
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Energy Management Design in Hybrid Electric
Vehicles: A Novel Optimality and

Stability Framework
Roberto Mura, Student Member, IEEE, Vadim Utkin, Fellow, IEEE, and Simona Onori, Member, IEEE

Abstract— This paper addresses the problem of finding
a closed-form optimal solution for the energy management
problem in charge-sustaining hybrid electric vehicles (HEVs), and
proposes, for the first time, a generalized stability and optimality
framework for this type of problem. The energy management
problem, which by its very nature is a finite-time horizon
control problem, is reformulated as a nonlinear–nonquadratic
infinite-time optimization problem, leading to a family of state-
feedback control laws that provide optimality with respect to an
infinite time horizon performance objective, while guaranteeing
asymptotic stability. The stability problem in charge-sustaining
HEVs is formulated to allow the design of analytical solutions
using a Lyapunov-based argument. The proposed control law is
implemented on a pre-transmission parallel hybrid heavy-duty
vehicle and the performance of the closed-loop system is shown in
simulation and compared with the benchmark solution provided
by Pontryagin’s minimum principle (PMP) and the real-time
adaptive controller adaptive-PMP. Results show low sensitivity
to the control parameter, low-calibration effort, and reduction
of computational effort, while maintaining close-to-the-optimum
performance. Hardware-in-the-loop simulations were conducted
to validate and verify the new strategy in a real-time simulation
setup.

Index Terms— Closed-form solution, energy management,
hardware-in-the-loop (HIL), hybrid electric vehicles (HEVs),
Lyapunov stability, optimal control, Pontryagin’s minimum
principle (PMP), supervisory control.

I. INTRODUCTION

HYBRID electric vehicles (HEVs) encompass two
(or more) energy storage sources and associated energy

converters. Typically, the architecture of these vehicles
includes an internal combustion engine with an associated
fuel tank and one or more electric machine(s), requiring a
battery system to store electrical energy [1]. The presence of
an additional (or more) energy storage device gives rise to new
degrees of freedom, since at each time the total power request
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Fig. 1. Two-level control scheme in a hybrid vehicle.

for moving the vehicle can be delivered by either one of the
on-board energy sources or their combination. With the addi-
tional degrees of freedom comes the problem of finding the
most efficient way of splitting the power demand between the
engine and the battery. The energy management system (EMS)
is the control layer in the hybrid vehicle to which this task is
demanded [2]–[6].

Controlling an HEV generally includes two sets of tasks.
One is the low-level control, where each powertrain compo-
nent is controlled using classical feedback control methods [7].
The other task, referred to as high-level control, is responsible
for the optimization of the energy flow on-board of the vehicle,
while maintaining the battery state of charge within a certain
range of operation. This layer of control, called EMS, receives
and processes information from the powertrain (engine speed,
ωeng, gearbox speed, ωgb, and electric motor speed, ωmot) and
the actual driving cycle (Cyc) (vehicle speed, vveh, vehicle
acceleration, aveh, and grade) and outputs the optimal actuator
setpoints which are executed by the low-level control. The
two-task-based control scheme in an HEV is shown in Fig. 1.
This paper1 presents a new theoretical framework and its
hardware-in-the-loop (HIL) implementation of a closed-form
optimal and stable energy management strategy for EMS
implementation in an HEV.

This paper is structured as follows. In Section II, a clas-
sification and review of the main methods proposed in the
literature for EMS design is presented. This leads to the main

1Preliminary results related to this research appeared in [8].
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motivation of this paper. Section III describes the hybrid vehi-
cle model used in this paper. In Section IV, the energy man-
agement problem as a constrained optimization problem over a
finite-time horizon is reviewed. In Section V, the novel energy
management framework is presented and the infinite-time opti-
mization and stability idea introduced. In Section VI, the novel
nonlinear-optimal control strategy (NL-OCS) is designed.
Pontryagin’s minimum principle (PMP) and its adaptive-
version PMP (A-PMP) are reviewed in Section VII. A sensitiv-
ity study over the new control law parameters and comparison
with PMP and A-PMP is conducted in Section VIII. The HIL
setup is discussed in Section IX along with HIL strategy
implementation. The conclusion is included in Section X.

II. REVIEW OF ENERGY MANAGEMENT

STRATEGIES FOR HEVS

Several families of energy management strategies have
been proposed in the literature over the past 15 years. Two
general trends can be identified that deal with this problem,
namely, heuristics methods and model-based optimization
solutions [9]–[11].

A. Heuristics Methods

The simplest way to deal with the energy management
problem, which does not involve explicit optimization, is
by designing rules to manage the on-board energy of the
vehicle [12], [13]. The main advantage of this class of
approaches is their effectiveness in real-time implementation,
whereas their disadvantage is a large calibration set of para-
meters requiring ad hoc tuning. Rules are generally designed
based on heuristics, intuition [14] or from the knowledge of
optimal global solution generated with mathematical models
through optimization algorithms [15]–[19].

B. Model-Based Methods

To fully exploit the potential of hybrid architectures, model-
based optimal control methods were started being successfully
used over the last decade.

Optimal model-based techniques generate noncasual solu-
tions in that they find the minimum value of a cost function
using knowledge of the future driving information. Although
these control methods cannot be used directly for real-time
implementation they constitute a valuable design tool in that
they are sometime the basis to design rules for online imple-
mentation or used as a benchmark solution to evaluate the
performances of other control strategies.

We can divide model-based optimization methods into
numerical and analytical approaches. In numerical optimiza-
tion methods, like dynamic programming [20], simulated
annealing [21], and genetic algorithms [22] the complete
knowledge of the driving mission is used and the global
optimum is found numerically.

Analytical optimization methods, on the other hand, use
a mathematical problem formulation to find an analyti-
cal solution or at least provide an analytical formulation
that makes the numerical solution faster than the purely

numerical methods. Among these methods, PMP has been the
most successfully implemented [23]. Equivalent consumption
minimization strategy (ECMS) can be also enumerated within
this category, as only quite recently it has been shown to be
equivalent to the PMP method [24].

Both DP, PMP, and ECMS methods can only generate an
optimal solution if implemented offline [25].

For online implementation other model-based methods have
been explored and proposed that lead to suboptimal solutions.

When information about past and present driving conditions
is used, and/or prediction of future driving conditions may
be used then model predictive control (MPC) and stochastic
dynamic programming were shown to be good candidates to
generate suboptimal power split laws [4], [26]–[30].

