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Batteries are electrochemical energy storage devices that exhibit physico-chemical heterogeneity on a continuity of scales. As such,
battery systems are amenable to mathematical descriptions on a multiplicity of scales that range from atomic to continuum. In this
paper we present a new method to assess the veracity of macroscopic models of lithium-ion batteries. Macroscopic models treat the
electrode as a continuum and are often employed to describe the mass and charge transfer of lithium since they are computational
tractable and practical to model the system at the cell scale. Yet, they rely on a number of simplifications and assumptions that
may be violated under given operating conditions. We use multiple-scale expansions to upscale the pore-scale Poisson-Nerst-Planck
(PNP) equations and establish sufficient conditions under which macroscopic dual-continua mass and charge transport equations
accurately represent pore-scale dynamics. We propose a new method to quantify the relative importance of three key pore-scale
transport mechanisms (electromigration, diffusion and heterogenous reaction) by means of the electric Péclet (Pe) and Damköhler
(Da) numbers in the electrolyte and the electrode phases. For the first time, applicability conditions of macroscopic models through
a phase diagram in the (Da-Pe)-space are defined. Finally, we discuss how the new proposed tool can be used to assess the validity of
macroscopic models across different battery chemistry and conditions of operation. In particular, a case study analysis is presented
using commercial lithium-ion batteries that investigates the validity of Newman-type macroscopic models under temperature and
current rate of charge/discharge variation.
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Predictive understanding of battery dynamical behavior still re-
mains a major bottleneck in achieving diagnostic capabilities, safety,
optimization and control of battery systems under different operating
conditions. Such a difficulty arises from two main factors: i) nonlinear-
ity of lithium-ion transport processes1 and ii) battery systems multi-
scale structure that exhibits physicochemical heterogeneity on a conti-
nuity of scales (from the nanometer to the meter).2–5 Since the seminal
work by Newman and Tiedemann,6 where macroscopic ion transport
equations were first formulated, a plethora of models have spurred in
the past decades. They range from fully empirical approaches to gen-
eralizations of electrochemical models based on the porous electrode
theory to account for concentrated solutions,7,8 thermal effects9 and
capacity fade due to Solid-Electrolyte Interphase (SEI)-growth,10–12

just to mention a few. In the past decade, ever increasing computational
capabilities have fuelled the development of fully molecular/atomistic
models and multiscale/multiphysics approaches.13 For a thorough re-
view on the topic, we refer the reader to Ref. 4.

Microscale models14,15 (e.g. molecular dynamics, kinetic Monte
Carlo and pore-scale models) are theoretically robust, but are imprac-
tical as a predictive tool at the system level due to their computational
burden. For example, current molecular dynamics simulations are
still prohibitive at the nano-second timescale.4,16 Such computational
limitations become dire when modeling battery lifetime and slow
degradation processes over hundreds or thousands of cycles. Further,
the need for real-time estimation of battery State-of-Charge (SOC)
and State-of-Health (SOH) currently limits the application of more
accurate and computationally intensive models in favor of simpler
macroscopic (effective, coarse-grained, continuum, etc.)17,18 and/or
reduced-order representations.19,20

Macroscopic approaches overcome some of the computational
challenges of microscale models by relying on a number of closure
assumptions and/or phenomenological descriptions such as geomet-
rical constraints that guarantee scale separation between the pore-
and the continuum-scales, linearization of pore-scale equations, etc.
These are often necessary to fully decouple micro-scale descriptions
from their continuum counterpart. Yet, physical and electrochemical
phenomena on one scale (e.g. particle-scale) affect, and are often cou-
pled to, phenomena on a vastly different scale (e.g. cell-scale).21–23

For example, pore-scale molecular diffusion fundamentally affects
lithium-ion mixing and heat generation at the electrode scale,9 and
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localized SEI-growth in the pores (over time scales spanning many
orders of magnitude) can lead to drastic porosity changes and long
term impairment (e.g. aging and capacity fade) of battery systems.
Further, dependence of battery aging processes on usage patterns20,24

(i.e. charge and dischrage cycles amplitude and frequency) are often
symptoms of coupled dynamics across scales.25

Upscaling techniques - e.g. volume-averaging,26 homogenization27

and its generalization to evolving microstructures,28

thermodynamically-constrained averaging29 and renormalization
group theory30 - allow one to relate pore-scale processes to their
continuum counterparts. An increasing number of studies have
focused on the formal derivation of continuum-scale models from
micro-scale balance equations.31–35 These studies reflect the need
to validate reduced-order models and to elucidate the macroscopic
response of microscale processes. Yet, to the best of our knowledge,
no current work has rigorously established the conditions under
which pore-scale equations describing electromigration, diffusion
and reaction of lithium ions correctly upscale to the classical macro-
scopic porous-electrode equations. The identifications of conditions
under which continuum approaches are a valid representation of
microscopic processes is critical to achieve model predictivity of
battery systems.

Following the approach introduced by,22,23 we use multiple-scale
expansions technique to upscale the dimensionless PNP equations
describing lithium dynamics and to derive physics-based conditions
under which classical porous-electrode continuum models, or dual-
continua diffusion-migration-reaction (DMR) equations, accurately
describe lithium-ion pore-scale dynamics.

The paper is structured as follows. First, we present the pore-
scale isothermal transport model of lithium ions subject to diffusion
and electromigration in the electrode and electrolyte phases, and het-
erogenous Butler-Volmer kinetic reaction at the electrode-electrolyte
interface. Then, we formulate the problem in dimensionless form and
identify the Damköhler (Da) and electric Péclet (Pe) numbers as pa-
rameters that control lithium-ion transport processes (i.e. diffusion,
electromigration and reaction) in the electrode and electrolyte. We
employ multiple-scale expansions to derive effective (macroscopic)
dual-continua DMR equations and rigorously identify conditions un-
der which such a continuum approximation breaks down. The region
of validity of the continuum description is graphically represented
by two phase diagrams in the (Da, Pe) space for the electrode and
the electrolyte phases. Then, we discuss the implications of our find-
ings on the classical porous-electrode model proposed by Doyle and
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Newman.8 Lastly, we present a case study analysis to investigate the
validity of macroscale models in relations to: 1) different chemistry,
and 2) different conditions of operation in terms of temperature and
C-rate for a series of commercially available batteries. We achieve this
by relating macroscale models’ predictive performance to the appli-
cability regimes. Finally, we conclude with a summary of our results.

Pore-Scale Governing Equations

We consider the microscale transport of lithium ions in a battery
electrode constituted of a porous matrix �̂ with characteristic length
L . Let us assume that the active particles are microscopically arranged
in the medium in the form of spatially periodic unit cells Ŷ with a
characteristic length �. We define the characteristic length � as the
diameter of the spherical active particles and ε as the scale-separation
parameter ε ≡ �/L � 1. The unit cell Ŷ = B̂ ∪ Ŝ consists of the
electrolyte space B̂ and the ion permeable solid matrix Ŝ, separated
by the smooth surface �̂. The pore spaces B̂ of each cell Ŷ form a
multi-connected pore-space domain B̂ε ⊂ �̂ bounded by the smooth
surface �̂ε.

The mass and charge transport equations in the electrolyte and
the electrode phases control the spatiotemporal evolution of the con-
centration of lithium ions ĉi

ε(x, t) (mol · m−3) and the electrostatic
potential φ̂i

ε(x, t) (V ) in the active particles {i = s} and the elec-
trolyte {i = e}. For completeness, we summarize the set of governing
equations in the following sections.

