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Abstract—This paper presents an optimal control-based energy
management strategy for a parallel hybrid electric vehicle (HEV).
Not only does this strategy try to minimize fuel consumption while
maintaining the state of charge of the battery within reasonable
bounds, it also seeks to minimize wear of the battery and extend
its life. This paper focuses on understanding the optimal con-
trol solution offered by Pontryagin’s minimum principle (PMP) in
this context. Simulation-based results are presented and analyzed,
which show that the control algorithm is able to reduce battery
wear by decreasing battery operating severity factor with mini-
mal fuel economy penalty. The benefit of this strategy is especially
evident when ambient and driving conditions are especially severe.

Index Terms—Battery aging, energy management, hybrid
electric vehicle (HEVs), optimal control, Pontryagin’s minimum
principle (PMP).

I. INTRODUCTION

H YBRID electric vehicles (HEVs) represent a steadily
increasing segment of the automotive market. The fuel

economy of HEVs is highly dependent on the energy capacity
of the on-board energy storage system. However, these energy
storage systems experience degradation in both energy capacity
and internal resistance due to several irreversible degrada-
tion processes. The rate of battery capacity loss is dictated
by many factors including operating and environmental condi-
tions. Factors such as extreme temperature, high C-rate, high or
low state of charge (SOC), and excessive depth of discharge are
recognized to contribute to capacity degradation [1]–[5]. Li-ion
batteries represent a big part of vehicle cost. Hence, designing
batteries to last for the life of a vehicle while still satisfying the
energy and power requests is a requirement. An HEV equipped
with a supervisory energy management controller that is able
to reduce the battery aging effects during vehicle operation can
potentially extend the battery life and reduce overall cost.

However, limiting stresses on the battery that could accel-
erate its aging may result in energy management policies that
are in conflict with the desire to minimize fuel consumption.
Mathematically, this situation can be described as a multiobjec-
tive optimization problem. In [6], the authors propose an energy
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management strategy for a power split plug-in hybrid electric
vehicle (PHEV) with consideration of battery health that is rep-
resented by an electrochemical model describing anode-side
solid electrolyte interphase (SEI) growth, which only captures
a certain aspect contributing to battery aging. In [7], the authors
proposed a multiobjective optimal control problem, which con-
sider both fuel consumption and battery aging by converting
battery pack replacing cost to equivalent fuel cost. The major
limitation of [7] is that the authors use the postulated aging
model provided by the manufacture instead of an experimen-
tal validated model. The idea in this paper is inspired by [7]
and significantly extends these results. In [8], instead of con-
sidering battery aging explicitly in the objective function, the
authors treat battery state of health (SOH) as one of the states.
Due to the fact that the time scales of battery SOC and SOH are
separated by more than three orders of magnitude, two separate
controllers are used to regulate the two states by tracking the
set points. However, an optimal solution is not presented, so the
connection or real tradeoff between battery life span and fuel
economy is not fully explored. Given the fact that temperature
is an essential impact factor on battery life, the authors of [9]
impose a penalty on battery temperature, which is supposed to
represent the cost of battery health. However, high C-rate will
stress the battery even at mild temperature. In addition, it is very
difficult to quantify the actual amount of Ah-throughput, which
is related to battery life, saved by this strategy due to the lack
of an appropriate aging model. To properly address the trade-
off between fuel consumption and battery life, it is necessary to
develop an aging model that is able to capture all the important
factors related to the battery aging process.

In this paper, the energy management problem in HEVs is
formulated as an optimal control problem in which the con-
trol algorithm is required to tradeoff between two objectives:
1) minimizing fuel consumption and 2) minimizing battery
degradation. To find a solution to this problem, we use a
battery capacity degradation model that considers the bat-
tery Ah-throughput as a measure of battery life; the model is
parameterized using experimental data that correspond to HEV
driving conditions. This optimal control problem is solved by
the Pontryagin’s minimum principle (PMP). Simulation-based
results are presented and analyzed to evaluate the benefits of the
strategy. The main contribution of this work is that a control-
oriented and experimental validated battery capacity degrada-
tion model is linked to an energy management problem for
HEVs. The optimal solution provides important insights into
the interdependency of battery aging and energy management,
and permits exploration of tradeoffs between fuel economy and
battery capacity loss, the regenerative braking strategy, and the
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Fig. 1. Vehicle architecture.