When MPC is used [28], [31]–[34], a short-term optimiza-
tion horizon in the future is considered during which the
driving Cyc is predicted and the optimal power split is found.
One of the main drawbacks of this approach is the high-
computational power required to solve the minimization at
each sampling interval. To overcome this drawback, Fast-MPC
has been proposed that calculates the entire solution domain
offline [35]–[37]. In our opinion, the application of MPC
or Fast-MPC in solving the traditional energy management
problem in HEVs (as defined in Section IV) is a technology
overkill. On the other hand, MPC is found to be a helpful and
promising technique when used, for example, to smoothing
out the engine transient behavior in HEVs [38].

C. Motivation

Within the model-based techniques discussed, local
optimization methods, such as PMP and ECMS, have been
the preferred path to go in designing EMS, in that they can
guarantee, under given conditions, near-optimal performance,
while minimizing an instantaneous cost [24], [39]–[42].

The main idea underneath is that a virtual fuel consump-
tion can be associated with the use of electrical energy
and summed to the actual fuel consumed. The sum of the
two, i.e., total equivalent fuel consumption, is then being
optimized instantaneously. In the optimal control theory
language, this total equivalent fuel consumption function is
called Hamiltonian [24].

Both ECMS and PMP require some parameters to be
tuned, namely, the equivalence factors (sch and sdsh) for
ECMS and costate (λ) for PMP. These are found offline for
each driving Cyc. These parameters can be interpreted as
the average efficiency of the electric path during a charge
or discharge condition for a given driving mission. Hence,
optimality is only achieved when future driving information
is known, thus making them not suitable candidates for
in-vehicle implementation.

For that, online adaptation of the tuning parameters as
driving scenarios change was proposed in the form of adaptive-
ECMS or A-PMP [34], [43]–[45], where an autoregressive
moving average filter or PI-like adaptive law was used for
online adaptation.

The operation of minimizing the Hamiltonian on-board
of the vehicle at each tick of the clock, aside form being
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Fig. 2. Hamiltonian function H (bottom) evaluated for different instances of
a Manhattan driving Cyc (top). The Hamiltonian accounts for two terms: fuel
consumption rate ṁ f (Pice) and the virtual electric equivalent consumption
ṁf,eq(Pbatt).

computationally expensive, can lead in some cases to unpre-
dictable results, due to the fact that this function might be in
some instances of the driving Cyc not a convex function of
the control variable or have local minima. This can be noticed
in Fig. 2, where the Hamiltonian function is plotted for three
different instances of the driving Cyc. Nonuniqueness of the
control signal selection during the minimization process, could
lead to abrupt changes in the control outputs [46].

Motivated by these issues, a new model-based strategy is
proposed in this paper. Inspired by Bernstein’s work [47] on
theoretical results on optimal nonlinear regulation problem
involving non quadratic cost functionals, a first attempt to
propose a new control framework for the energy management
problem was given in [48]. The authors cast the energy
management problem into a nonlinear optimal regulation
problem, where the battery state of charge was optimally
regulated to its reference target in the case of zero disturbance.
Preliminary results showed the feasibility of the closed-form
control law in the simple case of vehicle at standstill. Reduc-
tion in computational execution and decreased sensitivity of
the control parameter with respect to driving conditions were
also showed. Nonetheless, two issues were not being addressed
properly in [48]: 1) the definition of stability and 2) the
extension of the finite-time cost function into an infinite-time
functional (needed to fully use results from [47] and [49]).

Based on these premises, this paper proposes an
extension and improvement of concepts initially presented
in [48] and [50]. The objective is to find an analytical,
closed-form, energy management strategy suited for in-vehicle
implementation, while assuring optimality and stability. To this
end, the problem is cast into a nonlinear infinite-time optimal
regulation problem, and a Lyapunov-based approach is used

Fig. 3. Power flow diagram of pre-transmission parallel HEVs.

TABLE I

VEHICLE CHARACTERISTICS

to design an analytical control law, which produces closed-
loop performances comparable with the benchmark solutions
provided by PMP.

III. HYBRID HEAVY-DUTY TRUCK MODEL

The vehicle model used in this paper is a heavy duty
pre-transmission parallel HEV, whose schematic is shown in
Fig. 3. The engine, connected in parallel with the electric
motor, can be engaged or disengaged from the wheels through
a clutch. The vehicle can operate in three different modes,
which are described in the following, depending on the status
of the clutch and the gear position.

The characteristics of the vehicle are shown in Table I.

A. Electric Mode

In this mode, the clutch is open and the vehicle uses only the
battery and the electric motor for propulsion; the engine is not
connected to the wheels and is switched OFF. Since there is just
one propulsion device in this mode the torque/power requested
by the driver at the wheels is totally satisfied using the electric
drivetrain and no optimization is needed. The instantaneous
torque/power balance equations are

⎧
⎨

⎩

Tmot(t) = Tgb(t)
Pbatt(t) = Pe

mot(t) + Pe
acc ∀t ∈ [0, T ]

ωmot(t) = ωgb(t)
(1)

where Tgb(t) and ωgb(t) are the instantaneous gearbox torque
and speed; Pbatt(t) is the battery power; Tmot(t) and ωmot(t)
are the instantaneous electric motor torque and speed; Pe

acc
represents the electrical accessory power (considered constant)
and Pe

mot(t) represents the instantaneous electrical power of
the electric motor. Moreover

Pm
mot =

⎧
⎨

⎩

ηmot · Pe
mot Pe

mot > 0
1

ηmot
· Pe

mot Pe
mot < 0

(2)
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where Pm
mot(t) and ηmot are the instantaneous electric motor

mechanical power and the efficiency, respectively.

B. Parallel Mode With Neutral Gear

This mode of operation occurs when the vehicle is at
standstill with the clutch closed and the gearbox in neutral
position. The engine is still connected to the transmission, but
its speed is free to vary as the gearbox is in neutral position.
The instantaneous torque, power, and speed balance equations
to be satisfied are

⎧
⎨

⎩

Tice(t) − T m
acc(t) = −Tmot(t)

Pbatt(t) = Pe
mot(t) + Pe

acc ∀t ∈ [0, T ]
ωmot(t) = ωice(t) = ω∗

ice(t)
(3)

where Tice(t) and ωice(t) are the instantaneous engine torque
and speed; T m

acc(t) is the instantaneous mechanical accessory
torque; and ω∗

ice(t) represents the instantaneous optimal engine
speed obtained by selecting the maximum efficiency operating
line of the engine [see (16) in Section IV-A for more details].
Being the total power requested at the wheels zero, the power
balance equations can be written as

Pgb(t) = 0 = Pice(t) − Pm
acc(t) + 1

ηmot
· (

Pbatt(t) − Pe
acc

)
. (4)

C. Parallel

In this mode both devices are used for propulsion, with
clutch closed and the engine connected to the wheels. The
speed at the wheels determines, through the transmission,
the speed of both the electric machine and the engine. The
powertrain equations are

⎧
⎨

⎩

Tice(t) − T m
acc + Tmot(t) = Tgb(t)

Pbatt(t) = Pe
mot(t) + Pe

acc ∀t ∈ [0, T ]
ωmot(t) = ωice(t) = ωgb(t).

