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Abstract—Driving style, road geometry, and traffic conditions
have a significant impact on vehicles’ fuel economy. In general,
drivers are not aware of the optimal velocity profile for a given
route. Indeed, the global optimal velocity trajectory depends on
many factors, and its calculation requires intensive computations.
In this paper, we discuss the optimization of the speed trajectory
to minimize fuel consumption and communicate it to the driver.
With this information the driver can adjust his/her speed profile
to reduce the overall fuel consumption. We propose to perform
the computation-intensive calculations on a distinct computing
platform called the “cloud.” In our approach, the driver sends
the information of the intended travel destination to the cloud.
In the cloud, the server generates a route, collects the associated
traffic and geographical information, and solves the optimization
problem by a spatial domain dynamic programming (DP) algo-
rithm that utilizes accurate vehicle and fuel consumption models
to determine the optimal speed trajectory along the route. Then,
the server sends the speed trajectory to the vehicle where it is com-
municated to the driver. We tested the approach on a prototype
vehicle equipped with a visual interface mounted on the dash of a
test vehicle. The test results show 5%–15% improvement in fuel
economy depending on the driver and route without a significant
effect on the travel time. Although this paper implements the speed
advisory system in a conventional vehicle, the solution is generic,
and it is applicable to any kind of powertrain structure.

Index Terms—Cloud computing, dynamic programming (DP),
fuel economy, intelligent transportation systems (ITS), optimal
control.
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I. INTRODUCTION

A S the number of vehicles on the road has increased
worldwide, the importance of decreasing the overall ve-

hicle energy consumption has grown. Increased environmental
pollution and the limited petroleum supply, still the main source
of energy in today’s vehicles, compels society, academia, and
industry to seek more efficient vehicles. Significant effort has
been put forth in finding new powertrain with less energy
consumption. This work resulted in breakthroughs allowing
modern hybrid vehicles. Although hybrid vehicles take many
forms (e.g., pneumatic, mechanical, and fuel cell), hybrid elec-
tric vehicles (HEVs) drew the most attention to date, and many
studies focused on energy management of HEVs [1]–[3].

Another approach to reduce energy consumption is in the
area of driving velocity profile optimization. However, the
traffic and geographical information of the road networks re-
quire large storage units, and the search algorithms for global
optimization may require high computation power, which is not
available on current vehicle computing units [4]–[6]. As tech-
nology develops, however, cheaper and better communication
systems emerge, more accurate sensors become available, and
in-vehicle computation units become more powerful. Recently
in Europe, some of the local public transportation vehicles have
started to communicate with a certain number of traffic lights
[7]. In the USA, industry and academia are conducting exper-
iments in broadcasting red light timings for security warning
systems [8]. These advances in communication systems, sensor
technology, and high performance computation sources enable
further work in driving profile optimization, an approach which
still holds a great potential for energy consumption reduction of
road vehicles [9], [10] at a very limited cost.

Recently, many algorithms have been proposed for speed tra-
jectory optimization. Asadi and Vahidi [11] proposed a control
algorithm that adapts the velocity profile to guarantee that a ve-
hicle approaches a traffic light at green, whenever possible. The
authors used a short-range radar and traffic signal information
to predictively schedule a suboptimal velocity trajectory and
implemented the algorithm in an existing cruise control system.
A similar approach was proposed by Raubitschek et al. [12],
where the authors divided the velocity profile into a number
of modes and generated a velocity profile combined with these
modes to ensure arrival at a green traffic light. In [13], we devel-
oped an analytical solution to generate an optimal velocity pro-
file to minimize energy consumption on a given route with the
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existence of a single traffic light. In our analysis, we assumed
the availability of real-time traffic light information. Similarly
in [14], a closed-form solution is proposed for the generation
of optimal energy management in electric vehicles for a given
route. In [15] and [16], the authors proposed a velocity profile
optimizing algorithm for a certain look-ahead distance; how-
ever, their algorithm may lead to suboptimal solutions for the
entire trip distance. In [17]–[19], algorithms based on traffic and
topographic information of the road for energy consumption
reduction have been proposed. The studies discussed so far,
in general, require relatively expensive onboard computation
resources and sensors, and their real-time applications have
been limited. Another application of energy-efficient velocity
optimization is conducted by Howlett et al. [20], [21], where the
authors deal with the speed control problem within the context
of train operation, although there is much less need for cloud
computation because the route is repetitive and there are far
fewer disturbances. In addition, the time scheduling in trains is
the dominant factor because of the shared rail resource.

In our preliminary work [22], we have introduced the cloud
framework, and in this paper, we extend the developed ideas
with real-time implementation of the speed advisory system
(SAS) to generate a global optimal velocity profile by in-
corporating the available geographical and traffic information,
propose a solution by means of cloud computing [23], present
more details on the algorithms, and their implementation, and
present experimental results on multiple routes and for multiple
drivers.

A. Cloud Computing for Vehicle Applications

Cloud computing, as defined in [24], is a system for enabling
on-demand network access to a shared pool of configurable
computing resources that have “virtually unlimited” storage
space and computational power. Resources can be rapidly
acquired and released with minimum management effort. The
recent penetration of the mobile wireless Internet access renders
cloud computing possible for in-vehicle applications. Currently,
cloud computing has a limited number of automotive appli-
cations and preliminary analysis [25], [26]. Some examples
are the Ford’s MyFordMobile application [27], which uses an
onboard wireless Internet connection module to communicate
with cloud computing services for infotainment and telematics
features and the Progressive Insurance Company’s MyRate
driving monitoring device. The MyRate is the first automotive
application monitoring the driving profile.

In this paper, we extend the utilization of cloud computing
in automotive applications by providing a driving assistance
system. The system aims at advising the driver of an optimal
velocity profile to reduce the overall fuel consumption. For this
purpose, we established a two-way communication system be-
tween the vehicle and the cloud, as shown in Fig. 1. The vehicle
sends the intended trip information to the cloud. The associated
traffic and geographical information is retrieved, and a route
is generated via cloud computing. A dynamic programming
(DP) algorithm is executed to calculate the optimal velocity
trajectory and sent back to the vehicle. Then, the optimal speed
is advised to the driver in real time by a visual interface.