TABLE I
SPECIFICATIONS OF VEHICLE COMPONENTS

sizing of components, which shows the potential of improving
overall performance while reducing the cost. The optimal strat-
egy illustrates the ability to significantly extend battery life
without unduly affecting fuel economy especially under harsh
driving conditions.

This paper is organized as follows. In Section II, the model
of a parallel HEV and its Simulink implementation are pre-
sented. In Section III, the problem formulation is presented,
and expressions of the analytical solution provided by PMP
are described. The regenerative braking strategy is presented in
Section IV, which is followed by engine start–stop in Section V.
Section VI describes the implementation of the optimal con-
troller, and in Section VII, the results obtained from simulations
are interpreted and analyzed to provide insights into the control
algorithm.

II. VEHICLE MODEL

A. System Description

The system analyzed in this paper is a parallel pretransmis-
sion hybrid, which is shown in Fig. 1. The main characteristics
of the components are listed in Table I. The internal combustion
engine is a 1.6-L naturally aspirated inline four-cylinder gaso-
line engine. The electric drive system allows for both power
assist and battery charging, as well as regenerative braking.
The engine and electric machine are mounted on the same shaft
which connects to the continuous variable transmission (CVT)
through a torque damper. The powertrain is modeled using a
quasi-static forward approach [10]. The desired vehicle veloc-
ity is the input signal from the driving cycle. Following the
speed profile, the driver, which is modeled as a PI controller,
gives commands on acceleration and braking. The CVT ratio
is generated accordingly. A supervisory control algorithm sets
the power split between the electric machine and the internal

Fig. 2. Engine optimal operation line.

combustion (IC) engine. In this work, the control input u(t) is
chosen to be the power of the electric machine Pemreq

. This
power is subjected to speed-dependent constraints

u(t) = Pemreq
∈ [Pem,min(ωem), Pem,max(ωem)] (1)

where ωem(t) is the rotational speed of the electric machine,
which is known. In addition to the physical limits of both
actuators, the power request from the driver should always be
satisfied. Both the engine data and electric machine data are
from Powertrain System Analysis Toolkit (PSAT).

B. Engine

The fuel flow rate of the engine is given by a steady-state
map, which is a function of engine torque Tice and engine speed
ωice, i.e., ṁf = f(ωice, Tice). The power consumption of the
engine can be described by equation

Pfuel = LHV · ṁf (2)

in which LHV is the lower heating value of the fuel.

C. Electric Machine

The efficiency of the electric machine ηem is given by a
steady-state map, which is a function of both torque Tem and
speed ωem. Therefore, the power request of the electric machine
is given by the torque, in which z = −1 when the electric
machine works as a motor, and z = 1 when it works as a
generator

Pemreq
= Tem · ωem · ηzem(ωem, Tem). (3)

D. Transmission

A CVT is used to keep the internal combustion engine oper-
ating at low fuel consumption points by tracking the optimal
operation line (OOL) [11], which is shown in Fig. 2. The OOL
can be calculated from the engine map by minimizing the fuel
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consumption for a set of power outputs. Based on the OOL,
the optimal engine speed for a given throttle position, which
is equivalent to the angle of the acceleration pedal, can be
decided. The OOL tracking strategy is implemented as a 2-D
look-up table. Thus, CVT ratio is not considered as a part of the
optimization. Due to the fact that the architecture of the vehi-
cle model is parallel pretransmission hybrid, the CVT ratio is
determined before the torque split. As a result, the engine will
operate around the OOL instead of being exactly on the OOL.

E. Battery

The battery is modeled by an equivalent circuit comprising
a voltage source Voc and its internal resistance R0 in series,
and both variables are functions of the SOC. Thus, the battery
current is given by [7]

Ibatt =
Voc −

√
V 2
oc − 4 ·R0 · Pbatt

2 ·R0
(4)

in which Pbatt is the power in and out of the battery. SOC is
computed from the battery current as

SOC(t) = SOC0 − 1

Qbatt
·
∫ t

0

Ibatt(τ)dτ (5)

in which Qbatt is the battery capacity.
In addition to SOC, battery temperature is also a state of

the battery system model. However, in the optimal control sys-
tem, temperature is not considered as a state assuming that an
independent battery thermal management system will keep the
battery temperature at a known desired value.