Electrolyte phase.— The mass and charge transport equations in
the electrolyte phase x ∈ B̂ε are36

∂ ĉe
ε

∂ t̂
= ∇̂ · [(D̂e + λt2

+ RT F−2K̂e/ĉe
ε )∇̂ ĉe

ε + t+ F−1K̂e∇̂φ̂e
ε ], [1a]

0 = ∇̂ · [(λt+ RT F−1K̂e/ĉe
ε )∇̂ ĉe

ε + K̂e∇̂φ̂e
ε ], [1b]

subject to

ne · [(D̂e + λt2
+ RT F−2K̂e/ĉe

ε )∇̂ ĉe
ε + t+ F−1K̂e∇̂φ̂e

ε ]

= k F−1 f̂ (ĉe
ε , ĉs

ε , φ̂
s
ε, φ̂

e
ε ), [2a]

ne · [(λt+ RT F−1K̂e/ĉe
ε )∇̂ ĉe

ε + K̂e∇̂φ̂e
ε ] = k f̂ (ĉe

ε , ĉs
ε , φ̂

s
ε, φ̂

e
ε ), [2b]

on the solid-electrolyte boundary �ε, respectively. In (2),

f̂ (ĉe
ε , ĉs

ε , φ̂
s
ε, φ̂

e
ε ) = 2

√
ĉe
ε ĉs

ε (1 − ĉs
ε/ĉs

max) · sinh[F(φ̂s
ε − φ̂e

ε − Û )/2RT ]

[3]

D̂e (m2sec−1) and K̂e (�−1m−1) are the interdiffusion coefficient and
the electric conductivity in the electrolyte, respectively; k (A · m ·
mol−1) is the electrochemical reaction rate constant that describes
the kinetics of lithium-ion transfer on �ε; Û (V) is the open circuit
potential; ĉs

max is the maximum concentration of lithium that can be
stored in the active particle; t+ is the transference number, λ :=
1+ d ln f±

d ln(ĉe
ε /ĉs

max) is assumed constant,37 and f± is the activity coefficient;

ne is the outward unit normal vector to �̂ε pointing from the electrolyte
toward the active particle; F and R are the Faraday and the universal
gas constants; T is temperature.

Electrode phase.— The mass and charge transport of lithium ions
in the electrode (solid) phase Ŝε are governed by the material balance
and electroneutrality equations36

∂ ĉs
ε

∂ t̂
= ∇̂ · (D̂s∇̂ ĉs

ε ), x̂ ∈ Ŝε, [4a]

0 = ∇̂ · (K̂s∇̂φ̂s
ε), x̂ ∈ Ŝε, [4b]

subject to

− ns · (D̂s∇̂ ĉs
ε ) = k F−1 f̂ (ĉe

ε , ĉs
ε , φ̂

s
ε, φ̂

e
ε ), x̂ ∈ �̂ε [5a]

− ns · (K̂s∇̂φ̂s
ε) = k f̂ (ĉe

ε , ĉs
ε , φ̂

s
ε, φ̂

e
ε ), x̂ ∈ �̂ε [5b]

respectively. In (4)-(5), D̂s (m2sec−1) is the interdiffusion coefficient in
the electrode, K̂s (�−1m−1) is the electric conductivity in the electrode,
and ns is the outward unit normal vector to �ε pointing from the active
particle toward the electrolyte.

Dimensionless Formulation

Transport processes and dimensionless numbers.— The transport
processes occurring at the pore-scale include heterogenous reaction
on the electrode-electrolyte interface �̂ε, and diffusion and migration
in the electrode and electrolyte phases, Ŝε and B̂ε, respectively. The
characteristic time scales associated with the heterogenous reaction,
ionic diffusion, and ionic migration over a macroscopic length scale
L are

t̂R = L F

k
, t̂D j = L2

Di
, t̂M j = F2 L2ĉs

max

RT K j
, j = {e, s}, [6]

respectively. In (6), D j = O(D̂ j ) and K j = O(K̂ j ), j = {e, s},
are characteristic values of the interdiffusion and electric conductivity
tensors D̂ j and K̂ j in the electrode ( j = s) and the electrolyte ( j = e),
respectively. We define the dimensionless Damköhler and electric
Péclet numbers as

Da j := t̂D j

t̂R
= Lk

F D j
and Pe j := t̂D j

t̂M j

= RT K j

F2 D j ĉs
max

, j = {e, s}.

[7]

They provide information about the relative magnitude of ion transport
processes in the electrolyte and the electrode phases. Let c j

ε := ĉ j
ε /ĉs

max

and φ j
ε := φ̂ j

ε F/(2RT ), j = {s, e} be the dimensionless lithium-ion
concentration and electrostatic potential in the active particles ( j = s)
and the electrolyte ( j = e). Then, the mass and charge transport
equations can be cast in dimensionless form as follows.

Electrolyte phase.— The dimensionless form of mass and charge
transport in the electrolyte (1)-(2) is given by

∂ce
ε

∂t
= ∇ · [(De + λt2

+PeeKe/ce
ε )∇ce

ε + 2Peet+Ke∇φe
ε ], x ∈ Bε

[8a]

0 = ∇ · [(λt+Ke/ce
ε )∇ce

ε + 2Ke∇φe
ε ], x ∈ Bε [8b]

subject to

ne · [(De + λt2
+PeeKe/ce

ε )∇ce
ε + 2Pee t+Ke∇φe

ε ]

= Dae f (ce
ε , cs

ε ,φ
s
ε, φ

e
ε ), [9a]

ne · [(Peeλt+Ke/ce
ε )∇ce

ε + 2PeeKe∇φe
ε ] = Dae f (ce

ε , cs
ε ,φ

s
ε, φ

e
ε ),

[9b]

on �ε, respectively. In (1) and (2), the dimensional spatial and time
scales are nondimensionalized by the macroscopic length L and the
diffusion time in the electrolyte phase t̂De respectively, i.e. x = x̂/L
and te = t̂/t̂De ; De = D̂e/De and Ke = K̂e/K e are the dimen-
sionless interdiffusion coefficient and the electric conductivity in the
electrolyte. Also,

f (ce
ε , cs

ε , φ
e
ε , φ

s
ε) = 2

√
ce
ε cs

ε (1 − cs
ε )sinh(φs

ε − φe
ε − U ) [10]

where U = FÛ/(2RT ) is the dimensionless open circuit potential.
We emphasize that Bε and Sε represent the rescaled (nondimensional)
electrolyte and electrode phases, with �ε the interface separating them.

Electrode phase.— Similarly, the dimensional transport equations
in the electrode phase x ∈ Ŝε, (4) and (5), can be cast in dimensionless
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form

∂cs
ε

∂t
= DaeDa−1

s ∇ · (Ds∇cs
ε ), x ∈ Sε, [11a]

0 = ∇ · (Ks∇φs
ε), x ∈ Sε, [11b]

subject to

− ns · (Ds∇cs
ε ) = Das f (ce

ε , cs
ε , φ

s
ε, φ

e
ε ), x ∈ �ε, [12a]

− ns · (2Pes Ks∇φs
ε) = Das f (ce

ε , cs
ε , φ

s
ε, φ

e
ε ), x ∈ �ε, [12b]

respectively.

In the following we use multiple-scale expansions to derive a
mean-field (continuum, macroscopic) approximation of the pore-scale
equations and to identify conditions under which continuum equations
are valid descriptors of pore-scale dynamics.

Homogenization via Multiple-Scale Expansions

We define the following local averages of a quantity A(x)

〈A〉e ≡ 1

|Y |
∫

B(x)

Ady, 〈A〉s ≡ 1

|Y |
∫

S(x)

Ady, [13]

〈A〉B ≡ 1

|B|
∫

B(x)

Ady, 〈A〉S ≡ 1

|S|
∫

S(x)

Ady, [14]

〈A〉� ≡ 1

|�|
∫

�(x)

Ady, [15]

where 〈A〉e = η〈A〉B , 〈A〉s = (1 − η)〈A〉S and η = |B|/|Y | is the
electrode porosity. Using the method of multiple-scale expansions,
we introduce a fast space variable y defined in the unit cell Y , y ∈ Y ,
and three time variables. One of the three time variables is related to
reaction τr and two to migration [τm] j = τm j in the electrolyte and
the active particles j = {e, s}, respectively

y := ε−1x, τr := t̂−1
R t̂ = Daet,

[16]
τm j := t̂−1

M j
t̂ = Pe j DaeDa−1

j t, j = {e, s}

where t = t̂/t̂De is a dimensionless time. No Einstein notation con-
vention is implied if a repeated index is present. Replacing any pore
scale quantity ψε (x, t) (e.g. concentration, electrostatic potential in
either phase) with ψ(x, y, t, τr, τm) provides the following relations
for the space and time derivatives,

∇ψε = ∇xψ + ε−1∇yψ [17a]

∂ψε

∂t
= ∂ψ

∂t
+ Dae

∂ψ

∂τr
+ Pee

(
∂ψ

∂τme
+ Dae

Das

∂ψ

∂τms

)
. [17b]

Additionally, we represent ψ as an asymptotic series in integer
powers of ε

ψ(x, y, t, τr, τm) =
∞∑

n=0

εnψn(x, y, t, τr, τm), [18]

where ψn , n = {0, 1, · · ·} are Y -periodic functions in y. Finally, we
set

Pee = ε−α, Dae = εβ, Das = εγ, Pes = ε−δ [19]

where the exponents α, β, γ and δ determine the system behavior in
the electrolyte and electrode phases.