Fig. 1. Cloud–vehicle interaction schematic.

This paper is structured as follows. In Section II, the vehicle
dynamics and fuel consumption models are described and the
vehicle backward simulator is developed. In Section III, we for-
mulate the spatial domain optimal control problem and solve it
using a DP algorithm, as presented in Section IV. The test setup
is explained in Section V, followed by the description of the
test procedure and the test results in Section VI. In Section VII,
we discuss the advisory system requirements in term of com-
munication bandwidth, computation power, and memory size.
Finally, in Section VIII, we conclude this paper by summarizing
the overall system and presenting possible future developments.

II. VEHICLE MODELING

Here, we introduce the vehicle longitudinal and fuel con-
sumption models and their use in a vehicle simulator. The
simulator operates backward from the vehicle speed trajectory,
through the powertrain, to determine the fuel consumption.
Although the simulator uses quasi-steady-state equations, the
studies in [29] and the other references there have shown
that the backward simulator predicts the fuel consumption
accurately and outperforms the forward simulator in terms of
computation time. This work utilizes the backward simulator in
the optimization because of the calculation time advantage.

A. Vehicle Dynamics

We have developed a general backward simulation model
that is used for fuel consumption optimization, and we have
used as parameters the values for the prototype vehicle used for
testing (Lincoln MKS) that are reported in Table I.

The longitudinal dynamics of the vehicle is given by

meq ·
dv

dt
= Ftrac − Froll − Faero − Fgrade − Fbrake (1)

where v is the vehicle speed, and meq is the equivalent mass of
the vehicle, which is the sum of the curb weight of the vehicle
m and the inertia of all the rotating parts. The traction force
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TABLE I
SPECIFICATIONS FOR LINCOLN MKS USED FOR TESTING

Ftrac is the force supplied by the engine and transmitted to the
tires by means of mechanical connections, and its formulation
is given by

Ftrac =
η · γ · γfd
Rwh

· Te (2)

where η is the efficiency of the transmission unit, γ is the gear
ratio of the selected gear, γfd is the gear ratio of the final drive,
Rwh is the radius of the tires, and Te is the engine torque. The
rolling resistance Froll is the friction force acting on the tires
and is given by

Froll = m · g · cos(α) · (r0 + r1 · v) (3)

where g is the gravitational constant, α is the road grade, and
r0 and r1 are constants specific to the selected tires and wheels
and may vary depending on the pressure, temperature, and the
condition of the tires. The aerodynamic resistance Faero is

Faero =
1
2
ρAfCdv

2 (4)

where ρ is the air density, Af is the frontal area, and Cd is the
drag coefficient of the vehicle. Due to the proportionality to v2,
Faero dominates the other resistive forces at high velocities. The
road grade force Fgrade is defined as

Fgrade = m · g · sin(α). (5)

Finally, Fbrake is the brake force. By substituting (2)–(5) into
(1), we obtain the vehicle longitudinal dynamics as

dv

dt
=

1
meq

(
ηγγfd
Rwh

Te −mg cos(α)(r0 + r1v)

−1
2
ρAfCdv

2 −mg sin(α)− Fbrake

)
. (6)

B. Fuel Consumption Model

Developing an accurate fuel consumption model is crucial
for addressing energy consumption optimization problems. In
the literature, a number of fuel consumption models have
been developed [28], [29]. Models based on the Willans line
approximation suffer from accuracy over the entire range of the
engine speed and engine torque, whereas the empirical models
are, in general, developed for a particular class of engines.

In this paper, we use a fuel consumption model consisting of
a polynomial function up to the third order of engine torque, i.e.,

ṁfuel=C3(ωe)·T 3
e +C2(ωe)·T 2

e +C1(ωe)·Te+C0(ωe) (7)

where C0, C1, C2, C3 are functions of the engine speed,
determined experimentally at Ford Technical Center, Dearborn,

TABLE II
FUEL CONSUMPTION MODEL PARAMETER VARIATION

Fig. 2. Measured and model predicted cumulative fuel consumption curves
for the same velocity profile from an actual experiment.

Fig. 3. Backward vehicle simulator flowchart.

MI, USA, and reported in Table II. Several experimental
validations of the model were conducted, and due to space
limitations, we report only one comparison plot of the
measured and predicted fuel consumption amounts in Fig. 2.
Despite having small regional differences, the two cumulative
fuel consumption curves are consistent.

C. Vehicle Backward Simulator

A transition cost used in Section IV for DP calculations from
an initial speed p to a terminal speed q for a given interval
distance l and the average road grade αave is executed by the
vehicle backward simulator, as depicted in Fig. 3. In the 1-s
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Fig. 4. Contour plot of the gear shifting strategy.

sampling block, first, we determine the travel time and the
average acceleration of the road segment based on p, q, and l by

t =
2 · l
p+ q

aave =
q2 − p2

2 · l . (8)

Then, we determine the velocity at each 1-s sample time, i.e.,
we calculate vk for k = 0, 1, . . . , �t�, where vk = p+ k · aave
and �·� is the floor operator. We insert the 1-s interval average
speed, i.e., vave,k = (vk + vk+1)/2 if k ∈ {0, 1, . . . , �t� − 1}
and vave,k = (vk + q)/2 if k = �t�, aave, and αave into (6) to
calculate the required torque at the wheels, i.e., Tw,k, at time k.
Then we determine the gear number ξk in the gear shifting
block based on the gear shifting map shown in Fig. 4. In the fig-
ure, the contour plots indicate that an operating point between
any two curves labeled by j and j + 1 is at the jth gear. An
operating point outside of the most outer curve labeled by 2 is at
the first gear. The engine speed at time k is calculated by ωe,k =
(γ(ξk) · γfd/Rwh) · vk. The mechanical limitation block con-
sisting of the vehicle’s torque converter model checks the feasi-
bility of the operating point in terms of the limits of the engine
speed and torque at the selected gear. The block assigns an infi-
nite cost if the operating point is infeasible and terminates any
further calculations. On the other hand, for a feasible operating
point, it sends the results to the vehicle backward model block.

