ 0)3: only the electric motor
propels the wheels, while the engine and generator set
(GENSET) is switched off. The power requested at the wheels is:
Pw ¼ PMOT ð17Þ

Hence, in this mode there are not degrees of freedom as the
power at the battery, from Eqs. (11) and (17), depends only on
the driver’s power demand, namely Pbatt ¼ PbattðPwÞ.

2. Two-motor EV (C1 ¼ 0;C2 ¼ 1;C3 ¼ 0): the generator is
connected to the planetary gear set but disconnected to the
ICE. Hence, the driver’s power demand is satisfied by both the
electric motor and the generator, as given by:
Pw ¼ PMOT þ PGEN ð18Þ

By using the set of equations in Section 2.3, the torques from the
devices are dictated from the torque at the wheels, while the
speed of the generator, from Eq. (2), is the degree of freedom
which can be optimally selected by the energy management
strategy. From Eq. (11), Pbatt is a unique function of the generator
speed xGEN , for any given power demand Pw, i.e. PbattðxGEN; PwÞ.

3. Range-extender mode (C1 ¼ 1;C2 ¼ 0;C3 ¼ 1): this is a typical
series mode of operation, with the electric motor alone driving
the wheels, and the GENSET supplying power to the battery or
directly to the electric motor. The power demanded at the
wheels is satisfied by:
3 A v
clutch i
alue of 1 means that the clutch is closed, while a value of 0 means that the
s opened.
Pw ¼ PMOT ð19Þ

Under the range-extender mode kinematic constraints, Grebe
and Nitz [21], it is possible to express ½TMOT TGEN� and
½xMOT xGEN� as a function of ½Tw TICE� and ½xw xICE�, making Pbatt

a function of TICE and xICE, for any given power demand Pw,
namely, Pbatt ¼ PbattðTICE;xICE; PwÞ. The variables, TICE and xICE are
selected to minimize the fuel consumption on each feasible
engine operating line for a given Pw, making the GENSET operate
along its maximum efficiency line4 [31]. Thus, the dimension of the
control problem reduces from two control variables, TICE and xICE

to only one, PbattðxGEN; PwÞ, since also the fuel consumption _mf can
be expressed as a function of Pbatt only, i.e. _mf ðPbattÞ.

4. Power-split mode (C1 ¼ 0;C2 ¼ 1;C3 ¼ 1): the three actuators -
i.e., electric motor, generator, engine - are all connected
together through the planetary gear set with a variable speed
ratio that depends on the generator speed, giving:
Pw ¼ PMOT þ PGEN þ PICE ð20Þ

This mode allows transmitting mechanical power directly from
the engine to the wheels. Under the power-split mode kinematic
constraints, Grebe and Nitz [21], it is possible to express
½TMOT TGEN� and ½xMOT xGEN� as a function of [Tw TICE] and [xw

xICE] and, considering Eq. (20), it is immediate to see that Pbatt

can be expressed as a function of the unknown [TICE xICE], for
any given Pw, namely, Pbatt ¼ PbattðTICE;xICE; PwÞ. Following the
same reasoning used for the Range-extender mode, in the
Power-split mode operation, PbattðxGEN; PwÞ is still the only
control variable used to minimize the fuel consumed while
satisfying the power requested by the driver.

4.1. PMP implementation

When implementing the PMP on a vehicle simulator a few
considerations need to be underlined, as far as the co-state
dynamics and state boundary constraints are concerned.

4.1.1. Co-state k
It is worth noting that the co-state variation with respect to

time, Eq. (16), is different from zero if the system dynamic equa-
tion f ðSoCðtÞ; PbattðtÞÞ is a function of the SoC and this is true given
that the open-circuit voltage and the internal resistance of the bat-
tery depend on the SoC. Nonetheless, simulating the PMP, solving
Eq. (15) and (16) with the shooting method, shows that the varia-
tion of kðtÞ with respect to time is negligible, as also found in
[30–32], due to the fact that the battery efficiency is almost
constant in this application. Fig. 10 shows that the co-state varia-
tion for a concatenation of NEDC cycles is within 0.005% overall
variation from the initial value. As practically no variation of the
co-state is taking place over vehicle operation, one can consider
kðtÞ ¼ k0 8t 2 ½t0; tf � and determining k0, that solves the optimiza-
tion problem, will guarantee optimality.