Upscaled transport equations in the electrolyte.— Lithium trans-
port in the electrolyte phase described by (8a)–(9b) can be homog-
enized, i.e., approximated up to order ε2, by the following effective
mass and charge transport equations (see Appendix A)

η∂t 〈ce〉B = ∇x · [(De�� + ε−αλt2
+Ke��/〈ce〉B)∇x〈ce〉B

+ 2Peet+Ke��∇x〈φe〉B]

+ 2ηε−1K�Dae f (〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), [20]

and

Pee∇x · [(λt+Ke��/〈ce〉B)∇x〈ce〉B + 2Ke��∇x〈φe〉B]

= 2ηε−1K�Dae f (〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s), [21]

where

f (〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s)

= 2
√

〈ce〉B〈cs〉s(1 − 〈cs〉s)sinh(〈φs〉s − 〈φe〉B − U ) [22]

provided the following conditions are met:

1) ε � 1,
2) Dae < 1,
3) Pee < 1,
4) Dae/Pee < 1,
5) 〈χe〉� ≈ 〈χe〉B.

In (20) and (21), the dimensionless effective reaction rate constant
in the electrolyte phase, K�, is determined by the pore geometry,

K� = |�|
|B| , [23]

and the dispersion tensors are given by:

De�� = 〈De(I + ∇yχ
e)〉e,

[24]
Ke�� = 〈Ke(I + ∇yχ

e)〉e,

The closure variable χe(y) has zero mean, 〈χe〉e = 0, and is defined
as a solution to the local problem

∇y · (∇yχ
e + I) = 0, y ∈ B, [25a]

ne · (∇yχ
e + I) = 0, y ∈ �. [25b]

Constraints 1)–4) ensure separation of scales. While constraint 1)
is almost always met in practical applications since the pore size is
generally much smaller that the electrode dimension, constraints 2)–4)
depend on the relative importance of the diffusion, electromigration,
and reaction mechanisms, i.e. they impose constraints on the transport
regimes that can be appropriately modeled by the continuum scale
Equations (20) and (21) within errors of order ε2. These conditions
are summarized in the phase diagram in Figure 1, where the line β = 0
refers to Dae = 1 and the half-space β > 0 refers to Dae < 1 because
ε < 1; the line α = 0 refers to Pee = 1 and the half-space αe < 0
refers to Pee < 1; the line α + β = 0 refers to Dae/Pee = 1; and the
half-space underneath this line refers to Dae/Pee < 1. Constraint 5)
is not necessary for scale separation, but facilitates the derivation of
the effective parameters (23) and (24). As shown in Appendix A, this
constraint allows one to interchange the surface and volume averages,
〈ce

1〉� ≈ 〈ce
1〉B and 〈φe

1〉� ≈ 〈φe
1〉B , within errors on the order of ε2.

Upscaled transport equations in the electrode.— In Appendix B,
we show that the microscale reactive transport processes described by
(11)–(12) can be homogenized, i.e., approximated up to order ε2 in
the solid phase with an effective mass and charge transport equations

∂t 〈cs〉s = ∇x · (Ds��∇x〈cs〉s ) − ε−1ηDasK� f (〈ce〉B, 〈cs〉s , 〈φe〉B, 〈φs〉s ),

[26]
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Figure 1. Phase diagram specifying the range of applicability of the upscaled
Equations (20) and (21) for the diffusion-migration-reaction of lithium ions
in the electrolyte in terms of Pee and Dae . The gray region identifies the
conditions under which the macro-scale Equations (20) and (21) hold. In the
white region, micro- and macro-scale equations are coupled and need to be
solved simultaneously. Diffusion, migration, and reaction are of the same order
of magnitude at the point (α, β) = (0, 0).

and

2Pes∇x · (Ks��∇x〈φs〉s) = ε−1ηDasK� f (〈ce〉B, 〈cs〉s, 〈φe〉B, 〈φs〉s),

[27]

for x ∈ �, provided the additional conditions

1) Das < 1,
2) Das/Pes < 1,
3) 〈χs〉� ≈ 〈χs〉s ,

are met. In (26) and (27), the dimensionless parameter K� is defined
by (23) and the effective diffusion and conductivity tensors are given
by

Ds�� = 〈Ds(I + ∇yχ
s)〉s,

[28]
Ks�� = 〈Ks(I + ∇yχ

s)〉s .

The closure variable χs(y) has zero mean, 〈χs〉s = 0, and is defined
as a solution of the local problem

∇y · [Ds(I + ∇yχ
s)] = 0, y ∈ S, [29a]

ns · [Ds(I + ∇yχ
s)] = 0, y ∈ �. [29b]

Constraints 1)–2) ensure scales separation and depend on the rela-
tive importance of the solid phase diffusion, conduction, and reaction
mechanisms of transport. Condition 3) simply facilitates the deriva-
tion of the effective tensor (28). These constraints are summarized in
Figure 2.

Physical interpretation of applicability conditions of macroscopic
models.— The constraints previously identified impose conditions on
the relative magnitude of the three main processes controlling lithium-
ion transport at the microscale, i.e. diffusion, electromigration and
heterogenous reaction at the electrolyte-electrode interface. The con-
straints Dae < 1 and Das < 1 require that the intercalation reaction
be slower than diffusion processes both in the electrolyte and the
electrode. Similarly Pee < 1 requires that diffusion processes in the
electrolyte are faster than elecromigration. Both conditions guarantee
that lithium ions are uniformly distributed, i.e. well mixed, both in the
pore-space occupied by the electrolyte and within electrode pellets at
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Figure 2. Phase diagram specifying the range of applicability of the upscaled
Equations (26) and (27) for the diffusion-reaction of lithium ions in the
electrode in terms of Pes and Das . The gray region identifies the conditions
under which the macro-scale Equations (26) and (27) hold. In the white
region, micro- and macro-scale equations are coupled and need to be solved
simultaneously. Diffusion and reaction are of the same order of magnitude at
the point (δ, γ) = (0, 0).

the unit cell scale. Under well-mixed conditions, or when lithium-ion
concentration is locally uniform, a dual-continua macroscale model
can describe processes at the micro-scale within errors of order O(ε2)
as prescribed by the homogenization procedure. On the other hand,
under diffusion-limited conditions, or high resistance to mass trans-
port, concentration gradients are formed at the sub-pore scale, and
the predictivity of continuum scale models, which replace pore-scale
quantities with their spatial averages, cannot be guaranteed any longer.
Our findings are consistent with the widespread observation that clas-
sical macroscopic approximations loose predictive power under high
C-ratec operating conditions,39 when a strong current imbalance be-
tween electrodes generates sharp concentration gradients at the sub
pore level. The importance of lack of subpore scale mixing was al-
ready pointed out in Ref. 9, where subgrid concentration gradients
were associated with generation of highly localized heat of mixing.
The constraints Dae/Pee < 1 and Das/Pes < 1 suggest that elecromi-
gration can play a favorable role in improving the sub-pore scale mix-
ing in presence of high mass transfer resistance, or diffusion-limited
regimes. Finally, the dependence of Pee and Pes on the operating
temperature, see (7), demonstrates that isothermal conditions are not
sufficient to guarantee macroscale model accuracy: operating the same
battery at a higher temperature may lead to the violation of Pee < 1
and/or Pes < 1, once a critical temperature is overcome. A more
thorough analysis of temperature-dependent breakdown for different
battery chemistry is discussed in the next section as well as in Ref. 40.
In the following section, we discuss the implications of our findings
on existing dual continua models.