(5)

Hence

Pgb =
⎧
⎨

⎩

Pice − Pm
acc + ηmot · (

Pbatt − Pe
acc

)
Pe

mot > 0

Pice − Pm
acc + 1

ηmot
· (

Pbatt − Pe
acc

)
Pe

mot < 0.
(6)

The vehicle model described above has been implemented
into a detailed forward model simulator Powertrain Simu-
lation Analysis Toolkit (PSAT) [51]. PSAT is a state-of-
the-art flexible powertrain simulation software developed by
Argonne National Laboratory, running in MATLAB/Simulink
environment, which provides access to dynamic models of
different mechanical and electrical components of several
hybrid vehicle configurations [52], [53]. The level of details in
PSAT component models and its forward simulation approach
ensures reliable estimation of the fuel economy [53].

IV. ENERGY MANAGEMENT PROBLEM-CLASSICAL

FORMULATION

The objective of the energy management strategy in an HEV
is to find the optimal power split between the primary and
secondary energy sources that minimizes a given objective
function over an entire driving Cyc. In particular, the aim is

to minimize the total mass of fuel m f [g] during a driving
mission of length T , starting from t = 0. This is equivalent
to minimize the cost JT

JT =
T∫

0

L(u(t))dt (7)

where L(u(t)) = ṁ f (u(t)) is the instantaneous fuel consump-
tion rate expressed in [g/s] and u(t) is the control variable.

When solving the energy management problem, usually the
only state variable is the battery SOC(·), whose dynamics is
defined as

˙SOC(t) = −ηbatt
I (t)

Qmax
(8)

where ηbatt represents the battery efficiency, I (t) [A] the
actual battery current (positive in discharging and negative
in charging) and Qmax [Ah] the maximum battery capacity.
In a charge-sustaining HEV, the net energy variation in the
battery over a given driving Cyc should be zero. This condition
is guaranteed by imposing that the SOC is the same at the
beginning and at the end of the Cyc

SOC(0) = SOC(T ) = SOCref . (9)

Equation (9) represents the global constraints of the optimal
problem.

Local constraints are imposed on state and control variables
as well. These constraints mostly concern physical operation
limits, such as maximum engine torque and speed, maximum
motor power, and the battery SOC limits. For pre-transmission
parallel HEV powertrain local constraints are expressed as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max
SOCmin ≤ SOC(t) ≤ SOCmax
Tx,min ≤ Tx (t) ≤ Tx,max ∀t ∈ [0, T ]
Px,min ≤ Px (t) ≤ Px,max
ωx,min ≤ ωx (t) ≤ ωx,max x = ice, mot

(10)

where the last three inequalities represent limitations on the
instantaneous engine and motor torque, power (both mechan-
ical and electrical for the electric motor), and speed, respec-
tively; (·)min and (·)max are the minimum and maximum
value of power/SOC/torque/speed at each instant. In particular,
battery power limits are not constant but depend on internal
parameters according to the following relations:

⎧
⎪⎪⎨

⎪⎪⎩

Pbatt,min = Vmax · Voc(SOC) − Vmin

Rs

Pbatt,max = Vmin · Vmax − Voc(SOC)

Rs

(11)

where Voc [V] is the battery open circuit voltage that depends
on SOC and Rs [�] is the battery internal resistance.
Moreover, powertrain constraints are also enforced at each
instant to ensure that the total power demand at the wheels
is satisfied, in accordance to the specific mode of operation.
Within this formulation the energy management problem can
be defined as follows.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MURA et al.: ENERGY MANAGEMENT DESIGN IN HEVs 5

Fig. 4. SOC profile obtained solving the HEV energy management problem,
as formulated in Problem 1.

Problem 1: The energy management problem in charge-
sustaining HEVs consists in the minimization of the cost func-
tion (7) subject to system dynamics (8), global constraints (9),
and local constraints (10).

We refer to Problem 1 as the standard HEV energy manage-
ment problem. A typical solution, in terms of SOC behavior,
resulting from solving Problem 1 is shown in Fig. 4.

A. Fuel Flow Rate Consumption-Engine Model

In the control design proposed in this paper we use a Willans
line-based model for the engine fuel consumption, where the
engine chemical power (Pchem) is given as a function of the
engine power (Pice = Tice · ωice) and speed (ωice)

Pchem(t) = e0(ωice(t)) + e1(ωice(t)) · Pice(t) (12)

where e0(ω) is the engine friction losses and e1(ω) the
conversion efficiency of the machine. A good approximation
of the friction losses and conversion efficiency coefficients is
given by expressing e0 and e1 as a quadratic fitting with respect
to engine speed, as

{
e0(ωice(t)) = e00 + e01 · ωice(t) + e02 · ω2

ice(t)
e1(ωice(t)) = e10 + e11 · ωice(t) + e12 · ω2

ice(t)
(13)

where ei j > 0, i, j = 0, 1, 2 are the constant Willans
line coefficients. Being the chemical engine power input
Pchem = ṁ f · QLHV (QLHV is the lower heating calorific value
of diesel in [kJ/kg]) the fuel consumption rate can be written as

ṁ f (t) = 1

QLHV
[e0(ωice(t)) + e1(ωice(t)) · Pice(t)]. (14)

The effectiveness of the Willans line model in approximating
the fuel consumption rate of the engine is shown in Fig. 5.