Moreover, from simulations studies, Sharma et al. [32], it has
been shown that the optimal value of k0 is strongly dependent
on the driving cycles and, for same velocity traces, it increases with
the trip length. In [33], the authors have also analyzed the behavior
of the optimal SoC trajectory under different road grade profiles;
the optimal values of k0 and fuel consumptions have been com-
pared for the same velocity traces and different grade profiles, con-
firming that for high-power demanding driving missions higher
values of k are required to maintain the SoC within the limits.
4 Practically speaking, the main limitation of this approach is in that the optima
operating points of the engine are calculated neglecting transient phenomena. This is
a strong assumption but is justified by the fact that a quasi-static modeling approach
is used.
l
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Ultimately, the selection of the optimal (and unique) value of k0

varies from cycle to cycle, which is unknown, hence the on-line
implementation of PMP cannot guarantee optimality.
Nonetheless, the knowledge from PMP is used, in this study, to
design a co-state adaptation algorithm that would make the energy
management strategy based on PMP implementable in-real time,
as highlighted in Section 5.

4.1.2. Penalty function
It is known that to ensure the global constraints on SoC to be

met, a penalty function needs to be used in the Hamiltonian
[4,19]. In the present study, an additive penalty function lðSoCÞ
is considered, leading to:

HðSoC;Pbatt; kÞ ¼ _mf ðPbattÞ þ ½kþ lðSoC;tÞ�f ðSoC;PbattÞ ð21Þ

where, the penalty function is in the form of a piecewise SoC-de-
pendent function given by:

lðSoCÞ ¼
K if SoC < SoCmin ¼ 0:30
�K if SoC > SoCmax ¼ 0:95
0 else

8><
>:

where K is a design parameter selected in simulations to ensure the
SoC trajectory within the global constraints5.

Within the operational range of the SoC (95% to 30%), the value
of lðSoCÞ is zero and does not change the original formulation (see
Eq. (13)). As soon as the SoC tends to go below the admissible lim-
its, the penalty function (positive K) adds a cost to the battery
usage that prohibits the optimizer to use the battery. Similarly, if
the SoC tends to go above the upper limit of 0.95, the penalty func-
tion (negative K) decreases the cost of the battery inducing the
optimizer to use the electric energy over the chemical energy.

5. Adaptive-PMP supervisory control strategy

In this section, we propose an algorithm to update the co-state k
as a result of changes in driving conditions. Inspired by the adapta-
tion law proposed in [17] for charge sustaining HEVs, we design an
adaptive energy management strategy based on PMP, hereafter A-
PMP, able to guarantee suboptimal performances in PHEV
operations. We make the assumptions that the average cycle speed
5 Different choices of penalty functions could have been done. In [34], it is proved
that PMP using the penalty function lðSoCÞ (with �K K bounds) is equivalent to the
PMP formulation when using a term proportional to the violation in the penalty.
(related to the mission typology) and the total traveled distance
(this information may come from the GPS) are known and no infor-
mation about the road grade is assumed.

The bottom plot of Fig. 11 shows the optimal SoC trajectory
obtained after solving the PMP for the driving cycle of total length
of 150 km, shown on the upper plot of Fig. 11 when no grade varia-
tion is considered (hereafter, No Grade scenario). The optimal SoC
trend turns out to be a quasi-linear decreasing function of the total
traveled distance, which is referred in literature to as blended
strategy [11,15,32]. Fig. 12 portrays the optimal SoC trajectory
for the grade profile with initial downhill signature shown in the
upper plot of the same figure (hereafter, Downhill scenario), while
Fig. 13 portrays the optimal SoC trajectory for the grade profile
with initial uphill signature, shown in the upper plot of the same
figure (hereafter, Uphill scenario). It can be seen that, when the
road grade is different from zero, the global optimal solution from
PMP does not exhibit a linear SoC trend, rather a zig-zag type of
trend (along the grade profile) is followed. Thus, if the knowledge
of upcoming grade were available or could be estimated, one could
in principle think of feeding this information back to the energy
management controller to better track the optimal non-linear
SoC profile.

From these observations, we design an adaptation law that is
composed of two parts: tracking and reset. The tracking phase con-
sists in making the co-state (k) change in order to ensure that the
SoC is tracking a linear reference SoC profile, SoCref . In case of flat
road this will guarantee tracking of optimal SoC profile. On the
other hand, if the road is hilly, this will be far from being optimal,
and to recover from an ‘‘unstable’’ SoC behavior a reset of the co-
state to its initial value is implemented that brings the SoC profile
to its initial trajectory trend.