F. Battery Aging

Aging models for lithium-ion batteries can be classified into
two categories, namely physical–chemical models and empir-
ical models. Physical–chemical models are usually developed
to study or describe a single aging mechanism inside the cell
[12], [13]. For instance, a first-principles capacity fade model is
developed based on the mechanism for SEI growth [14]. This
type of models are helpful in understanding of aging under dif-
ferent modes as well as the effect of an aging source on different
aspects of the cell performance. Such first-principles models
have limitations such as the requirement of a detailed model of
the aging processes and often require long computation time.
To remedy these shortcomings, various empirical and semiem-
pirical models have been proposed [15], [16]. These models
are developed by considering simplified physical relations in
the model by fitting the parameters of the model with exper-
imental data obtained from aging tests, resulting in a set of
equations that describe the main degradation mechanisms. Due
to the favorable compromise between simplicity and accuracy,
semiempirical models are employed in the control-oriented
models used in this study. We start from a generic model
initially proposed in [5], which has the form

Qloss = B · exp
(−Ea

R · θ
)
· (Ah)z (6)

TABLE II
BATTERY AGING EXPERIMENT DATA

Fig. 3. Curve fitting result of identified aging model with the experimental
data [19].

where Qloss is the battery capacity loss in percentage with
respect to the nominal capacity, B is a preexponential factor,
Ea is the activation energy in J ·mol−1, R is the gas constant,
θ is the battery temperature expressed in Kelvin, Ah is the Ah-
throughput, and z is the power law factor. In order to capture the
battery aging effects under HEV operating conditions as well as
to incorporate dependence on SOC, the generic aging model is
calibrated on battery aging data obtained from a charge sustain-
ing HEV, and the data are reported in Table II where profiles
A and B are from [17] and profile C is from [18]. The three
profiles use the same type of battery, which is LiFePO4 cell
(ANR26650) from A123 system, and are specified in terms of
average ¯SOC, average C-rate Īc, and average battery tempera-
ture θ̄. Following a two-step curve fitting procedure, the result
is shown in Fig. 3 and the identified aging model [19] has the
form of

Qloss% = (α · SOC + β) · exp
(−31700 + 163.3 · Ic

R · θ
)
·Ah0.57

(7)

α =

{
1287.6, SOC � 0.45
1385.5, SOC > 0.45

β =

{
6356.3, SOC � 0.45
4193.2, SOC > 0.45.

III. PROBLEM FORMULATION

The problem we consider in this paper is the energy manage-
ment of a charge-sustaining HEV. In the vehicle architecture
considered in this study, we consider three distinct operating
modes: 1) charge sustaining hybrid mode; 2) braking regen-
eration mode; and 3) engine start–stop. Each of these modes
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affects both the fuel economy of the vehicle and the life of the
battery. We focus the optimal control problem formulation on
the charge-sustaining mode, and we treat the other two prob-
lems separately, for the following reasons. Engine start–stop is
modeled by a simple rule base, described later in this section
and representative of current industrial practice, which leads to
the computation of a fixed cost (electricity and fuel) for each
engine restart (assuming warmed-up engine). This choice is
appropriate for the architecture considered in the study, which is
based on the Honda Civic HEV, and in which no electric launch
function or pure electric driving is considered. In a different
HEV architecture, or in a PHEV, one would have the freedom
to delay the start of the engine, having the ability to rely on a
more substantial electrical energy buffer. Selecting the engine
start time would then lead to a mixed-integer optimal control
problem—we do not address this problem here, although it
presents an interesting extension of our work. Braking regener-
ation is also very important, as there is a clear tradeoff between
recovering as much energy as possible and limiting the aging
of the battery. Since the decision to apportion electromechani-
cal versus friction braking is an instantaneous one, in this paper,
we have formulated the braking regeneration aging-fuel econ-
omy tradeoff as a static optimization problem which is solved
separately.

The objectives of the optimal control problem formulated
and solved in this paper are twofold: minimizing fuel consump-
tion, while minimizing battery capacity degradation. A crucial
step in formulating such optimal control problem consists in
the development of a model to properly quantify the battery
wear to be included in the cost function. It is clear that oper-
ating conditions dictate battery aging phenomena, so different
battery life durations are expected when the battery is operated
under different inputs. The concept of severity factor is utilized
to quantify the relative aging effect with respect to a nominal
operating condition. If the end of life of a battery is defined as
20% capacity drop from its initial value, then battery life with
respect to a nominal cycle can be characterized by the total Ah-
throughput when the battery reach the end of life [20], [21]. The
nominal battery life Γ can be expressed as

Γ =

∫ EOL

0

|Inom(t)|dt (8)

where Inom is the current profile under nominal conditions.
The relative aging effects of any other load cycle the battery

is subject to can be reflected by severity factor

σ(I, θ,SOC) =
Γ

γ(I, θ,SOC)
=

∫ EOL

0
|Inom(t)|dt∫ EOL

0
|I(t)|dt

(9)

where γ(I, θ,SOC) is the battery life given in terms of
Ah-throughput corresponding to specific operating conditions
given in terms of current I , temperature θ, and SOC [20], [21].
When the battery is undergoing a more severe load cycle, the
severity factor is greater than one and a shorter life is expected.
The concept of severity factor to express the relative aging
effect of a specific load cycle was proposed in [20] and [22].