Implications on Existing Macroscale Models for SOC
and SOH Estimation

A number of works have focused on control strategies and
SOH/SOC estimation based on electrochemical models.39,41,42 Some

cC-rate is defined as the rate of charge or discharge current in normalized form:

C-rate = I

Qnom
[1/h]

where I is the battery current and Qnom is the rated capacity of the battery. The general
expression C/hh indicates that the number of hours to completely discharge the battery
at a constant current is hh.38
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Table I. Lithium-ion battery parameters for both electrode and electrolyte phases as reported in Refs. 45–51. Values of k reported in Refs. 45–51
have been appropriately normalized by F and cmax such that the dimensions of k are consistent with (2).

Electrode � [m] L [m] ε [-] k [A · m · mol−1] cmax [mol · m−3] De [m2sec−1] K e [�−1m−1] Ds [m2sec−1] K s [�−1m−1] Ref.

LiC6 1.02e-6 9.85e-5 1.04e-2 6.15e-4 26000 3.94e-11 0.192 9.89e-14 100 45
LiC6 2.5e-5 1.62e-4 0.154 7.5e-4 28200 2.93e-10 1.29 1e-13 100 46
LiC6 2e-6 7.9e-5 0.025 3.02e-4 31540 2.3e-10 1.323 3.9e-14 2 47
Lix C6 2e-5 1.13e-4 0.177 3.11e-4 26000 2.6e-10 1 3.9e-14 100 48

Li1−x C6 2e-6 3.7e-5 0.054 1.75e-2 16,100 2.6e-10 5.676 2e-16 100 49
LiCoO2 2e-5 1.05e-4 0.190 4.36e-4 51000 2.6e-10 1 1e-13 100 48
LiFePO4 3.31e-8 9.5e-5 3.48e-4 1.15e-4 22806 3.94e-11 0.192 4.29e-18 0.49 45
LiFePO4 2e-6 1.12e-4 0.152 5.68e-4 26390 2.3e-10 1.323 1.25e-15 0.01 47

Li4Ti5O12 1.075e-8 9.6e-5 1.12e-4 1.49e7 51385 2e-10 0.38 6.8e-15 100 50,51
LiNi1/3Mn1/3Co1/3O2 2.4e-6 8.6e-5 0.028 9.92e-3 51385 2e-10 0.38 2.5e-16 139 50,51
LiNi0.8Co0.2−x Alx O2 8e-6 8.6e-5 0.093 5.5e-3 49195 2.93e-10 1.29 2e-13 10 46
Lix NiyCozAl1−y−zO2 2.5e-6 2.9e-5 0.086 9.76e-3 23,900 2.6e-1 5.676 3.7e-16 10 49

Table II. Dimensionless transport parameters calculated from (7) and (19) for the battery chemistry listed in Table I.

Electrode Dae [-] Pee [-] α [-] β [-] Das [-] Pes [-] δ [-] γ [-] Ref.

LiC6 1.59e-2 4.98e-2 −0.66 0.91 6.35 1.03e4 2.02 −0.40 45
LiC6 4.3e-3 4.16e-2 −1.70 2.92 1.26e1 9.44e3 4.90 −1.36 46
LiC6 1.08e-3 4.85e-2 −0.82 1.86 6.35 4.33e2 1.65 −0.50 47
Lix C6 1.4e-3 3.94e-2 −1.87 3.79 9.34 2.62e4 5.88 −1.29 48

Li1−x C6 2.58e-2 3.61e-1 −0.35 1.25 3.36e4 8.27e6 5.46 −3.57 49
LiCoO2 1.82e-3 2.01e-2 −2.36 3.80 4.74 5.22e3 5.16 −0.94 48
LiFePO4 2.87e-3 5.68e-2 −0.36 0.74 2.64e4 1.33e6 1.77 −1.28 45
LiFePO4 2.87e-3 5.8e-2 −0.71 1.45 5.28e2 8.07e1 1.09 −1.56 47

Li4Ti5O12 7.4e7 9.84e-3 −0.51 −1.99 2.18e12 7.62e4 1.24 −3.12 50,51
LiNi1/3Mn1/3Co1/3O2 4.42e-2 9.84e-3 −1.29 0.87 3.54e4 2.88e6 4.16 −2.93 50,51
LiNi0.8Co0.2−x Alx O2 1.67e-2 2.38e-2 −1.57 1.72 2.45e1 2.70e2 2.36 −1.35 46
Lix NiyCozAl1−y−zO2 1.13e-2 2.43e-1 −0.58 1.83 7.93e3 3.01e5 5.15 −3.66 49

of the most popular models on which Partial Differential Equa-
tion (PDE) control and estimation strategies are based upon are,
e.g., Newman’s model,8 its generalizations43 and the single particle
model (SPM).44 Such models have the advantage of being relatively
simple for controller/observer design as they are classical macro-
scopic/upscaled models which treat the complex porous structure and
the electrolyte as superimposed fully-connected continua.

For example, the SPM is based on the key idea that the solid
phase of each electrode can be idealized as a single spherical particle,
while the electrolyte lithium-ion concentration is constant in space
and time.44 Its governing equations therefore reduce to Fick’s law in
spherical coordinates and can be readily derived from (20)-(21) and
(26)-(27) under the appropriate model assumptions (e.g. constant 〈ce〉B
and negligible electromigration). Similarly, Newman’s model8 can be
obtained from (20)-(21) and (26)-(27) by relaxing the assumption that
〈ce〉B is approximately constant and including the full mass transport
equation in the electrolyte phase (20), while still assuming negligible
electromigration.

As such, these models are based on the fundamental, and often
untested, assumption that separation of scales occurs and, conse-
quently, macroscopic representations of averaged quantities can de-
scribe pore-scale processes with an accuracy prescribed by mathemat-
ical homogenization. Yet, since their validity is limited to the same
constraints identified in Figures 1 and 2, they should be used with
caution when the sufficient conditions listed above are violated. In
the following section, we demonstrate the use of the phase diagrams
in Figures 1 and 2 to a priori estimate macroscale models accuracy
compared to their fully resolved counterparts for commercial battery
systems.

Case Study for Commercial Batteries: Validity
of Macroscale Models

In this section, we investigate the validity of macroscale models
in relations to: 1) different chemistry, and 2) different conditions of

operation in terms of temperature and C-rate for a series of commer-
cially available batteries. In particular, we compare the accuracy of
continuum-scale models with either their fully resolved (3D) counter-
parts or with experiments as reported in a number of studies.45–51 More
importantly, we relate macroscale models’ predictive performance to
the applicability regimes defined in Figures (1) and (2), and employ
the former as a screening tool to a priori evaluate continuum model
predictivity under variable C-rate.

Chemistry dependence of macroscale models.— The battery cell
parameter data used in this case study, and reported in Table I, are
based on a variety of electrode and electrolyte compositions at room
temperature (T = 298 K).45–51 The dimensionless parameters α, β,
γ and δ in the electrolyte and electrode phases, readily calculated
from (7) and (19), are reported in Table II and plotted on the corre-
sponding phase diagram for the electrolyte and electrode, Figure 3
and 4, respectively.
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Figure 3. Values of the dimensionless parameters for the most commonly
used lithium-ion battery materials. These values, determined at room tempera-
ture (298 K), lie either inside the electrolyte applicability regime region (empty
symbols) or outside (filled symbols).
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Figure 4. Values of the dimensionless parameters (δ, γ) for the most com-
monly used lithium-ion battery materials. These values, determined at room
temperature (298 K), all lie outside the electrode applicability regime region.