5.1. Tracking

To guarantee a linear SoC profile tracking, the co-state k0 is
updated based on the traveled distance, according to an auto-re-
gressive moving-average (ARMA) filter:

kðsþ kÞ ¼ kðsÞ þ kðs� kÞ
2

þ KpðSoCref ðsÞ � SoCðsÞÞÞ ð22Þ

In Eq. (22), k is the sampling distance, s is the current covered dis-
tance, and Kp is a proportional gain which corrects for divergences
of SoC from the SoCref . The SoCref is an affine function of the current
driven distance, s, that guarantees complete battery discharge, i.e.
DSoC ¼ 0:95� 0:3 over the total length of the trip, Dtot , assumed
known.

A calibration study and a sensitivity analysis to optimally tune
the adaptation law have been properly carried out in a previous
work, Lacandia et al. [35], where the sampling distance and the
proportional gain have been shown to have small influence on
the fuel consumption, and a constant value can be selected,
irrespective to the driving conditions. On the other hand, the
parameter that results having the highest impact on optimality is
the co-state, k0.

Fig. 14 shows a mapping between traveled distance and optimal
k0 as a function of different driving cycles. The driving cycles used
in this study have been classified in terms of average and maxi-
mum speeds, vavg and vmax, as summarized in Table 2.

The results show that the optimal value of k0 is an initially
monotonically increasing function of the traveled distance, reach-
ing an asymptotic value as the distance increases beyond a certain
value. This behavior is more pronounced for cycles with a higher
average speed, while for cycles with a low average speed, e.g.
NEDC, one can observe a slight increase of k0 with the distance.

These results can be implemented in the form of a look-up table
where the optimal values of the co-state can be tabulated as a
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trajectory.
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function of total traveled distance and average driving cycle speed,
thus generating the map shown in Fig. 15, which can be easily
employed by the supervisory controller for co-state initialization
purposes.

If the driving cycle (in terms of distance and average speed) is
contained in the domain of the map of Fig. 15, then k0 can be
directly obtained from it; otherwise k0 is set to be equal to one
of the four boundary values of the map.
5.2. Reset

In the proposed adaptation law we assume that the desired SoC
profile, SoCref , is linear with respect to the distance traveled. This is
a reasonable approximation only if there is no road grade variation
during the driving cycle.

In order to handle more realistic situations (e.g., variation of
grade), corrections to the adaptation law – Eq. (22) – are accounted
for and implemented in the controller, which are only based on the
knowledge of the distance to be traveled. These corrections are
listed below:
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Fig. 12. Speed profile, grade profile (later referred to as Downhill) and optimal SoC
trajectory.
1. In the presence of road grade, the SoC trend is not linear with
respect to the distance (see Figs. 12 and 13), leading the actual
SoC to cross the reference linear curve, thus making the condi-
tion SoCðsÞ ¼ SoCref ðsÞ be verified. When this event occurs, the
value of k is reset and set equal to the initial value k0, avoiding
instability of the SoC.

2. When the road grade variation is such that the battery is being
charged at the very beginning of the trip (s < 0:12Dtot) or at the
end of it (s > 0:88Dtot), the co-state is reset to zero. In fact, in a
PHEV, the battery is expected to be completely charged at the
beginning of the trip and it is reasonable to expect it to be dis-
charged at the end. A value of k equal to zero is imposed to vir-
tually assign no costs to the use of the battery, to force using
only the electric machines (enforcing the All Electric operating
mode).

3. If SoCðsÞ > 0:35 when approaching the end of the trip
(s > 0:88Dtot), k ¼ 0 is imposed, as in condition 2), to drive in
All Electric mode and use the energy left in the battery to cover
the remaining driving segment.
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Fig. 14. Trend of k0 as a function of distance traveled for different driving cycles.



Table 2
Driving cycles features.