The vehicle backward model block receives the feasible ωe,k

and Te,k as inputs, inserts the values in (7) to obtain the instan-
taneous fuel consumption, and sends it to the cumulative sum-
mation block that calculates the cumulative fuel consumption.
We repeat the procedure until we process ∀k ∈ {0, 1, . . . , �t�}
and obtain the total fuel consumption of the road segment, i.e.,
mfuel, as the final output of the backward simulator.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The objective of the optimal control problem is to find the
optimal velocity profile that minimizes the fuel consumption
over a travel distance Df . For this purpose, the optimization
is conducted in the spatial domain by means of the following
transformation (which converts time-domain equations into the
spatial domain) [16], [22]:

v̇ =
dv

dt
=

dv

dD
· dD
dt

= v · dv

dD
(9)

where the traveled distance D is the independent variable.

The cost function to be minimized is

JD =

Df∫
0

ṁfuel (Te(D), ωe(D))

v(D)
· dD (10)

where Df is the total travel distance, and the admissible control
is u(D) = Te(D). The minimization of (10) is subject to the
dynamic constraint

dv

dD
=

1
meq · v

(
ηγ

Rwh
Te −mg(r0 + r1v)−

1
2
ρAfCdv

2

−m · g · sin(α)− Fbrake

)
(11)

obtained from (6)–(9).
In addition to the dynamic constraint (11), constraints are

imposed on the control input and state during the optimization.

A. Control Constraint Set

The control input Te is bounded by the maximum and
minimum engine torques. The maximum engine torque of the
target vehicle, i.e., the Lincoln MKS, is given in Table I, and
the minimum engine torque is taken as zero; thus, the first
constraint set is

UD,1 := {Te(D), Fbrake(D) : 0 ≤ Te(D) ≤ Tmax
e

and Fbrake(D) = 0} . (12)

Similarly, a limitation is also enforced for the maximum brak-
ing force

UD,2 := {Te(D), Fbrake(D) : 0 ≤ Fbrake(D) ≤ Fmax
brake

and Te(D) = 0} . (13)

Then, the control constraint set becomes UD = UD,1 ∪ UD,2.

B. State Constraint Set

To guarantee vehicle operation within the legal speed limits,
we define the constraint set

XD,1 :=
{
v(D) : vmin

lim (D) ≤ v(D) ≤ vmax
lim (D)

}
. (14)

For driver comfort and safety issues, limitations are imposed on
the vehicle acceleration

XD,2 :=

{
v(D) :

(
dv

dD

)min

≤ dv

dD
≤

(
dv

dD

)max
}
. (15)

Furthermore, the stop signs on the route impose a set of interior-
point constraints defined by

XD,3 := {v(D) : v(Ds) = 0 for s = 1, 2, . . . ,m} . (16)

where Ds is the location of the sth stop sign, and m is the total
number of the stop signs on the route. The state constraint set
then becomes XD = XD,1 ∩ XD,2 ∩ XD,3.
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In general, the traffic congestion further restricts XD,1 and
XD,2 for real-time applications; however, in this application,
we are not directly incorporating these effects into the state
constraint sets. Instead, we accordingly update XD,1 (described
in detail in Section VI-C), based on the driver’s optimal velocity
profile following characteristic such that the optimal speed
trajectory tracking error is decremented.

C. Boundary Conditions

In our calculations, we assume that a trip starts and ends at a
standing position, i.e., the boundary conditions are

v(0) = v(Df ) = 0. (17)

In the spatial domain framework, the optimization control
problem aims at minimizing (10) by manipulating u(D), sub-
ject to the constraints (11), u(D) ∈ UD and x(D) ∈ XD with
boundary condition (17). Then for a given route Df , Ds (for
s = 1, 2, . . . ,m), α(D), vmin

lim (D), and vmax
lim (D) are fixed pa-

rameters, and it is straightforward to determine UD and XD.
Although the boundary condition (17) seems to render the
system state dynamic (11) undefined at the boundary points,
this is not the case due to the inherent discrete nature of the
DP solution used to solve the spatial domain optimization,
i.e., in the DP solution, a speed transition from v(k) = 0 to
v(k + 1) = 0 is forbidden, where v(k) and v(k + 1) is the
speed at discrete times k and k + 1. Moreover, v in (11) is taken
as v = (v(k) + v(k + 1))/2, and the condition v = 0 rendering
the problem undefined never occurs.

IV. DP ALGORITHM

This section details the solution of the nonlinear opti-
mal control problem formulated in the spatial domain by
the DP algorithm. A set of points identifies the route spe-
cific data and the route. Specifically, the route consists of
the points P = {p0, p1, p2, . . . , pK}. Each point pk ∈ P for
k = 0, 1, . . . ,K has its own characteristic parameters; pk =

[latk, lonk, dk, hk, αk, v
max
k , vmin

k ]
T

, where latk is the latitude,
lonk is the longitude, dk is the distance, hk is the elevation,
αk is the grade, vmax

k is the maximum speed, and vmin
k is the

minimum speed along the interval between pk and pk+1. To
define the DP algorithm, we require full information of the
intended route. Some of these data are normally not available in
the vehicle but are easily obtained in the cloud. In what follows,
we describe the assumptions for P .

A) Assumptions:

1) latk and lonk for k = 0, 1, . . . ,K are known.
2) dk is known and dk+1 < dk for k = 0, 1, . . . ,K − 1.
3) hk and vmax

k for k = 0, 1, . . . ,K are known and linearly
change between pk and pk+1.

