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a b s t r a c t

The energymanagement problem of finding the optimal split between the different sources of energy in a
charge-sustaining parallel HEV, ensuring stability and optimality with respect to a performance objective
(fuel consumption minimization over a driving cycle), is addressed in this paper. The paper develops
a generic stability and optimality framework within which the energy management problem is cast in
the form of a nonlinear optimal regulation (with disturbance rejection) problem and a control Lyapunov
function is used to design the control law. Two theorems ensuring optimality and asymptotic stability of
the energy management strategy are proposed and proved. The sufficient conditions for optimality and
stability are used to derive an analytical expression for the control law as a function of the battery state of
charge/state of energy and system parameters. The control law is implemented in a simplified backward
vehicle simulator and its performance is evaluated against the global optimal solution obtained from
dynamic programming. The strategy performs within 4% of the benchmark solution while guaranteeing
optimality and stability for any driving cycle.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A generic hybrid electric vehicle (HEV), regardless of the archi-
tecture considered, has two sources onboard that can supply the
torque/power requested by the driver. HEVs use batteries, electric
motors, regenerative braking and reduction of engine idling time to
enhance a conventional internal combustion engine, thus achiev-
ing better fuel economy. The electric motor provides a portion of
the power for propulsion, especially at high-load conditions when
the vehicle is accelerating; some of the vehicle’s inertial energy can
be recaptured through regenerative braking systems and stored in
vehicle batteries. According to Pesaran (2011), a possible classifica-
tion of today’s vehicles in themarket can be given based on internal
combustion engine size and electric machine size, as follows:

(1) Conventional internal combustion engine (ICE) vehicles;
(2) Micro hybrids (start/stop);
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(3) Mild hybrids (start/stop + kinetic energy recovery);
(4) Full hybrids (mild hybrid capabilities + electric launch);
(5) Plug-in hybrids (full hybrid capabilities + electric range);
(6) Electric vehicles (battery or fuel cell).

In particular:

- In conventional vehicles, the ICE is the only source of power.
For this type of vehicle the total power request at the wheel is
entirely satisfied by the ICE An, Stodolsky, and Santini (1999),
Miller (2003).

- A start–stop system automatically shuts down and restarts the
ICE to reduce the amount of time the engine spends idling,
thereby reducing fuel consumption and emissions. This feature
is present in hybrid electric vehicles, but has also appeared in
vehicleswhich lack of a hybrid electric powertrain. Non-electric
vehicles featuring start–stop system are called micro-hybrids
An et al. (1999), Miller (2003).

- In a mild hybrid vehicle generally an ICE is equipped with an
electric machine (one motor/generator in a parallel configura-
tion) allowing the engine to be turned off whenever the car is
coasting, braking, or stopped An et al. (1999), Miller (2003).

- A full hybrid vehicle can run only using the engine, the bat-
teries, or a combination of both. A large, high-capacity battery
pack is needed for battery-only operation in the electric launch.
In these vehicles a supervisory control is needed to provide
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coordination among the actuators in order to minimize fuel
consumption An et al. (1999), Guzzella and Sciarretta (2007),
Miller (2003). The objective of the present paper is to propose
a new optimal regulation energy management strategy for a
medium duty full hybrid truck.

- A plug-in hybrid electric vehicle (PHEV) utilizes rechargeable
batteries that can be restored to full charge by connecting to an
external electric power source Guzzella and Sciarretta (2007).

- A fuel cell vehicle (or electric vehicle) uses a fuel cell (or bat-
tery) to produce electricity and power its on-board electric mo-
tors Guzzella and Sciarretta (2007).

The objective of the energy management strategy in a HEV is
to find the optimal torque/power split between the primary
and secondary energy sources that minimizes a given objective
function over an entire driving cycle.2 The energy management
problem in a charge-sustaining3 HEV has been studied in the
literature for over a decade (see, for instance, Brahma, Guezennec,
and Rizzoni (2000); Pisu and Rizzoni (2007) and references
therein).