When the vehicle is operating in parallel mode with neutral
gear, the Willans line model of the engine gives a means to
calculate an analytical expression of the optimal engine speed.
In this case, the engine speed ωice can be selected to optimize
engine operation, by minimizing the chemical power Pchem

⎧
⎪⎪⎨

⎪⎪⎩

∂ Pchem

∂ωice
= 0

∂2 Pchem

∂ω2
ice

> 0
(15)

which, using (12) and (13), leads to

ω∗
ice(t) = −1

2
· e01 + e11 Pice(t)

e02 + e12 Pice(t)
(16)

Fig. 5. Coefficients fitting of the Willans line model.

with ω∗
ice(t)ı[ωidle

ice , ωmax
ice ]. In (16), ω∗

ice(t) is a function of the
engine power requested for charging the battery pack (because
in neutral gear mode).

Defining the new set of parameters p0 and p1 as

p0(ω
∗
ice(t)) = e0(ω

∗
ice(t))

QLHV

p1(ω
∗
ice(t)) = e1(ω

∗
ice(t))

QLHV

the fuel consumption rate model (14) can be either rewritten
in terms of Pice as

ṁ f (t) = p0(ω
∗
ice(t)) + p1(ω

∗
ice(t))Pice(t) (17)

or, using (4), it can be expressed as a function of Pbatt as

ṁ f = n0(ω
∗
ice(t)) + n1(ω

∗
ice(t))Pbatt(t) (18)

where coefficients n0 and n1 are

n0(ω
∗
ice(t)) = p0(ω

∗
ice(t)) + p1(ω

∗
ice(t))

(

Pmech
acc + Pelec

acc

ηmot

)

n1(ω
∗
ice(t)) = − p1

ηmot
. (19)

The Willans line fuel consumption rate model, together with
a suitable description of the battery model, is used in the fol-
lowing section to reformulate the energy management problem
as an infinite-time horizon optimal control problem including
stability.

V. NEW ENERGY MANAGEMENT FRAMEWORK

The novel approach proposed in this paper consists in
rethinking the optimal control problem for HEV energy man-
agement (Problem 1) as a nonlinear–nonquadratic optimiza-
tion problem over an infinite time horizon. In particular, a
Lyapunov-based approach is used to design the controller,
leading to a family of feedback closed-form control laws
that guarantee stability and optimality with respect to an
adjoint cost function. This adjoint cost (introduced later in this
section and defined more formally in the Appendix) guarantees
a bound on the worst case value of the nonquadratic cost
functional over a prescribed set of bounded input disturbances.
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Fig. 6. Behavior of g(t) for different values of q. Note that for q → ∞
is obtained that J∞ = JT + Jα where JT is defined in (7) and Jα = ∫ ∞

T
ṁ f · α dt .

To ensure optimality of vehicle operation when t > T , the
[0, T ] optimization horizon is extended into the infinite
horizon [0,∞], so as to lead to a new cost function defined
over [0, ∞]

J∞ =
∞∫

0

ṁ f (u(t)) · g(t)dt (20)

by means of the scalar positive function g(t), as shown in
Fig. 6, and defined as

g(t) =
1 + α

( t

T

)q

1 +
( t

T

)q
0 < α < 1, q > 0 (21)

whose role is to penalize the action of the control u(t) for
t > T to approximate the finite-time cost JT defined in (7)
with the infinite-time functional (20).

In [47] and [49], it was shown that under certain conditions
on the system and the cost function, nonlinear controllers
offer advantages over linear ones, in particular, when the plant
dynamics and/or system output are nonlinear, the performance
measure is nonquadratic, or the control signals are constrained.
In the following, the system is reformulated to fit the problem
in the form presented in [49] (in the Appendix the main result
from [49] is included for ease of presentation).

A. System Dynamics Reformulation

The battery state of energy (SOE), defined as the amount
of battery energy stored at the present time (E(t)) to the
maximum battery energy capacity (Emax), is used as state
variable in this discussion. SOE is related to SOC by the
relation

SOE(t) = SOC(t)
VL(t)

V max
oc

= E(t)

Emax
(22)

where VL is the battery terminal voltage and V max
oc the

maximum open circuit voltage. From here on the explicit
dependence of time will be omitted. The SOE dynamics is

⎧
⎨

⎩

˙SOE = −ηbatt
Pbatt

Emax
Emax = Qmax · V max

oc .

(23)

Assuming

k = ηbatt

Emaxηmot
(24)

the battery SOE error ζ = SOEref −SOE is introduced, whose
dynamics is described as a function of the control input (Pice)
and the disturbance (Preq) by virtue of (6)

ζ̇ = −k Pice + k Preq. (25)

Note that in parallel mode the power requested is the sum of
mechanical and electrical accessory powers and the gearbox
power. When the vehicle is not moving (v = 0), instead, the
power requested Preq only accounts for the power accessory
loads. The disturbance power, Preq, is thus expressed as

Preq =
{

Pgb + ηmot Pe
acc + Pm

acc v > 0 ∀t ∈ [0, T ]
ηmot Pe

acc + Pm
acc v = 0 ∀t ∈ [T, ∞]. (26)

Defined this way, the power request Preq is a L2 signal.
Consider an open set Z ⊂ R such that ζ ∈ Z , a set U ⊂ R

such that Pice ∈ U , and a set W ⊂ R such that Preq ∈ W
and Preq in L2. The domain of control, state, and disturbance
variables are

⎧
⎨

⎩

Z = [SOEref − SOEmax, SOEref − SOEmin]
U = [

0, Pmax
ice

]

W= {Preq : Preq ∈ L2}.
(27)

Then consider the following control system (where ζ = 0 is
an equilibrium point):

{
ζ̇ = −k Pice + k Preq, ζ(0) = ζ0
z = ζ

(28)

where z is the performance variable, and the cost functional
defined as

J∞(ζ0, Pice(·))=
∞∫

0

(p0(ωice) + p1(ωice) · Pice(t)) · g(t)

QLHV
dt .

(29)

Problem 2: The infinite-time energy management optimal
control problem consists in minimizing the cost function (29)
under system dynamics (28), with state and control variables
defined in Z and U , respectively, and Preq ∈ W .

Definition 1: Consider Problem 2 with Preq ≡ 0 and
φ(ζ(t)) an optimal solution for the problem. Then, the origin
ζ(t) = 0 of the closed-loop system under φ(ζ(t)) is asymp-
totically stable if ζ(t) → 0 for t → ∞.

When solving Problem 2 in the presence of Preq given
by (26), a typical SOC behavior is shown in Fig. 7. It can
be noticed that the global constraint (9) requiring SOC(T ) to
be equal to the reference value SOCref is not met. In other
words, different SOC values can be assumed at t = T , and
the convergence to SOCref is guaranteed only as t → ∞.