The severity factor σ can be obtained empirically using the
aging model in (7). The end of life is defined as 20% loss
of capacity and the nominal conditions defined in this study
are Ic,nom = 2.5, SOCnom = 0.35, and θnom = 25 ◦C, then the
nominal battery life Γ can be calculated as

Γ =

⎡
⎣ 20

(α · SOCnom + β) · exp
(−31700+163.3·Ic,nom

R·θnom

)
⎤
⎦

1
0.57

.

(10)

Battery life under different load conditions can be fol-
lowed as

γ =

[
20

(α · SOC + β) · exp (−31700+163.3·Ic
R·θ

)
] 1

0.57

. (11)

Severity factor is ready to be calculated by taking the ratio of Γ
and γ obtained from (10) and (11).

In order to give the effective life depletion due to charge
exchange within the battery, we define effective Ah-throughput
as [21]

Aheff(t) =

∫ t

0

σ(Ic, θ,SOC) · |I(τ)|dτ. (12)

Effective Ah-throughput gives the effective life depletion with
respect to the nominal life defined by Γ. Thus, the battery
will reach the end of life when Aheff(t) = Γ, and the objec-
tive of minimizing battery aging is equivalent to minimizing
Aheff(t) [7].

Considering fuel economy and battery aging simultaneously
requires defining a suitable cost function. We propose a cost
function which has the form of

J =

∫ T

0

α · ṁf (t)

M
+ (1− α) · σ(t) · |I(t)|

Λ
dt. (13)

The first term represents fuel cost, while the second term can be
interpreted as battery aging cost. The parameter α is a weight-
ing factor which can take on any value between 0 and 1. One
can continuously tradeoff between these two costs by varying
the value of α, which should yield a Pareto front [23]. In order
to make these two terms numerically comparable, normaliza-
tion is needed for both. The key idea is to use a maximum
instantaneous cost of one trip to normalize the actual cost. In
the first term, M represents the maximum fuel flow rate in g/s,
and in the second term, Λ is the maximum value of σ(t) · |I(t)|
when only fuel consumption is considered in the optimization
for a corresponding driving cycle.

Before trying to solve this optimization problem, one should
recognize the fact that this is an optimal control problem subject
to the dynamics described by

ẋ = −I(u, x)

Qbatt
(14)
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where x is SOC and u is the control input, i.e., the power flow
within the electric machine Pemreq

. Thus, the optimal control
problem takes the following mathematical form:

u∗ = argmin
u

: J

subject to

ẋ = −I(u, x)

Qbatt

x(0) = x0

x(T ) = x0

x(t) ∈ χ

u(t) ∈ U

(15)

where χ and U are defined as the admissible state and control
sets, respectively. As this control strategy is designed for charge
sustaining HEVs, SOC at the end of one trip is required to equal
to that at the beginning.

Among methods for solving optimal control problems, PMP
is chosen to give numerical solution. According to PMP, mini-
mizing the cost function in (13) is equivalent to minimizing the
Hamiltonian

H(x(t), u(t), t) =α · ṁf (x, u)

M
+ (1− α) · σ(x, u) · |I(x, u)|

Λ
+ λ(t) · ẋ (16)

where λ(t) is the costate which evolves with the dynamics
described by

λ̇(t) = −∂H(x(t), u(t), t)

∂x
. (17)

The optimal control trajectory is given by

u∗(t) = argmin
u∈U

H(x∗(t), u(t), λ∗(t), t). (18)

The initial value of costate λ(t) can be determined by shooting
method, if and only if a priori knowledge of the future driving
condition is available [24].