In general, the energy management strategies can be cate-
gorized based on the feasibility of implementation in a real ve-
hicle. The first category involves the use of classical optimal
control techniques guaranteeing global/local optimality of the so-
lution. Dynamic Programming (DP) assumes a-priori knowledge of
the driving cycle and solves the problem backwards in time, con-
sidering all possible power split choices at each instant leading to
the global optimal solution Brahma et al. (2000), Koot et al. (2005),
Lin, Peng, Grizzle, and Kang (2003). On the other hand, Pontryagin’s
Minimum Principle (PMP) formulates and minimizes a Hamilto-
nian function (a function of the instantaneous cost and the state
constraint) at each instant to obtain the optimal solution Anatone,
Cipollone, and Sciarretta (2005), Delprat, Lauber, Guerra, and Ri-
maux (2004), Kim, Cha, and Peng (2011), Serrao, Onori, and Rizzoni
(2009).

The second category of strategies consists of algorithms that are
implementable in a real-vehicle, but they do not necessarily guar-
antee optimality. Equivalent Consumption Minimization Strategy
(ECMS), adaptive energy management strategies and rule-based
control strategies are in this category. The basic idea of ECMS is
to reformulate the global optimization problem into a local opti-
mization problem with tuning parameters. This method can give
very good results, but the optimal equivalence factor, which de-
pends on the driving cycle, must be determined a-priori using of-
fline methods Paganelli, Ercole, Brahma, Guezennec, and Rizzoni
(2001). To overcome this problem, adaptive ECMS methods have
been proposed in the literature, for example, by adapting the tun-
ing parameter of ECMS by predicting the driving cycle Musardo,
Rizzoni, Guezennec, and Staccia (2005), or using pre-computed
driving cycle-optimal equivalent factor correlations Gu and Riz-
zoni (2006), or using the correlation between equivalence factor
and battery state of charge Chasse, Sciarretta, and Chauvin (2010),
Kessels, Koot, van den Bosch, and Kok (2008), Onori, Serrao, and
Rizzoni (2010). Rule-based strategies have also been very popular
because of their simplicity in real-time implementation. The rules

2 In this work, we limit our focus to the problem of fuel consumption
minimization, with no inclusion of drivability considerations. Typically, the gear
shifting optimization pertains to the transmission control and it is not an objective
of the supervisory control. The optimization of the gear shifting strategy would
require the formulation of an optimal control problem which includes both
continuous time and discrete time dynamics. In this work, we assume that
the transmission controller operates independently to the supervisory controller,
therefore the gear shifting strategy is treated as a known external input to the
energy management system.
3 A HEV in which the battery can be recharged/discharged only using the vehicle

and not externally Miller (2003).
can be derived, for example, from the DP solution to the optimiza-
tion problem Bianchi et al. (2010), Lin et al. (2003), Jalil, Kheir, and
Salman (1997).

The following shortcomings in the HEV literature motivate the
main contributions of the paper:

• Because the strategies that are based on classical optimal
control techniques require a-priori knowledge of the driving
cycle, they cannot be implemented in a real vehicle. They can
be either used as benchmark solutions to perform comparative
analysis of other implementable energymanagement strategies
or to derive rules for rule-based strategies.

• The second category of strategies which can be implemented
in a real vehicle need to be tuned for the intended driving
conditions to perform close to the optimal solution.4

In this paper, we depart from these approaches and present a novel
idea to design an energymanagement controller for a parallel HEV.

Linear-quadratic optimal control theory has beendeveloped ex-
tensively over the past century; extension to nonlinear optimal
control has broadened the effectiveness of such techniques. Be-
cause nonlinear controllers can effectively model the nonlineari-
ties in the system and hence perform better than linear controllers
for nonlinear systems, it is not surprising that significant effort has
been devoted to developing the theory of nonlinear optimal regu-
lation Bass and Webber (1966), Lukes (1969), Willemstein (1977).

In this paper, we develop a stability and optimality frame-
work for charge sustaining HEVs, based on the results on nonlin-
ear optimal regulation in feedback control problems involving non
quadratic cost functionals, found in Bernstein (1993), Haddad and
Chellaboina (2008). We aim at finding an analytical energy man-
agement strategy that can be easily implemented in a real vehi-
cle assuring optimality and stability. It is shown that by suitably
casting the energy management problem into a nonlinear optimal
regulation problem and using an appropriate Lyapunov function
candidate, it can be proved that the state-feedback based optimal
control law (with respect tominimum fuel consumption) produces
a charge-sustaining behavior. The control Lyapunov function5 is
also used in deriving an analytical closed-form expression for the
optimal control law. The paper is an extension of the work pro-
posed in Sampathnarayanan, Onori, and Yurkovich (2012) in the
presence of external disturbances for the pre-transmission paral-
lel HEV.