Following the lines of Theorem 2 (the Appendix), a
Lyapunov-based approach is used to obtain a state-feedback
control law to find the optimal torque/power split between the
engine and the electric motor, where the power request Preq
is regarded as a L2 disturbance.
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Fig. 7. Typical SOC trajectory obtained from solving Problem 2 (top) when
Preq profile (bottom) is applied.

VI. NONLINEAR OPTIMIZATION CONTROL

STRATEGY (NL-OCS) DESIGN

With respect to the system (28) the Hamiltonian function
H (57) takes on the form [23]

H(ζ,Pice, λ)= ṁ f (Pice)·g(t)+
(ζ, Pice)+λ·(−k Pice) (30)

where ṁf is the instantaneous cost function and 
(ζ, Pice)
is a positive definite function of ζ and the control variable,
and λ is the costate variable. To guarantee that the Hamiltonian
function is zero at the minimum value, a shifting of the H is
operated as follows:

H̄(ζ, Pice, λ) = H(ζ, Pice, λ) − p0(ωice). (31)

Theorem 1: Consider the system (28) with functional
cost (29). Then, the feedback control law P∗

ice(ζ ) defined as

P∗
ice = φ(ζ ) =

⎧
⎨

⎩

2k2(μ4ζ 3)2

(kμ4ζ 3 − p1(ωice) g(t))γ 2 ζ > ζ̄

ζ 2 0 < ζ ≤ ζ̄

(32)

with ζ̄ = (p1(ωice)/kμ4)1/3, μ positive gain and k as in (24),
is such that:

1) the solution ζ(t) = 0, t ≥ 0 of the closed-loop
system is locally asymptotically stable in accordance to
Definition 1;

2) the adjoint performance functional (29)

J∞(ζ0, Pice(·))=
∞∫

0

p0(ωice)+ p1(ωice) · Pice(t)

QLHV
dt (33)

is minimized.
Note that when ζ < 0 the control strategy switches to the

pure electric mode.
Proof 1: Consider the candidate Lyapunov function

V (ζ ) = 1

4
μ4ζ 4, μ ∈ R (34)

then the storage function 
(ζ, Pice) and the supply rate
function r(ζ, Preq), for the system (28) and the Lyapunov
function (34), are defined as

⎧
⎨

⎩


(ζ, Pice) = 1

γ 2

(
∂V

∂ζ

)2

k2 · (1 + log
(
P2

ice

))

r(ζ, Preq) = γ 2 P2
req − ζ 2.

(35)

To proves 1 and 2 of Theorem 1, the set of sufficient
conditions from Theorem 2 (in the Appendix) are shown to
hold true with the optimal feedback control φ(ζ ) = P∗

ice(ζ )
as follows.

1) The Lyapunov function V (ζ ) assumes its minimum value
of 0 at the origin

V (0) = 0. (36)

2) V (ζ ) is a positive definite function because it is a quartic
scalar function with the minimum at the origin.

3) The optimal feedback control law is zero at the origin,
i.e., from (32)

P∗
ice(0) = 0. (37)

4) The optimal control law (32) makes the origin ζ(t) = 0
asymptotically stable when Preq = 0, by means of
satisfying

∂V

∂ζ
· (−k P∗

ice(ζ )) < 0, ζ �= 0. (38)

To show (38), without loss of generality, instead of Pice,
we consider Pbatt as new control variable [using (4)
and (26) given that Preq = 0 in the control design].
Thus, (32) is rewritten as

P∗
battηmot =

⎧
⎪⎨

⎪⎩

− 2k2
(
μ4ζ 3

)2

(−kμ4ζ 3 + ηmotn1(ωmot) g(t)
)
γ 2

A

−ζ 2 B

(39)

with

A = {ζ > ζ̄ ∗ ∨ ζ ≤ 0}
B = {0 < ζ ≤ ζ̄ ∗}

where ζ̄ ∗ = (−ηmotn1(ωmot)/kμ4)1/3. Thus (38) becomes

μ4 · ζ 3 · k · ηmot P∗
batt(ζ ) < 0, ζ �= 0. (40)

In the domain 0 < ζ ≤ ζ̄ ∗, it is immediate to see that

−μ4 ζ 3 k ζ 2 < 0. (41)

In the domain ζ > ζ̄ ∗ ∨ ζ ≤ 0 the denominator of (40) is
positive when ζ is positive and negative otherwise, thus
leading to

{
−μ4ζ 3k · 2k2(μ4ζ 3)2 < 0 ζ > ζ̄ ∗

μ4ζ 3k · 2k2(μ4ζ 3)2 < 0 ζ ≤ 0.
(42)

5) The Hamiltonian function (31) takes on the minimum
value when the optimal control law (32) is applied. The
shifted Hamiltonian H̄

H̄
(

ζ, P∗
ice,

∂V

∂ζ

)

= ṁ f + 
(ζ, P∗
ice) + ∂V

∂ζ
(−k · P∗

ice(ζ ))

(43)

becomes

H̄ = p1 · Pice + 1

γ 2k2(μ4ζ 3)2(1 + log
(
P2

ice

))2

+μ4ζ 3(−k · Pice) (44)
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Fig. 8. NL-OCS-based control strategy scheme.

for the system (28) and cost function (29). It can be easily
shown that the closed-loop controller (32) is a minimum
of the H̄ (the stationary first-order conditions and the
second-order convexity conditions are verified).

6) The passivity condition (condition 5 of Theorem 2)
with respect to the disturbance input Preq requires the
following inequality to be satisfied:
(

∂V

∂ζ

)

· k · Preq ≤ r(ζ, Preq) + ṁ f + 
(ζ, P∗
ice). (45)

A second-order algebraic inequality in Preq is obtained
and it is verified by imposing the discriminant � ≤ 0.
This leads to an upper bound on γ of γ̄ = 2.369.

Since all the sufficient conditions from Theorem 2 (in the
Appendix) are being satisfied with the proposed optimal
controller (32) then conditions 1 and 2 in Theorem 1 hold
true. Hence, the origin ζ = 0 of the closed-loop system
is optimally locally asymptotically stable when Preq = 0.
Moreover, P∗

ice is optimal with respect to the adjoint functional
J (ζ0, Pice(·)) (defined in (58)) which represents an upper
bound for J∞(ζ0, Pice(·)).

Note that the optimal control law obtained from Theorem 1
assures that the SOE reaches its reference value, SOEref ,
following an optimal path leading to minimum fuel con-
sumption. This strategy is implemented within the closed-loop
system shown in Fig. 8 and it is referred to as NL-OCS.
In the following sections, the results obtained by implementing
the NL-OCS solution are shown and compared to the bench-
mark and real-time solutions provided by PMP and A-PMP,
respectively.