Cycle vavg (km/h) vmax(km/h)

NEDC 33.6 120
US06+FUDS+FHDS 54.5 129
Artemis Urban+Extraurban+Highway 61.1 150
Artemis Highway 99.5 150
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Fig. 15. Map with the values of k0 as a function of distance and average speed.
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Fig. 16 shows the supervisory controller logic within the vehicle
model. The required information on the total traveled distance and
the average cycle speed are used to initialize the co-state k0,
according to map in Fig. 15 thus enabling the execution of the A-
PMP (Eq. (22)), from SOC feedback. A series of conditions is then
verified to decide upon the mode of operation of the powertrain.
To prevent the battery SoC to drop below the minimum allowable
threshold (30% SoC), the supervisory controller select the series
mode with the GENSET running at maximum power (referred to
as ‘‘Max GENSET Power’’ in Fig. 16). This mode is activated by
co-state  
inizialization  

map 

DRIVING  
CYCLE 

Tw > 0

SoC > 0.3

0

GEN > ICE,idle

0

Tw

Dtot

vavg

Driver Superviso

yes 

yes 

yes 

yes 

ENERGY M

SoC

SoC

vveh

Fig. 16. Supervisory controller logic
the supervisory controller every time a driving cycle with severe
road grade combined with high speeds occurring at SoC � 0:3 is
detected. When the supervisory controller reads k ¼ 0, it then
selects All Electric mode as mode of operation. Also, to avoid crank-
ing dynamics, the speed of the GENSET, xGENSET , is kept at least
equal to the idle speed of the thermal engine, xICE;idle, i.e.
xGENSET ¼ xGEN ¼ xICE P xICE;idle.

6. Simulation results

In the following, results of the adaptive strategy, tested by using
No Grade (Fig. 11), Downhill (Fig. 12) and Uphill (Fig. 13) scenarios,
are presented. In particular, these scenarios present three different
altitude profiles for the same speed trace, which is composed by a
combination of three Artemis cycles, namely highway, urban and
extraurban, for a total length of 150 km (see upper plot of
Fig. 11). The proposed adaptive energy management algorithm is
then compared to the optimal solution from PMP and the on-board
implemented strategy, i.e. CD/CS.

In simulating the CD/CS strategy, the depletion of the battery is
achieved by making the powertrain work in One Motor EV or Two
Motor EV modes, depending on the power request, which is satis-
fied first by the motor and then, if needed, by the generator. The
SoC is then sustained, in the charge sustaining segment, by means
of an Adaptive-ECMS algorithm, Onori et al. [17], which ensures
that the SoC is sustained at around 0.3 SoC.

Fig. 17 shows the A-PMP SoC profile, compared to the two other
strategies along with the SoC linear reference curve, for the first
scenario (No Grade). It can be seen how the A-PMP trajectory fol-
lows the reference SoC trend (black dashed line) resulting in a
quasi-linear trajectory with the distance similar to the optimal
PMP solution (gray dot-dashed curve). The behavior of the adapted
co-state is also shown. It can be seen that the value of k0 is set to its
initial value whenever the SoC crosses the SoCref .

Fig. 18 portrays the SoC trajectories for the Downhill scenario.
In this case, the selection of a k equal to zero is performed at the
beginning and towards the end of the driving cycle to implement
the rule 2.
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trajectory versus the traveled distance (Downhill).
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Fig. 20. Comparison of the fuel consumption obtained with the three strategies in
the different scenarios.

Table 3
A-PMP fuel consumption comparison in percentage w.r.t. PMP and CD/CS.

A-PMP vs PMP A-PMP vs CD/CS

Dl=100 km
ðl=100 kmÞPMP

Dle=100 km
ðle=100 kmÞPMP

Dl=100 km
ðl=100 kmÞCD=CS

Dle=100 km
ðle=100 kmÞCD=CS

No grade +1.08% +0.47% �22.20% �14.13%
Uphill +17.14% +9.78% �15.32% �10.39%
Downhill +28.13% +15.14% �0.99% �1.04%