IV. REGENERATIVE BRAKING

One of the merits that HEVs have is the regenerative brak-
ing system which provides the ability to recover significant
amount of energy during braking. Due to the fact that the vehi-
cle works in either charge-sustaining mode or braking mode,
regenerative braking can be controlled separately, which means
the problem formulation in (15) does not include braking con-
trol. Basically, there are two brake control strategies: 1) series
braking and 2) parallel braking [25], [26]. As battery aging is
one of the main concerns in this work, energy recovered from
regenerative braking is not free any more. Instead of using
the basic brake control strategies, a static optimization-based
regenerative braking control strategy is implemented so that
an instantaneous decision is made on the distribution of total
braking torque, which is optimally distributed between electric
system and mechanical system. If the SOC level in the battery

is beyond 0.65, only friction brake will be applied to prevent
overcharging the battery. Usually, regenerative braking is effec-
tive only for the driven axle, which is the front axle in this study.
As a result, the total braking torque request splits between the
front axle and the rear axle according to the geometry of the
vehicle. Then, the optimal regenerative braking is performed
at the front axle. In order to consider both fuel economy and
battery aging during regenerative braking, the following static
optimization problem is solved

min :
Pbatt

|Pbattminregen
| +

σ · |I|
Ieffmaxregen

subject to : Pbattmin
� Pbatt � 0

Pemmin
� Pem � 0.

(19)

During regeneration, battery power Pbatt is negative, and we
want to minimize this power to recuperate energy as much
as possible. On the other hand, battery aging cost, which is
represented by effective current σ · |I| needs to be minimized
as well. Each of the two terms is normalized by the maxi-
mum absolute value during braking when only fuel economy
is considered.

V. ENGINE START–STOP

Another benefit of HEVs is the integration of engine start–
stop function, which helps to save additional amount of fuel
during vehicle standstill. Some results can be found where
start–stop is an integral part of the energy management strategy
design process [27], which is part of the future work, yet more
often heuristic control is added to manage the ICE ON/OFF,
which is the case in this work. The implemented rule-based
start–stop strategy is as follows.

1) ICE OFF when vehicle speed is 0.
2) ICE ON when acceleration pedal is positive.

Fuel is cut off when acceleration pedal signal is 0. Every time
the engine starts, it consumes a certain amount of fuel and elec-
tric power. Fuel cost for engine warm start is 100 mg; battery
power requirement for engine start is 4.5 kW. The numbers
were obtained from experimental data of the EcoCar2 proto-
type vehicle [27], which uses a 1.8-L Honda engine, the size of
which is comparable to the one used in this work.

VI. CONTROLLER IMPLEMENTATION

The PMP states that the necessary conditions for the optimal
control is

H(x∗(t), u∗(t), λ∗(t), t) � H(x∗(t), u(t), λ∗(t), t). (20)

It is clear that before the optimal control solution can be
determined, the costate should be solved appropriately, because
the optimal state trajectory and costate trajectory are cor-
responding to each other. Basically this requires two steps.
The first or key step is to implement the costate dynamics.
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According to equation (17), the explicit form of the costate
dynamics can be written as

λ̇(t) = −
(

α

M
· ∂ṁf (x, u)

∂x
+

1− α

Λ
· ∂σ(x, u)

∂x
· |I(x, u)|

+
1− α

Λ
· σ(x, u) · ∂|I(x, u)|

∂x
+ λ(t) · ∂ẋ

∂x

)
(21)

in which the four terms describe the sensitivity of fuel flow rate,
battery severity factor, the magnitude of battery current, and
the rate of change in SOC with respect to SOC. The relation-
ship between fuel flow rate and SOC is not directly clear, so the
following transformation is made:

∂ṁf (x, u)

∂x
=

∂ṁf (x, u)

∂Pem(x)
· ∂Pem(x)

∂x
. (22)

According to the assumption that the road power request should
always be satisfied, the following equality holds:

∂ṁf (x, u)

∂Pem(x)
=

∂ṁf (x, u)

∂(Proad − Pice)
= −∂ṁf (x, u)

∂Pice
. (23)

Thus, complete costate dynamics can be expressed as

λ̇(t) = −
(
− α

M
· ∂ṁf (x, u)

∂Pice
· ∂Pem(x)

∂x

+
1− α

Λ
· ∂σ(x, u)

∂x
· |I(x, u)|

+
1− α

Λ
· σ(x, u) · ∂|I(x, u)|

∂x
+ λ(t) · ∂ẋ

∂x

)
.

(24)

In this work, all the partial differential terms or sensitivities in
(24) are precalculated and implemented as look-up tables in
Simulink.