VII. BENCHMARK AND REAL-TIME

SOLUTION: PMP AND A-PMP

In this section, we present an overview of the benchmark
solution based on PMP used to validate the new control law.
In general, the PMP gives a set of instantaneous necessary
conditions for optimality, which are in turns used to find
optimal control candidates [25].

The PMP states that the optimal control law u∗(t) of
Problem 1 must satisfy the following necessary conditions.

1) u∗(t) minimizes at each instant of time the Hamiltonian
associated to the system

H(t, u(t), ζ(t), λ(t)) = λ(t) · ζ̇ (t, u(t), ζ(t))

+ L(t, u(t), ζ(t)) (46)

Fig. 9. Top: PMP-based control scheme. Bottom: A-PMP-based strategy
control scheme.

with ζ̇ (t, u(t), ζ(t)) being the system dynamics equation,
L(u(t)) being the instantaneous cost, and λ being a vector
of auxiliary variables called adjoint state or costates of the
system; λ has the same dimension as the state vector ζ ,
and therefore is a scalar in our problem.

2) The costate variable must satisfy the following dynamic
equation:

λ̇ = − ∂H(t, u(t), ζ(t), λ(t))

∂ζ

∣
∣
∣
∣
u∗,ζ ∗

. (47)

In practical applications, the minimum principle can be used
to find solution candidates by computing and minimizing the
Hamiltonian function at each instant of time. This control
problem is usually solved using an iterative procedure, known
as the shooting method [24].

It is important to notice that the PMP-based controller
operates in open loop, as shown in Fig. 9, and the control
variable depends on the actual power request Preq, which
enters in both blocks of minimization and plant dynamics.
No information is fed-back to the optimizing controller.

In this paper, the PMP solution is a proxy for the global
optimal solution and it is used as a benchmark solution for the
proposed control strategy as it gives the theoretical optimum.
In addition to the PMP, the evaluation of the proposed control
design is performed also against a real-time implementable
controller. In this paper, we choose the A-PMP to perform such
an evaluation. The reason is twofold: 1) A-PMP, among the
real-time implementable controllers [54], gives near-optimal
performance [43] and 2) it is of straightforward implementa-
tion within the forward vehicle simulator used as it is based
on the already implemented PMP. The A-PMP is a variant
of PMP where the costate λ is adapted from feedback from
SOC in real-time according to

λ(k) = λ(k − 1)−λ(k − 2)

2
+K · (SOCref − SOC(k)) (48)

where k is an integer number indicating the kth fixed time
interval of length T seconds, and the λ(k) is the value of the
costate in the interval [(k−1)T, kT ]. The A-PMP-based energy
management supervisory controller is implemented according
to the scheme shown in Fig. 9.
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Fig. 10. SOC profiles from NL-OCS for different μ over the Manhattan Cyc.

VIII. SIMULATION RESULTS

In this section, the implementation of the proposed control
strategy is conducted over the vehicle PSAT model presented
in Section III. Results are compared against the optimal
solution provided by PMP and the real-time solution provided
by the A-PMP for different driving scenarios. Moreover, a
sensitivity study of the control strategy against the control
parameter and driving characteristics is also conducted.

A. NL-OCS Parameter Calibration

In the optimal and stable control law (32) the values of
k and p1(ωice) are known from the vehicle models, γ is a
constant whose upper bound was obtained from the theorem’s
proof, whereas μ is the only calibration parameter that needs
to be selected for on-board implementation. The calibration of
μ is conducted in such a way the strategy performs near the
optimum in real-time operation despite the driving conditions.
From (32) one can see that μ ultimately affects the amount of
fuel consumed over each driving Cyc, as the power requested
from the engine is a function of μ. Fig. 10 shows the effect
of different choices of μ within the domain set Fμ = [2 ·103;
8 · 103] on SOC.

The effect of μ on fuel economy and the final SOC are
reported in the two plots of Fig. 11 for four different driving
Cycs, where the quantities � SOC and the equivalent fuel
consumption FCeq are defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�SOC = SOC(T ) − SOCref

SOCref

FCeq =
T∫

0
ṁ f dt + �SOC · Emax

η · QLHV
.

(49)

The evaluation of FCeq comes from two contributions:
1) the nominal computed fuel consumption and 2) the fuel
consumption error due to the difference between the initial
and final SOC values during a given driving scenario. In other
words, this second-term considers the theoretical consumption,
lost or saved, that there would be if the final SOC value did
not reach its reference setpoint.

Fig. 11. Fuel consumption and � SOC with respect to μ for four different
driving Cycs.

TABLE II

CONTROL LAW SENSITIVITY TO μ VARIATION

Fig. 12. SOC profiles from PMP for different values of λ over the
Manhattan Cyc.

As one can observed from Fig. 11, the proposed control law
shows low sensitivity against driving conditions for a wide
range of values of μ (within the domain set Fμ). In Table II,
the FCeq and � SOC are reported for the four different driving
Cycs used together with the optimal value of μ. In particular,
charge-sustainability is guaranteed for a wide (and same) range
of μ values despite the driving Cyc, as observed in the plot
at the bottom of Fig. 11 where the four � SOC behaviors are
almost completely overlapped.

As already known form the literature (e.g., [25], [42]), the
PMP solution is very sensitive to the costate λ (which is the
only parameter that needs to be calibrated). This is shown
in Fig. 12, where different SOC trajectories are plotted as λ
varies. Only one optimal value of λ exists, though that ensures
charge-sustainability.
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Fig. 13. Fuel consumption FCeq and SOC profile for PMP and NL-OCS
control strategies.

TABLE III

FUEL CONSUMPTION AND ENGINE EFFICIENCY COMPARISON

FOR THE COMPOSITE DRIVING CYC OF FIG. 13

Fig. 14. Engine operating points over the combined driving Cyc: PMP and
NL-OCS solutions.

A comparison of the performance of the NL-OCS con-
trol law (32) and the PMP solution is shown in Fig. 13
over a composite driving Cyc (obtained by concatenating
Manhattan, west virginia urban (WVU) Interstate, heavy-duty
urban dynamometer driving schedule, and Manhattan driving
schedules).