With the aforementioned assumptions, we calculate the other
unknowns, namely, αk and vmin

k , for k = 0, 1, . . . ,K, as de-
scribed in the next section. We associate the stop signs repre-
sented by the set S = {s1, s2, . . . , sm} by the points pk with
vmax
k = 0.

The points in P are not necessarily evenly spaced; however,
DP requires regularity between the elements of P for smooth
transition of the optimal velocity profile. In the next section, we
describe how we satisfy the regularity between the points.

A. Manipulation of Set P

The manipulation of P aims at creating a new set P ∗ =
{p∗0, p∗1, p∗2, . . . , p∗N} such that S ⊂ P ∗ and the elements of
P ∗ are dispersed with a regular pattern. The easiest way is
to define a constant dc = dk ∀k ∈ {0, 1, . . . , N − 1} and then
insert the stop signs if they are not already in P ∗. However,
using a constant dc results in undesired behaviors on the optimal
velocity profile, e.g., a relatively large equidistant value results
in slow acceleration in the low-speed region. On the other hand,
the selection of a small interval distance causes an unnecessary
increase in the calculation time. As a compromise between
the two situations, we define variable distance segments based
on the regional maximum speed limit. We select the variable
quantization interval as

ΔDk =

{
50 m, if vmax

k ≤ 30 mi/h
150 m, if vmax

k > 30 mi/h. (18)

Then, we generate p∗k ∈ P ∗ such that d∗k = ΔDk for k =
0, 1, . . . , N − 1. Moreover, we determine h∗

k and v∗max
k by

interpolating the corresponding values at pk ∈ P . Finally, the
stop sign and the boundary points of the route are inserted into
P ∗ by the monotonicity.

The grade between any two consecutive points is calculated
by ᾱ∗

k = tan−1(h∗
k+1 − h∗

k)/dk. However, to reduce the DP
calculation time, we quantize the grade in intervals of 0.5◦, i.e.,
α∗
k =

∑2αmax

i=−2αmax
r(i, ᾱ∗

k), where αmax ∈ N is the maximum
absolute grade and

r (i, ᾱ∗
k) =

{
i/2, if i/2 − 0.25 ≤ ᾱ∗

k < i/2 + 0.25,
0, otherwise.

(19)

The optimal control problem is cast in such a way that the fuel
consumed is the only cost criterion (10). However, for driver
satisfaction, shorter travel time is also crucial. A reasonable
speed bandwidth should be selected to satisfy shorter travel
times. In this paper, we limit v∗min

k to be 10 mi/h less than
v∗max
k to keep the travel time at an acceptable range.

The last parameter affecting the performance of DP is the
quantization interval of the velocity, i.e., Δv, where too small
step values unnecessarily increase the calculation time and too
large values reduce performance. In this paper, we selected
Δv = 2 mi/h previously determined [22] as a good compromise
between the calculation time and the accuracy of the solution.

B. DP Formulation

The DP algorithm [30], which proceeds backward in time
from time step N to 0, is defined as

Jk(vk)= min
uk∈UD

{gk(vk, uk,ΔDk)+Jk+1 (f(vk, uk))} (20)



2496 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 6, DECEMBER 2014

Fig. 5. Schematic representation of the DP algorithm.

where Jk(vk) is the cost-to-go function from step k to N
starting from vk with terminal cost JN (vN ) = gN (vN ). uk ∈
UD is the control input determining the velocity at the next step.
UD is the input constraint set defined in Section III. Since the
boundary condition at the end of the travel is fixed by (17), the
terminal cost function gN (vN ) is defined as

gN (vN ) =

{
0, if vN = 0
∞, if vN = 0.

(21)

Similarly, the transition cost function from step k to k + 1 for
k = 0, 1, . . . , N − 1 is defined by

gk(vk, uk,ΔDk) =

⎧⎨
⎩

yk, if f(vk, uk) ∈ Vk+1,
vk ∈ Vk, uk ∈ UD,

∞, otherwise
(22)

where yk is the output of the vehicle backward simulator
described in Section II-C, and Vk is the velocity bandwidth
bounded by v∗min

k and v∗max
k .

To retrieve the optimal path, i.e., the optimal velocity trajec-
tory V ∗ = {v∗0, v∗1, v∗2, . . . , v∗N}

φk(vk)=argmin
uk∈UD

{gk(vk, uk,ΔDk)+Jk+1 (f(vk, uk))} (23)

for k = 0, 1, . . . N − 1. Then, the optimal control strategy μ∗ =
{μ∗

0, μ
∗
1, . . . , μ

∗
N} is obtained by the backtracking algorithm

μ∗
k =φk (v

∗
k) , where v∗0 = v(0) (24)

v∗k+1 = f (v∗k, μ
∗
k) . (25)

Fig. 5 shows a graphical representation of the DP algorithm,
where the feasible and unfeasible points are represented with
filled and unfilled circles, respectively. The DP algorithm starts
from the last step N and first calculates the transition cost to
the points at the (N − 1)th step. The cost of the transition
to a feasible point (filled circle) is determined by the vehicle
backward simulator, whereas the cost of the transition to an
unfeasible point (unfilled circle) is infinity, as defined by (22).
After we determine the transition costs from step k + 1 to k for
k = 0, 1, . . . , N − 1 in the backward direction, we generate the
optimal path by the backtracking algorithm.

The DP algorithm computes the entire feedback law μk =
φk(vk). That is, if a disturbance occurs, the optimal control
profile from the current time instant onward is adjusted to
maintain future optimality.

Fig. 6. Cloud communication sequence and protocol diagram.

V. DESCRIPTION OF THE TEST SETUP

This section describes the cloud architecture and the setup
developed in the vehicle.