The second step is to search for an initial value of the costate,
which is necessary to solve the differential equation in (24).
Due to the fact that this optimal control problem is a two-point
boundary problem with condition x(0) = x(T ) = x0, an itera-
tive method, which is also known as shooting method [28], can
be applied to search for the initial costate. In the simulation, the
initial SOC is set to be 0.5, and the acceptable range of the final
SOC is 0.49−0.51.

VII. SIMULATION RESULTS

In this work, four driving cycles are studied, and detailed
results are presented for two of them, which are Federal Urban
Driving Schedule (FUDS) and US06. All the cycles are repli-
cated to fulfill the distance of 44 km, which is defined as
one-day driving.

Inside the battery, chemical reactions are driven either by
voltage or temperature [4]. The higher the temperature the bat-
tery undergoes, the faster the chemical reactions will occur and
the higher the aging rate is as well. Given this fact, the ambi-
ent temperature is set to 40 ◦C, which is an extrema but still
reasonable condition for a city like Phoenix in Arizona.

The virtual experiments are divided into two groups, namely
short-term, which is one-day driving, and long-term simula-
tions, which is one-year driving.

TABLE III
SHORT-TERM SIMULATION RESULTS FUDS

A. Short-Term Simulation Results for FUDS

In the simulation, five different values of α are considered.
According to the cost function in (13), when α = 1, only fuel
consumption is considered in the optimization, which should
lead to the best fuel economy. On the other hand, when α
decreases, battery aging is weighted more and more, thus less
aging is expected. The short-term simulation results of FUDS
are listed in Table III. The best fuel economy, which is 45.8
MPG, comes from the case in which α = 1, while the least
aging is obtained with α = 0.3, in which the effective Ah-
throughput is 17.5. When compared with the best fuel economy
case, the effective Ah-throughput decreases by 23.6%; how-
ever, the fuel consumption increases only by 1.5%. When look
into the performance of the electric motor, it is clearly indi-
cated by the top plot in Fig. 5 that the case with α = 0.3 tends
to provide assist torque in a much more gentle way, while in
the case of α = 1, there are more frequent instances of high
C-rate request from the battery. Fig. 4 shows the battery oper-
ating points on the severity factor map with α = 0.3 on the
top and α = 1 on the bottom. The severity factors of α = 0.3
are distributed lower than that of α = 1 on the severity factor
map in all modes, though α = 0.3 has more instances of high
severity factors in the assist mode. The rms values of sever-
ity factor corresponding to α = 0.3 and α = 1 are 3.1 and 3.4,
respectively. Distribution of severity factors from α = 0.3 is
wider on the axes of SOC and especially located in lower SOC
range. This can be explained by the aging model in (7), which
means low SOC is preferred in terms of decreasing aging speed.
As a result, with the same boundary conditions, which are
SOC(0) = SOC(T ) = 0.5, the controller with consideration of
battery aging chooses to spend more time in low SOC level as
long as all the constraints are respected. The SOC profiles for
both cases are shown in the bottom plot of Fig. 5.

B. Short-Term Simulation Results for US06

The same analysis is conducted on the US06 driving sched-
ule. As listed in Table IV, similar trend can be observed when
α varies. Under aggressive driving conditions, the inclusion of
the battery aging cost clearly results in a significant reduction
in effective Ah-throughput. Fig. 6 shows the electric torque
and SOC trajectories from both cases, and it is obvious that,
in the case of α = 0.3, the assist torque from electric machine
is smaller than that in the case of α = 1; the SOC trajectory
corresponding to α = 0.3 is mostly under the one with α = 1,
and the reason is as stated before. In Fig. 7, it is clear that
severity factors are dramatically reduced in both regeneration
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Fig. 4. Distribution of battery severity factor over FUDS. (a) α = 0.3, Regeneration. (b) α = 0.3, Charging. (c) α = 0.3, Assist. (d) α = 1, Regeneration.
(e) α = 1, Charging. (f) α = 1, Assist.

Fig. 5. Electric torque and SOC profiles over FUDS.

and charging modes with α = 0.3. Though, in assist mode, the
shape of severity factor distribution of the two cases is similar,
the density distribution is different. With α = 0.3, severity fac-
tors are mostly located below 20, while with α = 1, the density
of severity factor at high values becomes bigger. The rms values
of severity factor corresponding to α = 0.3 and α = 1 are 5.5
and 10.6, respectively.