Table III compares the fuel consumption and the engine
efficiency of both control strategies (optimally tuned). It can
be noticed that the solution obtained with NL-OCS is very
close to the benchmark solution provided by PMP. If, on one
hand, the closed-form control law consumes an average of 1%
more fuel than the optimal solution, on the other hand it shows
better capability to maintain the SOC close to the reference

Fig. 15. Electric motor operating points over the combined driving Cyc:
PMP and NL-OCS solutions.

Fig. 16. Engine and electric motor power profiles (zoomed-in-view) from
PMP and NL-OCS solutions.

TABLE IV

FUEL CONSUMPTION AND ENGINE EFFICIENCY

COMPARISON FOR SINGLE DRIVING CYCS

value SOCref (set to 0.7). The engine and the electric motor
operate mostly in the same regions when the two strategies are
running, as shown in Figs. 14 and 15. In Fig. 16, a zoomed-
in-view of the engine power and motor power profile shows
that the actuators behavior is very similar in the two cases.

A Cyc-by-Cyc comparison of the two strategies is shown
in Table IV. Similarly to the case of composite driving Cyc,
the NL-OCS performs very close to the PMP both in terms of
fuel consumption and engine efficiency.
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Fig. 17. SOC profiles from NL-OCS and PMP in case of zero-grade and
with road grade.

TABLE V

SENSITIVITY ANALYSIS AGAINST BATTERY PARAMETERS VARIATION

A sensitivity analysis of the proposed control strategy
against both road conditions and battery parameters and com-
parison with PMP are conducted in the following.

Fig. 17 shows both the SOC profile from NL-OCS under
zero grade and real grade pattern (from GNSS/GPS data, in
terms of % slope), as well as the PMP solution under the same
grade scenarios.

Because of the feedback mechanism from the SOC used in
the NL-OCS supervisory controller, this strategy has a very
low sensitivity to road grade variation as compared with the
PMP solutions, which instead, operating in open loop have the
tendency to diverge from the optimal solution obtained with
zero-grade.

It is well known that the degradation in the battery manifests
itself through resistance growth and capacity decrease [55].
Typically, OEMs define battery end-of-life as the moment
in time when the capacity has reached 80% of its nominal
value and/or resistance has increased of 10%. The sensitiv-
ity analysis conducted in this section aims at investigating
the robustness of the proposed control law against battery
parameters over battery life. The simulations are conducted
for the same composite driving Cyc used earlier and both
the battery capacity and the resistance are varied according
to the values shown in Table V. Figs. 18 and 19 show the

Fig. 18. SOC profiles from NL-OCS (top) and PMP (bottom) for increased
values of resistance.

Fig. 19. SOC from NL-OCS (top) and PMP (bottom) for decreased values
of capacity.

SOC trends of both strategies under: 1) resistance increase
and 2) capacity decrease case. In particular, the simulation
results from PMP were conducted using the optimal λ found
when the nominal battery parameters (new battery) were
used. As one can observe in Fig. 18, charge-sustainability is
slightly compromised if a new costate value is not optimally
found. Fig. 20 compares the SOC obtained from the two
controllers in case of new battery and dead battery. As one
can notice, although both strategies react quite satisfactorily
in term of fuel saving loss, the NL-OCS ensures perfor-
mance within 0.5%, while the PMP of 1%, as reported
in Table V.

The analysis conducted thus far has shown the low para-
meter sensitivity of the novel supervisory controller under
various driving and road conditions, as well as the system
parameters. The results obtained from this analysis are used
to calibrate the new analytical controller for real-time use.
To validate and test its performance a comparison with
A-PMP is provided to show the feasibility in real-time
simulation.

The A-PMP is based on the feedback from the actual
SOC (48) that adapts dynamically the value of the costate λ.
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Fig. 20. SOC profiles from NL-OCS (top) and PMP (bottom)
for nominal battery parameters (Cnom, Rnom) and end-of-life parameters
(Cnom − 20%, Rnom + 10%).

TABLE VI

COMPARISON BETWEEN THE A-PMP AND NL-OCS

SOLUTIONS FOR DIFFERENT DRIVING SCENARIOS

The calibration of A-PMP is conducted via trial and error.
The value of the proportional feedback gain is set to K = 2,
λ0 = 10 and the adaptation period is set to T = 60 s. The
calibration of the NL-OCS on the other end is done on the
basis of the sensitivity study presented earlier. A value of
μ = 2.5 · 103 is selected.

Table VI reports the overall comparison between the two
controllers showing that the fuel consumption in the two cases
is very similar, at the price though of higher calibration effort
needed for the A-PMP. Both strategies are capable to ensure
charge-sustainability, as also shown in Fig. 21.

Besides the low calibration effort (along with the low
sensitivity to the control parameter) the NL-OCS is well suited
for fast computation. The power issued by the control law (32)
can be mapped and computed offline as a function of the error
ζ and engine speed ωice. As a result a lookup table is generated
which is shown in Fig. 22.

All the simulation results shown so far were performed on
two different machines:

1) M1: Core i3@2.13 GHz 8Gb@1066 MHz ddr3;
2) M2: Core i5@3.07 GHz 12Gb@1600 MHz ddr3;

Fig. 21. SOC from A-PMP and NL-OCS control strategies.

Fig. 22. Engine power map: Pice = f (ωice, ζ ).

TABLE VII

COMPUTATION DEMAND COMPARISON [s]

to assess the computational improvement obtained with
NL-OCS over PMP. Table VII shows that the NL-OCS is up
to five times faster than A-PMP. The first column of the table
indicates how many times (1, 2, or 4) the composite driving
Cyc is executed.

IX. HARDWARE-IN-THE-LOOP SIMULATIONS

In this section, we present results from HIL simulations
conducted to validate and verify the analytical energy man-
agement strategy proposed in this paper.

HIL simulation has been a corner stone for automotive
control engineers in the last decade for control strategy devel-
opment purposes [56]. HIL approach enables control engineers
to tune control strategies before going to the final step of
implementing them in the vehicle. The HIL stand used in this
paper is shown in Fig. 23. It includes:

1) desktop to run the plant model in HIL (DS 1006 I/O
board mounted on a DS 2202 Mid-Size plant);

2) laptop or Host-PC to run the controller model on the
Microautobox (MAB) 2 (DS 1401/1501 type);
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Fig. 23. HIL setup at the Ohio State University-Center for Automotive
Research used in this paper.

Fig. 24. HIL testing—schematic.

3) MAB connected to HIL plant via zero-insertion force
connector;

4) HIL system (dSpace).