A. Cloud Architecture

Three servers comprise the cloud used in this project: the
main server (optimization server), the ArcGIS Server, and the
Google Maps Server. The main server resides at the Center for
Automotive Research (CAR), The Ohio State University, and
manages the communications between the servers and the vehi-
cle. Fig. 6 presents a schematic of the communication sequence.
The driver sends the origin, destination, and the waypoints of
the desired route to the main server in the cloud through a
webpage. The main server sends the desired trip information
to the Google Maps Server using Google Maps Application
Programming Interface, and the Google Maps Server generates
the route in the form of polylines defined by the latitude (latk)
and longitude (lonk) of the edge points (pk, pk+1), which are
utilized to calculate the distance (dk) between each point and
then transferred to the ArcGIS Server through Single Object
Access Protocol. The ArcGIS Server containing the digital
elevation model of the states of Ohio and Michigan determines
the elevation data (hk and sends it back to the main server.
At the end of the aforementioned communication sequence,
the main server gathers hk, latk, lonk, and dk information
of pk for k = 0, 1, . . . ,K, which constitutes P as described
in Section IV. Employing the Distributed Component Object
Model, the main server executes the optimization program that
includes the DP algorithm, which is currently implemented
in MATLAB. The result of the DP algorithm is the optimal
velocity profile, and it is transferred back to the vehicle through
the Internet connection. The data package that is sent contains
d∗k, v∗k, lat∗k, and lon∗

k of p∗k ∈ P ∗ for k = 0, 1, . . . , N , where v∗k
is the optimal velocity at p∗k.

An extension to our approach would be to determine a num-
ber of competing routes from the source point to the destination
point, evaluate the energy consumption of each route, and pick
the route having the least energy consumption amount. Fur-
thermore, similar to the discussions for velocity profile update
described in Section VI-C, we could also apply a reinforcement
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Fig. 7. Lincoln MKS dashboard: the display screen and the GPS receiver
installed for in-vehicle testing.

TABLE III
HIGHWAY TEST ROUTE INFORMATION

learning from the historical data and the most recent traffic
and road information to update the route for minimum energy
consumption along the trip. However, we leave the dynamic
routing as a future work, and in this particular application of
the cloud, without loss of generality, we only consider the fuel
economy achievement based on velocity profile adaptation for
a given route.

B. Vehicle Instrumentation

The vehicle uses five main hardware components, namely,
the display screen, GPS receiver, CAN Interface, 4G LTE-
Capable USB Modem, and the vehicle laptop. Their function-
alities are described next.

1) Display Screen: The screen displays the advised velocity
to the driver. The background color of the display changes
to warn the driver depending on the deviation amount of the
vehicle speed with respect to the advised speed. A picture of
the screen mounted on the dash of the test vehicle is shown
in Fig. 7.

2) GPS Receiver: The GPS receiver and some other vehicle
specific data are fused for vehicle localization.

3) CAN Interface: The advisory system requires the real
time vehicle speed and the odometer information in order
to update the advised velocity. To transfer the data between
the electronic control unit (ECU) and the laptop, a parallel
connection to the CAN data bus of the vehicle is established.

4) LTE 4G USB Modem: The communication from the
driver to the cloud and vice versa is obtained through a mobile
Internet connection. The test setup uses a 4G LTE USB Modem.

5) Laptop: The computing unit in the vehicle receives and
logs the information received from the ECU, GPS, and the
cloud server and runs the algorithm synchronizing the advised
velocity with the vehicle position. It also runs the graphical user
interface to show the advised velocity to the user and allows
driver to interact with the cloud.

Fig. 8. Highway driving route.

VI. TEST PROCEDURE AND RESULTS

The tests have been performed in a highway and an urban
driving route. For both cases, we determine the origin, desti-
nation points, and waypoints and send a request to the cloud.
In the cloud, the calculations are performed, and the optimal
velocity profiles are generated and sent back to the vehicle.
Then the driver drives along the generated route.

For each experiment, two test runs are performed. In the
first run, the driver drives by his normal driving style without
considering the advisory. Hereafter, the velocity profiles ob-
tained from the first test are referred to as “natural driving”
or “baseline driving,” interchangeably. In the second run, the
drivers follow the advised velocity profile. The second test run
is referred to as “advisor following.” In order to capture the
average benefit obtained by the method, the same routes are
tested by several drivers. In the following sections, we introduce
the highway and the urban routes and present the test results.

A. Highway Driving Test Results

The first set of experiments is conducted in highway driving.
A route mainly consisting of highway and freeway segments
is selected near The Ohio State University, Columbus, Ohio,
USA. Only a small portion of the route is in urban area.
The origin, destination and the waypoints information of the
trip is presented in Table III. The route shown in Fig. 8 is
generated by Google Maps Server. Based on the latitude and
longitude values, the elevation information has been gathered
from the GIS server. The elevation information is utilized to
generate the road grade profile, as shown in Fig. 9. For the given
route, the maximum speed limits and the location of stop signs



2498 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 6, DECEMBER 2014

Fig. 9. Highway test route grade profile.

Fig. 10. Slow poke, foot lead, and average velocity profiles for the highway
route.

are determined, and the minimum speed limits are selected
as 10 mi/h less than the maximum speed limits. Then, the
optimization problem is solved, and the optimal velocity profile
minimizing the total fuel consumption is calculated, as shown
in Fig. 10. Apart from the optimal velocity trajectory, some
other velocity trajectories, namely, slow poke, lead foot, and
average speed profiles, are generated. The “slow poke” driving
profile operates at the minimum velocity limit and reaches
the destination after the longest time, whereas the “lead foot”
driving profile corresponds to the legally permitted maximum
speed profile and arrives at the destination point in the shortest
time. The “average profile” is the average of the two previous
scenarios. For the test route, the slow poke, lead foot, and
average velocity trajectories are generated, as shown in Fig. 10.
Three different drivers performed the tests. The velocity profiles
from the test results of the first driver are presented in Fig. 11,
indicating that in the baseline (natural) driving, the driver tends
to drive faster than the optimal velocity trajectory suggested for
the highway route. Indeed, the driver sometimes exceeds the
speed limits. On the other hand, in the advisor following test,
the driving pattern of the driver is smoother, and the average
speed is lower. The travel time for the baseline is 30.6 min,
whereas it is 31.1 min for the advisor following case.