Among the twelve chemistry considered in this analysis,45–51 ten
possess electrolyte effective transport coefficients, i.e. dimensionless
numbers (α, β), which do not violate the applicability conditions
of macroscale models, see Figure 3. The theory developed previ-
ously ensures that the homogenized equations in the electrolyte will
be able to accurately capture the dynamics at the pore-scale: this is
consistent with the numerical simulations performed in Refs. 45–
51, where Newman-type models have been successfully used to
model transport in the electrolyte phase. On the contrary, two data
points (solid symbols in Figure 3), corresponding to Li4Ti5O12 and
LiNi1/3Mn1/3Co1/3O2 chemistry,50,51 lie outside the range of applica-
bility. For these two chemistry, it is not guaranteed that the homoge-
nized Equations (20) and (21) describing transport in the electrolyte
will be effective in capturing pore-scale transport processes. Again,
this is confirmed by the results presented in Refs. 50, 51, where a
Newman-type model response could not properly capture experimen-
tal data, see Fig. 6 in Ref. 51. Such a discrepancy is understandable:
Li4Ti5O12 has a very fast intercalation reaction rate (between 6 and 9
orders of magnitude faster than the other chemistry) which leads to
mass transport limitations (or reaction-dominated regimes) and lack
of pore-scale mixing.

Figure 4 shows the data points corresponding to the (δ, γ) values
for the battery chemistry electrodes listed in Table I and calculated in
Table II. All the data points lie outside the range of applicability of
the upscaled equations of lithium-ion transport in the electrode phase,
therefore suggesting that full pore-scale models have to be employed
to accurately capture lithium-ion transport in the active particles. This
is consistent with the numerical approaches used in Refs. 45–51, where
no upscaled model is used in the active particles and the transport in
the solid electrode is solved at the microscale. It is worth noticing that,
since bounds on α, β, γ and δ have to be concurrently satisfied, the
numerical simulations matched well the experiments only when the
conditions on (α, β) were not violated, as discussed previously.

Operating conditions’ dependence of macroscale models.— Fig-
ures 3 and 4 showed the distribution of the dimensionless transport
parameters α, β, γ and δ at room temperature in the phase diagrams
and allowed one to a priori assess the validity of Newman-type models
across different battery chemistry. These models, on the other hand,
might also fail when used for the proper chemistry (i.e., the chemistry
for which the corresponding α and β data points fall in the applicability
regime regions at room temperature) but improper operating condi-
tions. For this reason, the veracity of the upscaled equations of mass
and charge transport in the electrolyte across battery cell operating
conditions is also investigated. In particular, the study conducted in
this section focuses on temperature and C-rate of operation and uses
the electrode-electrolyte system described in Ref. 52. In this work,
the authors compared the performance of their (continuum-scale) nu-
merical simulations with experimental data for lithium-ion cells with
LiyMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode materials tested at dif-
ferent C-rate ranging from C/25 to 10C. We conduct our analysis for

Table III. Reference reaction rate constants kre f for lithium
manganate cathode in terms of applied current Iapp.

C-rate [1/h] Iapp [A/m2] kre f [A · m · mol−1]

C/25 0.34 2.03e-5
1C 8.5 5.07e-4
10C 85 5.07e-3

the case of LiyMn2O4 cathode material, but similar results can be
easily extended to the LiNi0.8Co0.15Al0.05O2 case.

The case study analysis relies on the premise that temperature is
one of the primary factors that influences the ability of the macroscale
transport equations to capture battery dynamics at high C-rate. In fact,
the battery cell temperature influences the transport parameters in the
electrolyte phase. Those parameters are: k (reaction rate constant), De

(the electrolyte diffusion coefficient), and K e (the electrolyte conduc-
tivity coefficient). When the influence of temperature on k is much
more pronounced than on De and K e, as we will verify in the case of
a battery operating at high C-rate, diffusion is no longer the dominant
mode of transport. In this case the homogenized transport equations
do not accurately capture transport at the microscale.

A single and constant value for the reaction rate k was considered in
Ref. 52. Yet, experimental evidence shows significant cell temperature
variations in terms of C-rate.53–58 Our analysis is conducted for three
different C-rate: low (C/25), medium (1C), and high (10C). Following
experimental data,53–58 the temperature increase, starting from room
tenperature, can be estimated as follows: from 298 K to 299 K, from
298 K to 306 K, and from 298 K to 333 K at a discharge C-rate of
C/25, 1C and 10C, respectively. We estimate the reaction rate constant
kre f at room temperature Tref =298 K through

Iapp = 2 · kre f ·
√

ĉe
ε ĉs

ε

(
1 − ĉs

ε

ĉs
max

)
· sinh[F(φ̂s

ε − φ̂e
ε − Û )/2RTref ]

[30]

where Iapp (A/m2), the applied current density, is provided in
Ref. 59 for each C-rate, see Table III. The electrochemical reaction
rate constant k(T ) for a given electrode system can be described as a
function of temperature using the Arrhenius equation, as reported in
Ref. 60:

k(T ) = kre f exp

[
Ear

R

(
1

Tref
− 1

T

)]
, [31]

where k(T ) is the reaction rate constant of a given electrode at the
desired temperature T . In (31), Ear is the electrode reaction rate acti-
vation energy. We set Ear = 78.24 kJ/mol at a reference temperature
of 298 K.61 Using (31), we compute the values of k for different tem-
perature conditions, which are then used to determine the parameter
values α and β.

Similarly, the diffusion and conductivity coefficients, De and K e,
vary as a function of both temperature and the lithium concentration
in the electrolyte phase. For the estimate of De and K e at the reference
temperature Tref , we use the same approach used in Ref. 52, where:

De = 6.5 · 10−10 exp
(

− 0.7
ĉe
ε

1000

)
, [32]

K e = 0.84
( 1.134(ĉe

ε/1000)

1 + 0.2(ĉe
ε/1000) + 0.08(ĉe

ε/1000)4
+ 0.1

)
, [33]

where we set ĉe
ε = 1500 mol/m3 (d). This leads to reference values of

2.41e-10 m2/s and 0.922 S/m for De and K e, respectively. Since, to
the best of our knowledge, no analytical dependence on temperature is
available for De and K e, we use instead a curve fitting procedure from

dFrom Ref. 52, ĉe
ε varies in the range of 1,000 to 2,000 mol/m3 over the entire duration of

the simulations.
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Table IV. Dimensionless transport parameters of LiyMn2O4 cathode for different C-rate and temperatures.

C-rate [1/h] � [m] L [m] ε [-] k [A · m · mol−1] T [K] De [m2sec−1] K e [�−1m−1] Dae [-] Pee [-] α [-] β [-]

C/25 3.4e-6 1e-4 0.034 2.03e-5 298 2.41e-10 0.922 8.72e-5 4.26e-2 −0.93 2.76
C/25 3.4e-6 1e-4 0.034 2.07e-5 298.2 2.41e-10 0.922 8.91e-5 4.26e-2 −0.93 2.76
C/25 3.4e-6 1e-4 0.034 2.12e-5 298.4 2.41e-10 0.922 9.1e-5 4.27e-2 −0.93 2.75
C/25 3.4e-6 1e-4 0.034 2.16e-5 298.6 2.41e-10 0.922 9.29e-5 4.27e-2 −0.93 2.75
C/25 3.4e-6 1e-4 0.034 2.25e-5 299.0 2.41e-10 0.922 9.69e-5 4.27e-2 −0.93 2.73

1C 3.4e-6 1e-4 0.034 5.07e-4 298 2.41e-10 0.922 2.18e-3 4.26e-2 −0.93 1.81
1C 3.4e-6 1e-4 0.034 6.26e-4 300 2.55e-10 0.972 2.55e-3 4.28e-2 −0.93 1.77
1C 3.4e-6 1e-4 0.034 7.70e-4 302 2.69e-10 1.022 2.97e-3 4.29e-2 −0.93 1.72
1C 3.4e-6 1e-4 0.034 9.45e-4 304 2.82e-10 1.072 3.47e-3 4.31e-2 −0.93 1.67
1C 3.4e-6 1e-4 0.034 1.16e-3 306 2.96e-10 1.122 4.05e-3 4.33e-2 −0.93 1.63

10C 3.4e-6 1e-4 0.034 5.07e-3 298 2.41e-10 0.922 2.18e-2 4.26e-2 −0.93 1.13
10C 3.4e-6 1e-4 0.034 8.54e-3 303 2.75e-10 1.047 3.21e-2 4.30e-2 −0.93 1.02
10C 3.4e-6 1e-4 0.034 2.30e-2 313 3.44e-10 1.297 6.93e-2 4.41e-2 −0.92 0.79
10C 3.4e-6 1e-4 0.034 5.84e-2 323 4.13e-10 1.547 1.47e-1 4.52e-2 −0.92 0.57
10C 3.4e-6 1e-4 0.034 1.40e-1 333 4.82e-10 1.797 3.01e-1 4.64e-2 −0.91 0.35

Figures 13 and 14 in Ref. 62 to determine De(T ) and K e(T ). A sum-
mary of the estimated parameters for different C-rate and temperature
ranges is given in Table IV.