C. Summary of Short-Term Simulation Results

In Table V, short-term simulation results of four driving
cycles are listed including FUDS and US06. Manhattan driving

TABLE IV
SHORT-TERM SIMULATION RESULTS US06

Fig. 6. Electric torque and SOC profiles over US06.

schedule is a very intense city cycle, while West Virginia
Interstate represents highway driving conditions. Two values of
α for each cycle are shown. According to the simulation results,
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Fig. 7. Distribution of battery severity factor over US06. (a) α = 0.3, Regeneration. (b) α = 0.3, Charging. (c) α = 0.3, Assist. (d) α = 1, Regeneration.
(e) α = 1, Charging. (f) α = 1, Assist.

TABLE V
SHORT-TERM SIMULATION SUMMARY

the optimal controller with consideration of battery aging is
able to dramatically reduce battery aging with almost negligible
effect on fuel economy.

D. Long-Term Simulation Results

The long-term simulations focus on the trajectory of battery
capacity degradation. The simulations are conducted under the
following assumptions. 1) One-year simulation is equivalent to
365 one-day simulations. 2) Driving conditions are the same for
each day, which means the driving cycle is repetitive and the
ambient temperature θ = 40 ◦C. To have an idea of the battery
degradation trajectory over 1 year under extreme conditions,
40 ◦C is chosen for the whole year. In order to guarantee charge
sustenance on each day, a searching algorithm is inserted to
refresh the value of initial costate. The reason why charge sus-
tenance may be violated is that battery capacity is reducing due
to aging effect, which influences (14). With a degraded battery,
the same initial costate will lead to a high final SOC, which may
be located outside of the acceptable range.

Fig. 8 depicts the long-term simulation result for α = 0.3 and
α = 1. It is clear that, due to the nature of the driving cycle,
there is little opportunity to reduce the effective Ah-throughput.

Fig. 8. One-year driving simulation FUDS.

Fig. 9 shows the instantaneous normalized aging costs without
weighting factor, which can be mathematically expressed as

costaging =
σ · |I|
Λ

. (25)

It is obvious that the difference in the instantaneous aging cost
between these two cases is minor. This duty cycle leads the bat-
tery operating points to the region in which the aging effect is
not sensitive to control. According to Fig. 8, fuel economy is
almost a constant for both values of α. The reason is that the
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Fig. 9. Instantaneous aging cost over FUDS.

Fig. 10. One-year driving simulation US06.

capacity loss at the end of 1 year is not big enough to make a
difference on fuel economy.

On the other hand, the long-term simulation results using
US06 driving cycle, reported in Fig. 10, show very different
battery capacity loss for different values of α. Fig. 11 describes
the instantaneous aging costs, which justifies the long-term
simulation results. This harsh driving cycle makes the battery
aging behavior sensitive to control; therefore, in this situa-
tion, the presented optimal algorithm can significantly improve
battery life.

E. Insights From Simulation Results

In the simulator used in this study, the PMP-based controller
is functional only when the vehicle is in charge sustaining
mode; regenerative braking is controlled separately. When
aging is considered or when α is different from 1, regenerative
braking strategy is the one stated in Section IV, which opti-
mally trades off recuperated energy with battery aging. When
α = 1, a series regenerative braking strategy is implemented,

Fig. 11. Instantaneous aging cost over US06.

Fig. 12. Electric torque over US06, α = 1.

which permits recovering the maximum possible amount of
vehicle kinetic energy as long as the physical limits of the elec-
tric motor and battery are not violated. Regenerative braking
has a potentially significant influence on battery aging; Fig. 12
shows the torque output from the electric machine over US06
with α = 1, which clearly indicates that regenerative brak-
ing accounts for a large part of the battery usage. The results
summarized in Table VI show that the change of effective Ah-
throughput due to regenerative braking, for values of α different
from 1, is minor, because the amount of braking energy that
can be recovered is determined by the driving cycle and the
control algorithm of braking, both of which are the same for
these cases. However, when compared with the case of α = 1,
effective Ah-throughput is reduced significantly. On the other
hand, the amount of energy recovered is also reduced, which
contributes to the difference in fuel economy. In practice, the
implementation of regenerative braking algorithm in a vehicle
may differ from the way it was modeled in this study, and its
effect on aging will depend on the braking strategy employed
in the vehicle controller. It may be possible to further reduce
battery aging by designing an appropriate braking strategy.
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TABLE VI
BATTERY USAGE ON US06

Fig. 13. Battery energy flow over US06, α = 0.3.