Fig. 12 presents the cumulative fuel consumption of baseline
and advisor following drivings of the first driver, and Table IV
shows the trip time and the fuel economy of each test. The
results show that the SAS improves the fuel economy, on
average, by 12.6% with a 3.6% increase in travel time in the

Fig. 11. Highway test route velocity profiles.

Fig. 12. Highway test route fuel consumption evolution for baseline and
advisor following cases.

TABLE IV
COMPARISON OF HIGHWAY TESTS

TABLE V
FUEL ECONOMY OF VARIOUS HIGHWAY DRIVING PROFILES

worst case test for highway driving. Despite the drivers’ efforts,
the velocity tracking is not perfect. The degradation in fuel
economy in the case of imperfect tracking is thus assessed.
First, we predict the fuel consumption of the slow poke, lead
foot, average, and optimal velocity trajectories by employing
the fuel consumption model of the vehicle introduced and
verified in Section II-B. In Table V, the fuel consumption of
that velocity trajectories and the corresponding travel times are
presented. To assess the potential improvement in fuel economy
in the case of perfect tracking of the advised speed, the fuel
economy on the simulated velocity profiles is compared. In
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TABLE VI
RELATIVE FUEL ECONOMY OF HIGHWAY TESTS

TABLE VII
URBAN TEST ROUTE INFORMATION

Fig. 13. Urban driving test route.

Table VI, the relative fuel economy of each driving profile
with respect to the advised velocity profile is given. Since in
this particular test route the advised velocity profile is close to
the lower speed limit, the relative fuel economy of the slow
poke velocity profile is limited to 2%. On the other hand, the
relative fuel economy of the lead foot velocity profile is 10.2%.
Furthermore, when the drivers follow the advised velocity, on
average, they have 1.8% relative fuel economy due to imperfect
following of the advised velocity profile, as shown in Table VI.
Finally, if the drivers could perfectly track the advised velocity,
they could improve the fuel economy, on average, by 14.1%
with respect to the baseline driving.

B. Urban Driving Test Results

The second set of tests have been performed in an urban
driving route. The route is in Dearborn, MI, USA, around the
headquarters of Ford Motor Company. The origin destination
and waypoints of the route are given in Table VII. Based on
the trip information, the route is generated by the Google Maps
Server. The generated route is 5.4 mi long and contains a
number of traffic lights and stop signs, as presented in Fig. 13.

Fig. 14. Urban driving test route grade profile.

Fig. 15. Slow poke, foot lead, and average velocity profiles for the urban
route.

Based on the latitude and longitude values of the route, the
elevation information is collected from the GIS server, and in
the main server, the road grade profile is generated (see Fig. 14).
Similar to highway tests, the minimum speed limits are selected
to be 10 mi/h less than the maximum speed limits. The positions
of the stop signs are determined and included as constraints
in the optimization problem. As the operation sequence of
the traffic lights are unknown, we simply consider the traffic
lights as stop signs but suggest the driver to ignore the advised
optimal velocity profile in the case of green at a traffic light.
The calculated optimal velocity profile, the slow poke, the lead
foot, and the average speed profiles are shown in Fig. 15.
Seven different drivers performed two test runs: one for natural
driving and one for advisor following. In the urban route, more
drivers are used since the urban tests are more prone to external
disturbances (such as traffic lights or variation in traffic flow).
By increasing the number of drivers and averaging the results,
more accurate judgements could be made. To compensate for
traffic light disturbance, in the analysis, if a driver had to stop
at a traffic light while it did not in another run, the stopping and
reacceleration phases are discarded from the logged data.
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Fig. 16. Urban test route velocity profiles of the first driver (test-1).

Fig. 17. Urban test route fuel consumption evolution of natural driving and
advisor following cases for test-1.

TABLE VIII
COMPARISON OF URBAN TESTS

In Fig. 16, the natural driving and advisor following velocity
profiles of the first driver are compared with the advised veloc-
ity profile. It is clear that the driver tends to drive around the
maximum speed limit. In some sections, the maximum speed
limit coincides with the advised (optimal) velocity, particularly
in those regions where no significant improvement in fuel
economy is expected. However, similar to highway driving, at
the higher maximum speed limit region, the deviation between
the optimal velocity and the driver’s natural velocity is more
significant, and more improvement in fuel economy can be
expected. In Fig. 17, the cumulative fuel consumption curves
along the travel distance for the runs of the first driver are
shown. In Table VIII, the comparison of the travel times and
fuel economy for both test runs of each driver and average val-
ues are presented. Table VIII shows that compared to highway
tests, the fuel economy improvement is reduced, but it is still in
the range of 5%–10%. An average fuel economy improvement
of 7.4% is obtained, and the increase in the travel time is only
12 s for a 13.3-min driving cycle.

TABLE IX
FUEL ECONOMY OF VARIOUS URBAN DRIVING PROFILES

The predicted fuel economy and trip times of the slow poke,
lead foot, average, and optimal velocity profiles are given in
Table IX. Contrary to the highway driving, the slow poke
velocity profile has much worse fuel economy relative to the
advised velocity, i.e., 23.2%, whereas the lead foot profile has
5.4% relative fuel economy, as given in Table X. On average,
the drivers could achieve 6.3% better fuel economy if they
could perfectly follow the advised velocity. In that case, the
fuel economy improvement of the drivers would be, on average,
12.5% compared to their average baseline driving profiles,
which is similar to what was achieved in the highway tests. This
clearly indicates that in urban driving, it is harder to follow the
advised velocity profile. As we should expect, the generation
of speed profiles that are easier to follow for the driver is an
interesting research direction for future work and discussed
next from a reinforcement learning point of view.