Based on above calculations, we determine the temperature-
dependent trajectories of the data points (α,β) computed at the tem-
perature intervals characteristic of each C-rate. Table IV summarizes
the variation of parameters α and β as a function of the operating
conditions for the three C-rate of interest. The data points and their
variation with temperature and C-rate are schematically represented
in Figure 5.
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Figure 5. Variation with temperature of dimensionless parameters α and β in
lithium manganate cathode batteries for three different C-rate of discharge,
C/25 (top), 1C (middle) and 10C (bottom). An increase in C-rate induces
higher operating temperature variations inside a battery: as a result the system
can be driven outside the applicability regime region.

Figure 5 (top) shows that at a C/25 rate of discharge, there is
minimal temperature increase over the duration of a discharge event.
The magnitude of parameter α remains invariant, while β increases
slightly due to an increase in the Dae number. The behavior of the
system (as a function of temperature) is linear with β. The data points
satisfy the constraints on α and β. Hence, the upscaled equations for
lithium mass transport should provide an accurate description of the
pore scale behavior. This is consistent with the simulation results from
a continuum-scale simulator obtained in Figure 7(a) of Ref. 52, where
there is a perfect match between the model and the experimental
response.

At a 1C rate of discharge, Figure 4 (middle), there is a moderate
increase in temperature over the duration of the simulation cycle. The
magnitude of parameter α remains invariant, while β increases at a
moderate rate due to a faster increase in the Dae number. The behavior
of this system is linear in α and β. At elevated temperatures, the effect
of increase in the reaction rate constant k dominates any increase of
De and K e. The data points satisfy the constraints on α and β over the
range of operating temperature conditions. Hence the homogenized
set of transport equations used in Ref. 52, Figure 7(a), still provides
an accurate description of the pore scale behavior, leading to good
correlation with experimental data.

At a 10C rate of discharge, there is a very significant increase in
the battery temperature over the operating conditions. There is a very
small increase in α as the increase in De marginally dominates the
increase in K e, leading to an incremental increase in the Pee number.
The reaction rate constant is 2 to 3 orders of magnitude higher than
at lower C-rate; hence, the rate of decrease in β is higher than the rate
of increase in α. For the LiMn2O4 cathode system, the macroscale
transport equations are no longer accurate in describing microscale
transport processes at temperatures 313 K or higher. This is because
the value of α + β is less than 0, which violates one of the three con-
straints on these two parameters. At high operating temperatures and
C-rate, the lithium manganate cathode system operates in a transport
regime where the three lithium transport processes (reaction, diffu-
sion, and electro-migration) are of the same order. In this scenario,
very fast reaction kinetics lead to diffusion-limited regimes where dif-
fusion is no longer the dominant transport mechanism in the medium.
As a result, macroscale equations describing electrolyte transport are
vulnerable and can be invalidated due to lack of scale separation with
respect to the pore-scale.

The performance prediction of continuum-scale models based on
the phase diagram Figure 4 (bottom) is, again, consistent with the anal-
ysis performed in Ref. 52, Figure 7(a), where the numerical solution
obtained from macroscopic models cannot capture the experimental
results. Under these circumstances, a multi-scale model is necessary
to incorporate the effects of transport both at the pore-scale and the
macroscopic scale.
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The approach implemented above is significant in terms of
identifying the temperature of operation and C-rate of current
charge/discharge as crucial parameters dictating the dominance
of one transport mechanism over the other(s) in the battery
electrode/electrolyte medium. Standard Newman-type macroscopic
models under scenarios similar to the one described above are invalid
and may fail to capture microscale transport processes.

Conclusions

Lithium-ion transport in batteries involves diffusion, electromi-
gration and heterogeneous intercalation reactions occurring in ge-
ometrically complex porous electrodes. As such, ion transport can
be modeled on a multiplicity of scales, ranging from the pore- to
the system-scale. Macroscopic models, which are approximate rep-
resentations of the pore-scale physics, are advantageous due to their
simplicity (relative to fully pore-scale descriptions) and their limited
computational burden. These two aspects render them particularly ap-
pealing for PDE-based control and estimation strategies of SOH and
SOC. Yet, macroscale models are known to fail as predictive tools un-
der given operating conditions, e.g. high C-rate and high temperature.
This hampers any control and design strategies based on them.

In this work we establish the robustness of macroscopic diffusion-
migration-reaction (DRM) equations that describe the evolution of
mean (spatially averaged) lithium-ion concentration and potential in
the electrolyte and electrode phases, treated as overlapping continua.
Starting from the equations describing lithium-ion transport at the
pore-scale, we use multiple scale expansions to rigorously derive
macroscopic dual-continua models and identify under which condi-
tions they describe micro-scale dynamics with the accuracy prescribed
by the homogenization technique. The relative importance between
diffusion, conduction, and reaction can be quantified by electric Péclet
Pe j and Damköhler Da j , j = {e, s}, numbers in the electrolyte and
electrode phases.

Our main result, summarized in the two (Da,Pe)-phase diagrams,
is the identification of the sufficient conditions needed to guarantee
that the pore- and the continuum-scales can be separated and the
system of macroscopic diffusion-reaction-migration Equations
(20)-(21) and (26)-(27) accurately represents pore scale processes.
Such conditions are expressed in terms of bounds on the order of
magnitude of Pe j and Da j , j = {e, s} and indicate that there may be
entire classes of battery chemistry for which macroscopic models are
not accurate descriptors of micro-scale dynamics.

We showed the distribution of parameters Pe j and Da j in the
electrolyte and electrode phase diagrams for different chemical com-
positions of the most common commercial batteries, for which the
transport parameters have been experimentally determined or esti-
mated based on analytical techniques for the purpose of numerical
simulations. More importantly, we validated the new conditions over
a case study, where we have determined the transport parameters
Pee and Dae (or α and β) in the electrolyte phase diagram for different
operating conditions based on battery chemistry composition, temper-
ature and C-rate. The performance predictions of continuum models
based on a phase diagram analysis confirmed the results independe-
nently obtained from other numerical and experimental studies, i.e. a
breakdown of continuum models at high C-rate.

Bounds on parameters Pe j and Da j , j = {e, s} also highlight the
importance of mixing at the sub-pore scale for continuum equations
to be valid. In this regard, diffusion-limited regimes due to either
fast reaction kinetics (e.g. at high operating temperatures) and/or fast
electromigration are the critical scenarios where separation of scales
may lack and continuum models be invalidated. Models that account
for a full coupling between the two scales must be employed instead,63

and replace classical continuum models (e.g. single particle models) if
accurate predictions of the battery response under different operating
conditions are sought.

To the best of our knowledge, the literature lacks in such a system-
atic method to guide researchers in the use of the correct modeling
tools for battery systems. Future SOH and SOC estimations based on

macroscopic models should account for model robustness and error,
whenever scale separation cannot be guaranteed, e.g., at high C-rate.

Appendix A: Homogenization in the Electrolyte

We set c j
ε (x, t) = c j (x, y, t, τr, τme, τms ) and φ

j
ε (x, t) = φ j (x, y, t, τr, τme, τms ),

j = {e, s}. Then, combining (17) with (8a) and (8b) we obtain
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and
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for y ∈ B, subject to
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and
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respectively, where f (ce
ε , cs

ε ,φ
s
ε ,φ

e
ε ) is defined in (10).