TABLE VII
ENERGY ANALYSIS ON US06

Some insights on PMP-based solution can be gained by
conducting energy analysis of the vehicle operation. According
to the simulation results of Fig. 13, which shows the battery
energy usage over US06 with α = 0.3, the controller rarely
uses the engine to charge the battery, for the stated operating
conditions. In fact, the energy supplied to the battery by the
engine is negligible when compared to that from regenerative
braking. The optimal controller reveals that using the engine
to recharge the battery is not cost-effective, because the sum
of the fuel cost and effective Ah-throughput cost is too large.
As a result, the controller, in the charge-sustaining mode,
will only use the amount of energy that can be compensated
by regenerative braking so that the requirement of charge
sustenance can be satisfied. This fact is confirmed by the
simulation results listed in Table VII, in which one can see that
limiting the maximum allowable regenerative torque causes the
energy recuperated from the braking to decrease accordingly.
The energy discharged from the battery to assist the engine
also decreases, and the discharged energy is almost equal
to the recuperated energy. Because of the iterative nature of
the PMP solution (using the shooting method to tune initial
costate), the PMP optimal controller knows the future, and it
finds the minimum fuel consumption by matching the amount

Fig. 14. Battery power with 1.0 L engine over US06, α = 0.3.

Fig. 15. Battery energy with 1.0 L engine over US06, α = 0.3.

of energy that can be recovered from the regenerative braking
with the positive battery power used for electric assist. Only
occasionally is the fuel cost associated with recharging the
battery from the engine considered acceptable in the PMP
solution. Thus, recharging the battery with the ICE is an
infrequent event. However, it is conceivable that with different
powertrain configurations or in more aggressive driving, a
greater amount of electric torque assist will be used in practice,
requiring more ICE recharge. To validate this statement, a
hybrid powertrain using a significantly downsized engine,
1.0 L in displacement, is tested in the simulation. The CVT
control strategy is modified accordingly so that the OOL of
the new engine can be tracked, while the remaining power-
train subsystems are unchanged. Figs. 14 and 15 show the
simulation result of battery operating conditions over US06
driving cycle with α = 0.3. It is obvious that with a smaller
engine, the need for electric assist is much greater, and that
more frequent charging events are required to meet the con-
straint of charge sustenance. As a result, the controller will use
the engine to charge the battery more frequently. So the battery,
with a smaller engine, is used in a much more intensive way.
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TABLE VIII
VEHICLE PERFORMANCE WITH DIFFERENT ENGINE SIZE

It is also true that the fuel cost is lower because of the more
favorable fuel economy features of the downsized engine.
Table VIII summarizes the performance of the vehicle with two
different engines over the US06 driving cycle with α = 0.3.
With aggressive engine downsizing, fuel economy is improved;
however, the battery is used more aggressively as indicated by
effective Ah-throughput. Overall, fuel savings are minor when
compared with the dramatic increase in battery aging cost.
Design optimization studies that selecting optimal component
sizing to optimally trade off fuel economy and performance in
hybrid electric and plug-in HEVs have been widely reported
in the past [29]–[33]. It has been clearly shown that both the
energy consumption and the vehicle performance are linked to
the size of the powertrain components in a hybrid vehicle [34]–
[38], and that there exists an optimal powertrain configuration
that yields the best combination of vehicle performance and
cost for a given cost function. The work presented in this paper
clearly shows that including battery life in the cost function
used to perform such a design optimization is very important,
and adds a critical dimension to the design of an HEV. The opti-
mal controller presented in this paper is a useful tool in carrying
out such design optimization studies.

VIII. CONCLUSION AND FUTURE WORK

This paper has analyzed an optimal control-based energy
management strategy for HEVs, which explicitly trades off
fuel consumption and battery capacity degradation. The optimal
controller explicitly uses a battery aging model. The methods
developed in this paper provide significant insights into the
tradeoff between fuel economy and battery aging in an HEV.
While the specific models and results will vary with battery
chemistry and vehicle architecture, the models and optimal con-
trol algorithms developed in this study show that it is possible
to explicitly take into account battery aging in an energy man-
agement controller, with the potential to significantly extend
battery life when the vehicle is operated in various conditions,
without adversely affecting performance, and with a very small
penalty in fuel economy. The work presented in this paper
forms the basis for the future study of the optimal behavior
including regeneration and engine start–stop as well as the
design of causal control algorithms that can be implemented
and calibrated on board a vehicle.
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