C. Advisory System Adaptation by Reinforcement Learning

As discussed in the preceding sections, fuel economy de-
grades if the drivers do not follow the recommended speed
profile. The driver may not follow the recommendation for
several reasons, e.g., because he is not comfortable with the
recommendation, or current traffic/safety conditions do not
allow following the recommended profile. Different types of
drivers may perceive the optimal velocity advice differently. It
seems unrealistic to estimate the speed that the driver would be
comfortable to follow unless we learn what speed is acceptable.
A solution to this problem is the use of reinforcement learn-
ing of the driver’s tendency; some applications of which are
reported in [31] and [32]. In this paper, we propose a simplified
form of reinforcement learning in which the driver’s tendency
to follow the recommended profile is continuously evaluated
and the limits are adjusted accordingly. Therefore, an adaptive
algorithm that can learn the driver perception of the recom-
mended speed by monitoring his/her behavior with respect to
the recommendation of the optimization algorithm is applied.

The adaptation algorithm uses the estimated driver charac-
terization to dynamically adapt the speed limits to the specific
driver pattern and improve its effectiveness. The adaptation
increases the likelihood that the driver would follow the rec-
ommended speed profile and consequently increases the effec-
tiveness of the advisory system.

The driver acceptance of the recommendations provided by
the advisory system can be quantified through the frequency
at acceptance [27]. The process of recursive calculation of the
weighted frequency of rejection (with higher weights corre-
sponding to the recent observations) is implemented by a low-
pass filter with exponential smoothing, i.e.,

R(k)=

⎧⎨
⎩

(1−β)R(k−1)+a, if vmin≤v(k)≤vmax

(1−β)R(k−1), if v(k)<vmin or
v(k)>vmax

(26)
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TABLE X
RELATIVE FUEL ECONOMY OF URBAN TESTS

where R is the rejection rate of the advised speed, and β is
a constant forgetting factor, 0 ≤ β ≤ 1, controlling the rate of
updating the weighted mean R. For a constant forgetting factor
β, we obtain a vector of positive weights with unit sum by

W =
[
βn(1 − β) βn−1(1 − β) · · · (1 − β)

]
. (27)

The vector W defines a weighted average aggregating operator
with exponentially decreasing weights that are parameterized
by the forgetting factor β. Parameter β defines the memory
depth (the length of the moving window) of the weighted
averaging aggregating operator. It can be shown that the mem-
ory depth Ka is approximately related to the forgetting factor
by Ka = 1/(1 − β). The operation of reinforcement-learning-
based adaptation of the speed limits is illustrated in Fig. 18.

VII. ADVISORY SYSTEM REQUIREMENTS

Here, we explore the technical details of the SAS in terms
of the communication bandwidth, computation and memory
requirements. At the end we also present a discussion of the
system implementation in the vehicle and in the cloud.

A. Communication Bandwidth Requirements

In the vehicle, we implemented a 4G LTE USB Modem to
communicate with the cloud, as stated in Section V-B. LTE
mobile wireless communication provides peak rates of 300 and
50 Mb/s for download and upload, respectively, [33], [34].
The study [35] on the performance of 4G LTE networks in
the USA, however, shows that the average rates are 12.7 and
5.6 Mb/s for download and upload, respectively. To assess the
required communication bandwidth, we consider the average
rates. The data sent from the vehicle to the cloud are the origin,
destination, and waypoints of the desired route. Assuming a
maximum character length of MCL = 50 for an address, the
desired route information requires

CU = (M + 2) · MCL · BPB M ∈ N (28)

number of bits, where M is the number of waypoints (excluding
initial and final positions) on the route, N is the set of natural
numbers, and BPB is the number of bits per byte. For the
highway and urban driving routes with two and three way-
points, we require to maximally send 200 and 250 characters,
corresponding to CU = 1.6 kb and CU = 2 kb of data from the
vehicle to the cloud, respectively.

On the other hand, the received data from the cloud to
the vehicle consists of d∗k, v∗k, lat∗k, and lon∗

k, ∀p∗k ∈ P ∗, as
presented in Section V-A. Assuming that the transferred data

are in double-precision floating-point format (i.e., 8 bytes) and
N + 1 is the number of points in P ∗, the number of transferred
data bits is

CD = 32 · BPB · (N + 1). (29)

For the highway and urban driving routes, NH = 365 and
NU = 121 corresponding to 93.4 and 30.9 kb of received
data, respectively. Based on the average speeds of LTE mobile
networks, for the tested highway and urban driving routes,
the upload times are CHigh.

U < 0.4 ms, CUrban
U < 0.3 ms, and

the download times are CHigh.
D = 7.4 ms, CUrban

D < 2.4 ms,
respectively. The given values only refer to the data transfer
time and do not include the latency in the communication
protocol. The data transfer times show that an Internet con-
nection with a moderate bandwidth in the vehicle is adequate
for the cloud-based advisory system implementation in terms
of communication load.

B. Computation and Memory Requirements

In the proposed advisory system, we solve the DP algorithm
(20) in the cloud where the computing unit is armed with a
powerful Inter Core i7 processor with four cores and clock
speed of 3.2 GHz and 16 GB RAM of memory. In the following,
we present an estimate number of computations performed and
present the total memory requirement in the cloud.

As presented in Fig. 5, the DP algorithm requires a recursive
computation of the state transition cost gk(vk, uk,ΔDk), from
vk to vk+1 for k = 0, 1, . . . , N − 1. These recursive computa-
tions are the major source of computation load in the cloud.
To determine the total number of state transition cost computa-
tions, first, we determine the total number of state transitions.

To estimate the number of state transitions, we utilize the
2-D, namely distance–velocity, computation space, which are
quantized by ΔDk and Δv. The number of intervals in dis-
tance dimension is N , and the number of intervals in velocity
dimension is determined by

L =

⌈
‖v∗max‖∞

Δv

⌉
(30)

where v∗max = [v∗max
1 , v∗max

2 , . . . , v∗max
N ]T , and the opera-

tor �·� denotes the ceiling function. Then the discrete veloc-
ity space becomes Lk = L = {v0, v1, . . . vL} at Dk for k =
0, 1, . . . , N . For a fixed k and i ∈ {0, 1, . . . , L}, the num-
ber of possible transitions from vik to Lk+1 is (L+ 1). By
considering all transitions from each element of Lk to Lk+1

∀k ∈ {0, 1, . . . N − 1}, we determine the total number of state
transitions as Sg = N · (L+ 1)2.
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Fig. 18. Evolution of the advised speed obtained from the reinforcement learning algorithm.