The vehicle model is flashed into the HIL system, while the
supervisory controller is downloaded in the MAB. Connectors
with the power and Controller Area Network (CAN) wiring
to transmit signals (I/O CAN) are used to allow the commu-
nication between the two systems. The HIL setup schematic
is shown in Fig. 24.

Fig. 25 shows the perfect velocity tracking of the HIL signal
against the desired velocity, and Fig. 26 compares the SOC
profiles from simulation and HIL. The performance obtained
from the analytical solution implemented in HIL differs from
the one obtained in Simulink by 1%.

Fig. 25. HIL testing-speed tracking WVU Interstate Cyc.

Fig. 26. HIL testing-SOC trajectory.

X. CONCLUSION

The novelty of this paper consists of rethinking the
energy management problem in charge-sustaining HEVs as
a nonlinear–nonquadratic infinite-time optimization problem.
This approach leads to design a state-feedback-based con-
trol law that provides optimality with respect to an infi-
nite time horizon performance functional, while guaranteeing
asymptotic stability. In particular a Lyapunov-based dissipative
approach is used to find the closed-form control law which is
proven to be optimal with respect to the fuel consumption over
an infinite-time horizon. The proposed optimal control law
is implemented in a pre-transmission parallel hybrid heavy-
duty vehicle and the performance of the closed-loop system
is shown in simulation for different driving scenarios, and
compared with the benchmark solution provided by PMP
and the real-time solution provided by A-PMP. Results show
very low sensitivity to the control parameter, low calibration
effort, reduction of computational effort (up to five times
faster than A-PMP), while maintaining the performance close
to the optimal one (PMP) within 1%. HIL simulations were
conducted to validate and verify the new strategy in a real-time
simulation setup. To the best of our knowledge, this is the first
time that an analytical closed-form solution (with guarantee
of stability) was proposed to solve the energy management
problem in HEVs and implemented in HIL environment.

Research is currently ongoing that aims at exploring pos-
sible extensions of the proposed control design to optimal
control problems involving more than one state and one degree
of freedom.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 27. Nonlinear closed-loop feedback system in presence of disturbance.

APPENDIX

LYAPUNOV-BASED APPROACH IN NONLINEAR

OPTIMAL REGULATION

Let be D ⊂ R
n an open set and let U ⊂ R

m , with
0 ∈ D and 0 ∈ U . Moreover, let W ⊂ R

d . Consider now
the controlled dynamical system

ẋ(t) = F(x(t), u(t)) + G(x(t))w(t)

x(0) = x0, w(·) ∈ L2, t ≥ 0 (50)

with performance output vector

z(t) = h(x(t), u(t)) (51)

where F : R
n × R

m → R
n satisfies F(0, 0) = 0, G : R

n →
R

n × R
d , h : R

n × R
m → R

p satisfies h(0, 0) = 0 and the
control u(·) is restricted to the class of admissible controls
such that u(t) ∈ U , ∀t ≥ 0. Given a feedback control law
u(t) = φ(x(t)), the closed-loop system shown in Fig. 27 has
the form

ẋ(t) = F(x(t), φ(x(t))) + G(x(t))w(t)

x(0) = x0, t ≥ 0z(t) = h(x(t), φ(x(t))). (52)

With respect to the open-loop system (50) and the closed
one (52), the following assumptions and definitions are given.

Assumption 1: The mapping φ : D → U satisfies suffi-
cient regularity conditions such that the resulting closed-loop
system (52) has a unique solution forward in time.

Let L: D×U → R and S be the set of regulation controllers
for the nonlinear system with w(t) ≡ 0.

Definition 2: S(x0) = {u(·): u(·) is admissible and such
that ẋ(t) given by (50), starting from initial state condition
x0, satisfies x(t) → 0 as t → ∞ with w(t) ≡ 0}.

Definition 3: With respect to (50) and (51) and given
a Lyapunov function V : D → R, a positive storage
function 
 : D × U → R, and the given supply rate function
r : R

p × R
d → R are introduced as follows:

⎧
⎪⎨

⎪⎩


(x, u) = 1

γ 2

(
∂V

∂x

)2

f (u)

r(w, z) = γ 2w2 − z2

(53)

where f (u) is a generic scalar nonlinear function of the control
variable.

Definition 4: γ is the system L2 gain from w to z,
representing the maximum energy amplification of the input
signal w ∈ L2 on the performance variable z

‖z(·)‖2 ≤ γ ‖w(·)‖2. (54)

Theorem 2 (From [49]): Consider the nonlinear dynamical
system (50) and (51) with performance functional

J∞(x0, u(·)) =
∞∫

0

L(x(t), u(t)) dt (55)

where u(·) is an admissible control. Assume that there exist a
Lyapunov function V : D → R, a positive storage function 
 :
D×U → R, the given supply rate function r : R

p ×R
d → R,

and a control law φ : D → U such that

1. V (0) = 0

2. V (x) > 0, x ∈ D, x �= 0

3. φ(0) = 0

4.
∂V (x)

∂x
F(x, φ(x)) < 0, x ∈ D, x �= 0

5.
∂V (x)

∂x
G(x)w ≤ r(z, w) + L(x, φ(x)) + 
(x, φ(x))

x ∈ D, w ∈ W
6.

{H(x, φ(x)) = 0, x ∈ D
H(x, u) ≥ 0, x ∈ D, u ∈ U (56)

where

H(x, u) = ∂V (x)

∂x
F(x, u) + L(x, u) + 
(x, u). (57)

Then:

1) there exists a neighborhood D0 ⊂ D of the origin
such that the zero solution x(t) ≡ 0 of the undisturbed
(w(t) ≡ 0) system is locally asymptotically stable;

2) if x0 ∈ D0 then the feedback control u(·) = φ(x(·))
minimizes J (x0, u(·)) in the sense that

J (x0, φ(x(·))) = min
u(·)∈S(x0)

J (x0, u(·)) (58)

where J (x0, φ(x(·))) is the adjoint functional defined as

J (x0, u(·)) =
∞∫

0

[L(x(t), u(t)) + 
(x(t), u(t))]dt (59)

and in addition

J∞(x0, φ(x(·))) ≤ J (x0, φ(x(·))) (60)

3) if D = R
n , U = R

m , w(t) ≡ 0, and V (x) → ∞ as
‖x‖ → ∞, then the zero solution x(t) ≡ 0 of the closed-
loop system is globally asymptotically stable.
Proof 2: The proof of Theorem 1 is given in [49, Ch. 10].
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