The paper is organized as follows: Section 2 describes the
energy management problem in a pre-transmission parallel HEV
along with the battery state of charge dynamics, integral and
instantaneous constraints and Willans line based engine fuel
consumption rate model. Section 3 casts the energy management
problem into a nonlinear optimal regulation problem, where a set
of sufficient conditions is proposed for the asymptotic stability
of the origin and optimality of the control law with respect to
the fuel consumed. Next, the optimal control law is implemented
in a vehicle simulator and the results are evaluated against the
benchmark solution fromDP. Section 5 lists themain contributions
of the paper and the intended future work.

4 Though rule-based energymanagement strategies are relatively easy to develop
and implement in a real vehicle, a significant amount of calibration effort is
required to improve its performance over a driving cycle. Furthermore these sub-
optimal strategies are not necessarily scalable to other powertrain architectures and
different component sizes.
5 A control-Lyapunov function Pontryagin, Boltyanskii, Gamkrelidze, and

Mishchenko (1962) is a function V (x, u) that is continuous, positive-definite
(V (x, u) > 0 ∀x ≠ 0), proper (V (x) → ∞ as |x| → ∞), and such that

∀x ≠ 0, ∃u V̇ (x, u) < 0.
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2. Energy management problem in a charge-sustaining HEV

Unlike in a conventional vehicle, the additional degree of
freedom offered by the hybrid powertrain presents a challenging
optimization problem. The objective of the energy management
strategy in a HEV is to find the optimal torque/power split, be-
tween the primary (fuel) and secondary (battery) energy sources
that minimizes a given objective function over an entire driving
cycle. The minimization can be performed with respect to sev-
eral objectives, such as fuel consumption, emissions, battery aging,
etc., or a combination of these objectivesMusardo, Staccia, Mohler,
Guezennec, and Rizzoni (2005); Serrao, Onori, Sciarretta, Guezen-
nec, and Rizzoni (2011). In this paper, we consider the problem of
minimizing the total mass of fuel, mf [g] during a driving cycle, or
equivalently, minimize the following integral cost J:

J =

 tf

t0
ṁf (u(t))dt (1)

where ṁf is the instantaneous fuel consumption rate expressed in
[g/s], u(t) is the control input, and tf − t0 is the length of the driv-
ing cycle. The energy management problem, by its very nature, is a
constrained optimal control problem,where the objective function
(1) isminimized under systemdynamics, instantaneous (local) and
integral (global) constraints on the state and control variables, as
outlined in the following.

2.1. System dynamics

In order to study the energy management problem, a quasi-
staticmodel of the vehicle is used. The battery state of charge (SOC)
is the scalar state variable of the energy management problem
whose dynamics can be expressed as

˙SOC(t) = −α
I(t)
Qmax

(2)

where α represents the Coulombic efficiency Guzzella and Sciar-
retta (2007), I(t)[A] is the current flowing in (negative) and out
(positive) of the battery and Qmax[Ah] is the maximum battery
charge capacity. Numerous battery models have been developed
in the HEV literature depending on the intended level of accu-
racy Hu, Yurkovich, Guezennec, and Yurkovich (2009); Johnson,
Pesaran, and Sack (2001). However, the energymanagement prob-
lem places more importance on the efficiency and losses in the
battery pack, which allows the use of a zero-th order equivalent
circuit based model shown in Fig. 1. The parameters of the zero-th
battery model are the equivalent resistance6 Req [Ω] and the open
circuit voltage7 Voc [V ]. In general these parameters depend on
several factors such as SOC and temperature. Typically, in a charge-
sustaining HEV, the battery is used only over a limited range of
SOC (typically between 0.5–0.8). Experimental evidence, Hu et al.
(2009), shows that over this range of SOC operation, the model pa-
rameters (Req, Voc) do not vary significantly as a function of SOC
and are therefore assumed to be known constants in this paper.
The effect of temperature on battery parameters is not investigated
here and it is left to future studies. With reference to Fig. 1, the
voltage at the battery pack terminals is given by

VL(t) = Voc − I(t)Req, (3)

6 The equivalent resistance in a zero-th circuitmodel is a single lumped resistance
of the battery pack estimated from experimental data Hu et al. (2009).
7 The open circuit voltage is the output voltage of the battery pack when it is not

loaded and it is determined from experimental data Hu et al. (2009).
Fig. 1. Zero-th order electrical circuit model of the battery.