TABLE XI
COMPUTATION NUMBERS AND CALCULATION TIME OF THE TESTS

Furthermore, the amount of computations for each transition
cost calculation is not the same. For instance, the computation
amount of a feasible transition cost, where the feasible states
and control are characterized by vk∈Vk⊂Lk, vk+1∈Vk+1⊂
Lk+1, and uk∈UD, is different from the computation amount
of an unfeasible transition cost. A feasible transition cost is the
output of the vehicle backward simulator that requires a signif-
icant number of computations denoted by Svbs. On the other
hand, the cost of an unfeasible state transition is infinity, as
given in (22), thereby requiring one computation. To distinguish
the feasible and unfeasible transitions, we define an average
velocity range in which the state transitions are feasible as

Vfb =
1
N

N∑
i=0

v∗max
i − v∗min

i (31)

Then, the number of intervals R in Vfb is R=�Vfb/Δv�, and the
number of feasible state transitions are Sfg=N ·(R+1)2. After
distinguishing the feasible and unfeasible transitions, we deter-
mine the total number of state transition cost computations as

Stt = Sfg · Svbs + (Sg − Sfg). (32)

Another source of computation load is due to the calculations
of φk(vk) [see (23)], for which the number of computations
is equal to the number of feasible state transitions
Sφ = Sfg. Ignoring the P set manipulation and backtracking
computations, the total number of computations in the cloud is
then approximated by

ST ≈ Stt + Sφ. (33)

As given in the preceding section, the highway and urban driv-
ing routes have NH = 365 and NU = 121, respectively. For
both routes, ‖v∗max‖∞ = 70 mi/h, Δv = 2 mi/h, and Vfb =
10 mi/h and we assume that the backward simulator incurs an
average of 100 computations, i.e., Svbs = 100. Based on these
route specific parameters, we report the number of computa-
tions of each route in Table XI. In the cloud, that many calcula-
tions take 3.2 s for highway driving and 1.8 s for urban driving.
In addition to the computation requirement, the DP algorithm

also sets a certain memory size requirement on the computing
unit. When we consider only the size of state transition
cost information, the computation unit is required to store Sg

number of values, i.e., in double-precision floating-point format
(8 bytes), we require Mg=8·Sg bytes of memory space. For the
highway and urban driving routes with the values in Table XI,
it amounts to 3.8 and 1.3 MB memory space, respectively. To
determine the total memory consumed by the DP algorithm,
we have utilized the Microsoft’s task manager software and
observed that the highway route uses 9.72 MB, whereas the
urban driving route requires 5.63 MB of total memory.

C. Assessment on the Implementation of the Advisory System

Here, we assess the advantages of the advisory system
implementation in the cloud rather than in the vehicle. The
microcontoller units (MCUs) are, in general, armed with much
less powerful processors and with a smaller size of memory
than personal computers. In a typical car, the clock speed values
of MCUs are in the range of 40–180 MHz with 256 kB to 1 MB
RAM memory and 1–4 MB Flash memory [36], [37]. However,
as shown in the preceding section, DP requires 9.72 MB of
free memory space for highway driving, i.e., for long trips,
the memory size of the MCUs would be insufficient. Even if
the MCUs would have enough memory, the clock speed values
of MCUs used in automotive applications are approximately
20× slower than the processor used in the cloud, which has
3.2 GHz clock speed and four cores in the current framework,
and roughly, the computation time of the DP algorithm in the
vehicle would be 256 and 144 s for the urban and highway driv-
ing routes, respectively. That much latency is too large for real-
time implementations of the advisory system and unacceptable
with the reinforcement learning algorithm.

In addition, the cloud provides flexibility in the construction
of the computing resource, and it is independent of the vehicle,
i.e., we can extend the computing resource in the cloud as much
as we require with the addition of multiple computing proces-
sor units and even with graphical processor units to perform
general-purpose parallel computations without any change in
the vehicle. On the other hand, the number of MCUs in the
vehicle is rather limited [38].

Another advantage of the cloud framework is the low imple-
mentation cost. Although for a single vehicle the implementa-
tion cost of the system in the cloud and in the car is comparable,
as the number of vehicles increases, the implementation cost
of the system in the cloud would be significantly cheaper
since the cloud can handle the computations of multiple cars
simultaneously.



OZATAY et al.: CLOUD-BASED VELOCITY PROFILE OPTIMIZATION FOR EVERYDAY DRIVING 2503

VIII. CONCLUSION

In addition to the mechanical design, the smart utilization of
information can significantly reduce vehicle energy consump-
tion. The usage of cloud computing for vehicle applications
rendered the real-time computation-intensive driving profile
optimization possible. Although having a complex structure
within itself, the cloud has a simple interaction with the vehicle;
indeed, the only data sent to the cloud are the waypoints of
the desired route, and the received data carry the velocity
information of the points along the route. The tests have been
executed in highway and urban drivings and performed by
several drivers. The baseline and advisor following driving
characteristics are averaged, which leads to more accurate
assessment of the test results. The test results have shown
that for highway driving, on average, 12.6% fuel economy
improvement is achieved, whereas the improvement is 7.4% for
urban driving. Compared to the highway tests, in urban driving,
it is harder to follow the advised velocity profile due to external
disturbances (other vehicles on the traffic, traffic lights, etc.).

The demonstrated application of the cloud computing for
velocity profile optimization is a novel approach, and the
preliminary results promise a significant reduction in fuel
consumption. We believe that the increase in the number of
agents (e.g., other vehicle on the network and pedestrians) and
the infrastructures (e.g., traffic lights) communicating with the
cloud will render the approach even more powerful.
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