6 The equivalent fuel mass, over a given driving event, in equivalent liters per
100 km, le=100 km, was calculated considering the energy the engine should provide
to produce the net amount of energy supplied by the battery Ebatt , corrected with the
lower heating value (LHV) of the fuel and an average engine efficiency, gICE , Paganell
et al. [2]:

mf ;eq ¼
Ebatt

LHV � gICE
ð23Þ
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Fig. 19 portrays the SoC trajectories for the Uphill scenario,
showing that the optimal SoC trajectory (gray dot-dashed line)
diverges significantly from the linear reference (black dashed line),
unlike the A-PMP trajectory (black line). In particular, the optimal
solution lets the battery be discharged as a consequence of the fre-
quent uphills, while the A-PMP sometimes ‘‘forces’’ the battery to
be charged, also during climbing paths, in order to follow the linear
SoC reference. This is also reflected by the adapted co-state which
is often greater than the optimal value (i.e. kopt ¼ 8:7 kg for Uphill),
as shown in bottom plot of Fig. 19, so discouraging the battery dis-
charge. A similar behavior can be observed for the Downhill sce-
nario, where the co-state is often lower than the optimal value
(i.e. kopt ¼ 5:34 kg for Downhill), as it can be seen in the bottom
plot of Fig. 18. In fact, to follow a linear SoC reference, the A-PMP
discharges the battery when possible to face the frequent charges
due to the recurring downhills.

Fig. 20 and Table 3 give a comparison of fuel consumptions in
liters per 100 km and in percentage, respectively, obtained from
the A-PMP strategy compared to the optimal solution from the
PMP and the CD/CS. In Table 3, percentages are provided both in
terms of actual fuel consumption, Dl=100 km
ðl=100 kmÞPMP

and Dl=100 km
ðl=100 kmÞCD=CS

, and

of equivalent fuel consumption,6 Dle=100 km
ðle=100 kmÞPMP

and Dle=100 km
ðle=100 kmÞCD=CS

. As

expected, the A-PMP performs better with no grade variations, since
the reference SoC trajectory to be tracked is very close to the optimal
PMP trajectory. In particular, the A-PMP goes from a maximum
increase in consumption of 28.13% (with respect to the optimal solu-
i
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tion), given by the Downhill scenario, to an increase of only 1.08%, if
no road grade variations were considered. This trend is similar both
in terms of actual fuel consumption and of equivalent fuel consump-
tion. With regard to the CD/CS strategy, the adaptive strategy pre-
sented in this study reduces fuel use by around 22.2% (with no
grade), which corresponds to a 14.13% reduction in equivalent fuel
consumption. In Downhill, instead, only a 0.99% reduction in actual
used fuel, corresponding to a 1.04% reduction in equivalent fuel con-
sumption, is obtained. This is mainly due to the last segment of the
SoC that flattens at 30%, where, to avoid drops of the SoC under this
value, the GENSET works at maximum power.

7. Conclusions

In this paper we proposed an adaptive supervisory control strat-
egy based on the Pontryagin’s Minimum Principle for solving the
on-line energy management problem in the GM Chevrolet Volt.

Despite the fact that the optimal solution of the energy manage-
ment problem using PMP can be obtained only via off-line
implementation, where an iterative search for k is possible, the
non-causal nature of the PMP strategy was used to design a causal
controller, referred to as A-PMP, where the co-state is adapted as
driving conditions change. The average vehicle speed and the total
traveled distance are the only parameters assumed known (even if
in practice they can be affected by measurement or prediction
uncertainties). Nevertheless, the proposed adaptation law assures
robustness against changing in driving conditions and also
uncertainties in those parameters, due to its feedback mechanism.
The proposed novel adaptation law operates over a distance based
domain and is equipped with rules to prevent divergence of the
actual SoC from a reference linear SoC profile, by means of a suit-
able reset of the co-state.

A comparative analysis of the A-PMP with the optimal PMP, and
CD/CS was presented. Fuel consumption and SoC profiles were
compared for the three strategies under different driving profiles,
with a particular attention to the variation in the road
topography.Results have shown that the new proposed design
can achieve improvements in fuel consumption around 20%. It
was found that the A-PMP well approximates the optimal PMP
solution, under zero road grade scenario, unlike the CD/CS strategy,
which must work in Range-extender mode, in order to sustain the
battery charge, resulting in higher fuel consumption. At the same
time, with road grade variations, relevant changes in the co-state
value cannot be prevented in order to track the SoC linear refer-
ence, which does not represent the optimality anymore. This
way, the controller can sometimes provide results quite far from
the optimal ones, albeit still performing better than the in-vehicle
CD-CS strategy. A thorough prediction of upcoming driving condi-
tions may improve the performance of the A-PMP, as this informa-
tion could be fed back to the controller to better track the optimal
SoC profile. On the other hand, this was out of the scope of the pre-
sent paper, where only average speed and traveled distance were
used to feed the supervisory controller. Future studies could be
addressed at improving this aspect.
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