Mass and charge transport asymptotic expansions.— Substituting (18)
and (19) into the mass transport equation in the electrolyte (8) leads to
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where the nonlinear term in (8) is expanded in a Mclaurin series
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Similarly, the interface condition (A3) can be written as
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Combining (18) and (19) with the charge transport Equation (A2) and boundary
condition (A4) yields to
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subject to
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where A0, A1, B0 and B1 are defined in (A8). Next, we compare terms of like-order of ε.

Terms of order O(ε−2).— Collecting the leading-order terms in the mass
transport equation and corresponding boundary condition (A5) and (A7) respectively, we
obtain
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Similarly, at the leading order the charge transport equation is
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Homogeneity of (A11)-(A12) and (A13)-(A14), guarantees that ce
0 and φe

0 are independent
of y, i.e.
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φe
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Terms of order O
(
ε−1

)
.— Since ∇yce

0 ≡ 0 and ∇yφ
e
0 ≡ 0, the mass balance

equation (A5) at order O(ε−1) simplifies to
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subject to the interface condition
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Integrating (A17) over B with respect to y, while accounting for the boundary condition
(A18), and the periodicity of the coefficients on the external boundary of the unit cell ∂Y ,
we obtain

ε1+β∂τre ce
0 = 2εβK� A0 B0, [A19]

where K� is defined by (23).
Combining (A19) with (A17) to eliminate the temporal derivative, we obtain
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Similarly, the charge balance equation (A9) at O(ε−1) is
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for y ∈ �. Equations (A18), (A20), (A21) and (A22) form boundary value problems for
both ce

1 and φe
1. Following Ref. 64 and Ref. 27 (pp. 10, Eqs. 3.6–3.7), we look for solutions

in the form
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φe
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e
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e
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Substitution of (A23) into (A20) and (A18) leads to
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where I is the identity matrix, and χ1 and χ2 are periodic vector fields. Substitution
of (A23) into (A21) and (A22) leads to
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Equations (A24) and (A25) define the closure variables χ1(y) and χ2(y). The coupling
of χ1(y) and χ2(y) with ce

0(x), φe
0(x), A0(x) and B0(x) through the boundary value prob-

lems (A24) and (A25) is incompatible with the closure variables’ general representation
postulated in (A23). This inconsistency is resolved by imposing the following constraints
on the exponents α and β. If we choose β > max{0,−α} and α < 0, then the term
K� A0 B0 is negligible relative to the smallest term in (A24) and the nonlinear migration
term ε−αλt2

+Ke/ce
0 relative to De . Under these constraints, (A24) and (A25) simplify to
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Equation (A26) can be satisfied for all x ∈ � if

∇y · [De(I + ∇yχ1)] = 0, y ∈ B [A27a]

ne · [De(I + ∇yχ1)] = 0, y ∈ �. [A27b]

Similarly, (A25) yields

∇y · [λt+Ke(I + ∇yχ1)] = 0, y ∈ B [A28a]

ne · [λt+Ke(I + ∇yχ1)] = 0, y ∈ � [A28b]

and

∇y · [Ke(I + ∇yχ2)] = 0, y ∈ B, [A29a]

ne · [Ke(I + ∇yχ2)] = 0, y ∈ �. [A29b]

Consistency of (A27) with (A28) implies

∇y · (I + ∇yχ1) = 0, y ∈ B [A30a]

ne · (I + ∇yχ1) = 0, y ∈ � [A30b]

In (A29), the conductivity tensor Ke is a function of concentration ce and potential
φe . With an order ε approximation Ke ≈ Ke(ce

0, φ
e
0). Then, (A29) can be simplified to

∇y · (I + ∇yχ2) = 0, y ∈ B, [A31a]

ne · (I + ∇yχ2) = 0, y ∈ �. [A31b]

As a result, χ1(y) = χ2(y) =: χe(y). The treatment of the closure variable is consis-
tent with the approach employed in Ref. 65. The closure variable χe(y) defines the cell
problem and describes the behavior of the effective diffusion and conductivity tensors.

Recalling the definitions of Dae and Pee in (19) allows us to reformulate the conditions
in terms of α and β in the form of constraints 2)–4) for the electrolyte. Having identified
the conditions that guarantee homogenizability, we proceed to derive the effective mass
transport equation (20).
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Terms of order O (1).— Collecting the zeroth-order term in the mass balance
equation (A5) and first-order term in the corresponding boundary condition (A7), we
obtain
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since ∇yce
0 = 0. Integrating (A32) over B with respect to y and using the boundary

condition (A33) leads to
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Next, we recall that

〈ce〉B = 〈ce
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〈φe〉B = 〈φe
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1〉B + O(ε2).

Multiplying the temporal derivative of (A36) by ε, we obtain
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Multiplying (A34) by ε, adding the result to (A19), and using (A37), we obtain
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Combining this result with the expansions ε〈ce〉B = ε〈ce
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0 + O(ε2) while recalling the definitions of Dae and Pee

in (19) and assuming 〈ψs 〉� ≈ 〈ψs 〉s and 〈ψe〉� ≈ 〈ψe〉B , where ψ = {c, φ}, leads to
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since
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[A40]

where f (〈ce〉B, 〈cs 〉s , 〈φe〉B, 〈φs 〉s ) is defined by (22).
Similarly, collecting O(1)−terms in the charge balance equation in the elec-

trolyte (A9) and O(ε)−terms in the boundary condition (A10) while accounting for
∇yce

0 = 0, we obtain
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We multiply by ε both Equation (A41) and its boundary condition (A42), add them to (A21)
and (A22), respectively, and integrate the resulting equation over B while employing the
newly obtained boundary conditions. This leads to

ε1−αη−1∇x · [(λt+Ke��/〈ce
0〉B)∇x〈ce

0〉B + 2Ke��∇x〈φe
0〉B]
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where Ke�� = 〈Ke(I + ∇yχ
e)〉e . Following a similar procedure to that outlined for the

mass transport equation, (A43) can be written as
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where f (〈ce〉B, 〈cs 〉s , 〈φe〉B, 〈φs 〉s ) is defined by (22).
Equations (A39) and (A44) govern the dynamics of 〈ce〉B and 〈φe〉B in the electrolyte

up to errors of order ε2.

Appendix B: Homogenization in the Electrode

We follow the same procedure as outlined in Appendix A. We report the deriva-
tions for completeness. We set c j

ε (x, t) = c j (x, y, t, τr, τme, τms ) and φ
j
ε (x, t) =

φ j (x, y, t, τr, τme, τms ), j = {e, s}. Then, combining (17) with (11) and (12) we ob-
tain
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ε , cs

ε , φ
s
ε , φ

e
ε ), x ∈ �ε [B3]

and

−ns · [2Pes Ks (∇xφ
s + ε−1∇yφ

s )] = Das f (ce
ε , cs

ε ,φ
s
ε ,φ

e
ε ), x ∈ �ε [B4]

respectively, where f (ce
ε , cs

ε ,φ
s
ε ,φ

e
ε ) is defined in (10).

Mass and charge transport asymptotic expansions.— Substituting (18)
and (19) into the mass transport equation in the electrode (B1), we obtain

ε−2{−εβ−γ∇y · (Ds∇ycs
0)}

+ ε−1{ε1+β∂τr cs
0 − εβ−γ∇x · (Ds∇ycs

0) − εβ−γ∇y · [Ds (∇xcs
0 + ∇ycs

1)]}
+ ε0{∂t c

s
0 + ε−α(∂τme cs

0 + εβ−γ∂τms cs
0) + ε1+β∂τr cs

1 − εβ−γ∇x · [Ds (∇xcs
0 + ∇ycs

1)

− εβ−γ∇y · [Ds (∇xcs
1 + ∇ycs

2)]} = O (ε) , y ∈ S, [B5]

subject to

ε−1{ns · (Ds∇ycs
0)} + ε0{ns · [Ds (∇xcs

0 + ∇ycs
1)] + 2εγ A0 B0)}

+ ε{ns · [Ds (∇xcs
1 + ∇ycs

2)] + 2εγ(A0 B1 + A1 B0)]} = O(ε2), y ∈ �, [B6]

where A0, A1, B0 and B1 are defined in (A8). Similarly, the charge transport equation
(B2) and the boundary condition (B4) combined with (18) and (19) yield to

ε−2{∇y · (Ks∇yφ
s
0)} + ε−1{∇x · (Ks∇yφ

s
0) + ∇y · [Ks (∇xφ

s
0 + ∇yφ

s
1)]}

+ ε0{∇x · [Ks (∇xφ
s
0 + ∇yφ

s
1) + ∇y · [Ks (∇xφ

s
1 + ∇yφ

s
2)]} = O (ε) , y ∈ S, [B7]

subject to

ε−1{ns · (ε−δKs∇yφ
s
0)} + ε0{ns · [ε−δKs (∇xφ

s
0 + ∇yφ

s
1)] + 2εγ A0 B0}

+ε{ns · [ε−δKs (∇xφ
s
1 + ∇yφ

s
2)] + 2εγ(A0 B1 + A1 B0)]} = O(ε2), y ∈ �, [B8]

Terms of order O(ε−2).— Collecting the leading-order terms in the mass
transport equation and corresponding boundary conditions (B5) and (B6), we obtain

∇y · (Ds∇ycs
0) = 0, y ∈ S, [B9]

subject to the interface condition

ns · (Ds∇ycs
0) = 0, y ∈ �. [B10]

Similarly, at the leading order the charge balance equation (B7) and the boundary condition
yield

∇y · (Ks∇yφ
s
0) = 0, y ∈ S, [B11]

subject to

ns · (Ks∇yφ
s
0) = 0, y ∈ �. [B12]
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The homogeneity of Equations (B9)–(B12) ensures that the above boundary value prob-
lems have both a trivial solution, i.e.

cs
0 = cs

0(x, t, τr, τre, τrs ), [B13a]

φs
0 = φs

0(x, t, τr, τre, τrs ). [B13b]

Terms of order O(ε−1).— At the following order, the mass transport equation
(B5) can be written as

ε1+γ∂τr cs
0 − ∇y · [Ds (∇xcs

0 + ∇ycs
1)] = 0, y ∈ S, [B14]

since ∇ycs
0 ≡ 0, and it is subject to the boundary condition

ns · [Ds (∇xcs
0 + ∇ycs

1)] + 2εγ A0 B0 = 0, y ∈ �. [B15]

Integrating (B14) over S with respect to y, while accounting for the boundary condition
(B15), and the periodicity of the coefficients on the external boundary of the unit cell ∂Y ,
we obtain

ε1+γ∂τr cs
0 = −2ηεγK� A0 B0. [B16]

We combine (B16) with (B14) to eliminate the temporal derivative and obtain

∇y · [Ds (∇xcs
0 + ∇ycs

1)] + 2ηεγK� A0 B0 = 0. [B17]

Similarly, the order O(ε−1) of the charge balance equation (B7) can be simplified to

∇y · [Ks (∇xφ
s
0 + ∇yφ

s
1)] = 0, y ∈ S, [B18]

subject to

ns · [ε−δKs (∇xφ
s
0 + ∇yφ

s
1)] + 2εγ A0 B0 = 0, y ∈ �. [B19]

Equations (B17) and (B18) subject to (B15) and (B19) form a boundary value problem
for cs

1 and φs
1, respectively. As outlined in Appendix A, we look for a solution in the form

cs
1(x, y, t, τr, τme, τms ) = χ3(y) · ∇xcs

0(x, t, τr, τme, τms ) + cs
1(x, t, τr, τme, τms ),

[B20]
φs

1(x, y, t, τr, τme, τms ) = χ4(y) · ∇xφ
s
0(x, t, τr, τme, τms ) + φ

s
1(x, t, τr, τme, τms ).

Substitution of (B20) into (B17) and (B15) leads to the following cell problem for the
closure variable χ3(y),

2ηεγK� A0 B0 + ∇y · [Ds (I + ∇yχ3)∇xcs
0] = 0, y ∈ S, [B21a]

subject to 〈χ3〉s = 0 and

ns · [Ds (I + ∇yχ3)∇xcs
0] + 2εγ A0 B0 = 0, y ∈ �. [B21b]

The boundary-value problem (B21) couples the pore scale with the continuum scale,
in the sense that the closure variable χ3(y)—a solution of the pore-scale cell problem (B21)
—is influenced by the continuum scale through its dependence on the macroscopic con-
centration cs

0(x). This coupling is incompatible with the general representation (B20).
This inconsistency is resolved by imposing the following constraint on the exponent γ,
namely γ > 0. This condition ensures that χ3 is independent of cs

0, and the cell problem
(B21) can be simplified to

∇y · [Ds (I + ∇yχ3)] = 0, y ∈ S, [B22a]

ns · [Ds (I + ∇yχ3)] = 0, y ∈ �. [B22b]

Similarly, substitution of (B20) into the O(ε−1)-charge balance equation (B18) and
its boundary condition (B19) leads to the following cell problem for the closure variable
χ4(y),

∇y · [Ks (I + ∇yχ4)∇xφ
s
0] = 0, y ∈ S, [B23a]

subject to 〈χ4〉s = 0 and

ns · [ε−δKs (∇yχ4 + I)]∇xφ
s
0] + εγ(A0 B0) = 0, y ∈ �, [B23b]

where χ4(y) is a Y -periodic vector field. Separation between pore- and continuum-
scales requires γ + δ > 0. Under this condition (B23), simplifies to

∇y · [Ks (I + ∇yχ4)] = 0, y ∈ S, [B24a]

ns · [Ks (I + ∇yχ4)] = 0, y ∈ �. [B24b]

In (B22) and (B24), the diffusion and conductivity tensors are functions of con-
centration ce and potential φe . With an order ε approximation De ≈ De(ce

0,φ
e
0) and

Ke ≈ Ke(ce
0, φ

e
0). Then, χ4 = χ3 =: χs (y), where χs is a solution of the closure problem

∇y · (I + ∇yχ
s ) = 0, y ∈ S, [B25a]

ns · (I + ∇yχ
s ) = 0, y ∈ �. [B25b]

Terms of order O(ε0).— At the leading order, the mass transport equation in
the electrode (B5)

∂t c
s
0 + ε−α(∂τme cs

0 + εβ−γ∂τms cs
0) + ε1+β∂τr cs

1 − εβ−γ∇x · [Ds (∇xcs
0 + ∇ycs

1)]

− εβ−γ∇y · [Ds (∇xcs
1 + ∇ycs

2)] = 0, y ∈ S, [B26]

subject to

ns · [Ds (∇xcs
1 + ∇ycs

2)] + 2εγ(A0 B1 + A1 B0) = 0, y ∈ �. [B27]

Integrating (B26) over S with respect to y and using the interface condition (B27)
leads to

∂t 〈cs
0〉s + ε−α(∂τme 〈cs

0〉s + εβ−γ∂τms 〈cs
0〉s ) + ε1+β∂τr 〈cs

1〉s − εβ−γ∇x · (Ds��∇xcs
0)

+ 2εβ−γηK�(〈A0〉B〈B1〉� + 〈A1〉�〈B0〉B) = 0, [B28]

where Ds�� = 〈Ds (I + ∇yχ
s )〉s . Similarly, the leading order of the charge transport

equation is

∇x · [Ks (∇xφ
s
0 + ∇yφ

s
1) + ∇y · [Ks (∇xφ

s
1 + ∇yφ

s
2)] = 0, y ∈ S, [B29]

subject to

ns · [ε−δKs (∇xφ
s
1 + ∇yφ

s
2)] + 2εγ(A0 B1 + A1 B0) = 0, y ∈ �. [B30]

Multiplying both (B29) and (B30) by ε, adding them to (B14) and (B15), respectively,
and then integrating over S, we obtain

ε1−δ∇x · (Ks��∇x〈φs
0〉s ) = εγηK�〈A0〉B〈B1〉� + 〈A1〉�〈B0〉B), [B31]

where Ks�� = 〈Ks (I + ∇yχ
s )〉s .

Following the procedure outlined in Appendix A and assuming that 〈χs 〉s ≈ 〈χs 〉� ,
Equations (B28) and (B31) lead to the macroscopic equations for mass and charge transport
in the electrode (26) and (27), respectively.
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