where VL(t) is the instantaneous terminal voltage. Multiplying (3)
by current I(t) on both sides, battery power Pbatt(t) is expressed as,

Pbatt(t) = VL(t)I(t) = Voc I(t) − I2(t)Req. (4)

Solving the algebraic quadratic Eq. (4), the battery current I(t) is
expressed as a function of Pbatt(t) as:

I(t) =
Voc −


(Voc)2 − 4ReqPbatt(t)

2Req
. (5)

This result can then be substituted into the definition of ˙SOC(t) of
Eq. (2) to generate the nonlinear mapping ˙SOC(t) = −α

Voc −


(Voc)2 − 4ReqPbatt(t)
2ReqQmax

,

˙SOC(t) = fSOC (SOC(t), Pbatt(t)).
(6)

2.2. Integral constraints

In a charge sustaining HEV, the net energy from the battery is
zero over a given driving cycle, which means that the SOC at the
end of the driving cycle should be the same as that in the beginning
of the driving cycle, or

SOC(tf ) = SOC(t0), (7)

where SOC(t0), SOC(tf ) represent the battery SOC at the beginning
and end of the driving cycle. This integral constraint over the state
variable must be satisfied for any given driving cycle.

2.3. Instantaneous constraints

Instantaneous constraints imposed on the state and control
variables concern physical operation limits of components. In a
pre-transmission parallel HEV powertrain (shown in Fig. 2) those
are

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max,
SOCmin ≤ SOC(t) ≤ SOCmax,
Tx,min ≤ Tx(t) ≤ Tx,max ∀t ∈ [t0, tf ]
Px,min ≤ Px(t) ≤ Px,max,
ωx,min ≤ ωx(t) ≤ ωx,max, x = ice, mot,

(8)

where the last three inequalities represent instantaneous limita-
tions on the engine, ice, and electric motor,mot , torque, power and
speed respectively; (·)min, (·)max are the minimum and maximum
values of power, SOC , torque and speed at each instant. Moreover,
constraints are also enforced at each instant to ensure that the to-
tal power demand at the wheels is satisfied. As shown in Fig. 2, the
engine is connected in parallel with the electric motor and battery
pack and can be engaged or disengaged from the wheels using a
clutch.

To summarize, the optimal energy management problem
consists of finding the control law u(t) that minimizes (1) under
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Fig. 2. Power flow diagram of pre-transmission parallel HEV.
the constraints:

˙SOC(t) = fSOC (SOC(t), u(t)) ∀t ∈ [t0, tf ],
SOC(t0) = SOCinit ,
|SOCtf − SOCref | − ϵSOC ≤ 0,
SOCmin − SOC ≤ 0 ∀t ∈ [t0, tf ],
SOC − SOCmax ≤ 0 ∀t ∈ [t0, tf ],
u ∈ [umin, umax] ∀t ∈ [t0, tf ],

(9)

where SOCinit , SOCref , SOCmin, SOCmax represent the predefined
initial value, reference value,minimumandmaximum limits of the
battery SOC respectively; ϵSOC is themaximumallowable deviation
of the battery SOC at the end of the driving cycle (SOC(tf )) from
SOCref ; and, u(t) is the control input selected depending on the
vehicle architecture. In a parallel HEV, the control input can be
either battery power (u(t) = Pbatt(t)) or the engine power (u(t) =

Pice(t)) depending on the vehicle mode of operation. The vehicle
can operate in three different modes depending on the status of
clutch and gear position. These modes are described next.

2.3.1. All electric mode
With the clutch open, the engine can be switched off and the

vehicle uses only the battery and electric motor for propulsion.
The torque/power requested by the driver at thewheels is satisfied
using the battery and electric motor (mot). The torque/power
balance equations that must be satisfied areTmot(t) = Tgb(t),
Pbatt(t) = Pmot,e(t) + Paccelec(t), ∀t ∈ [t0, tf ]
ωmot(t) = ωgb(t),

(10)

where Tgb(t), ωgb(t) represent the instantaneous gearbox torque
and speed; Tmot(t), ωmot(t) represent the instantaneous electric
motor and speed; Paccelec(t) represents the instantaneous electrical
accessory power and Pmot,e(t) represent the instantaneous electri-
cal power at input/output terminals of the electric motor.

2.3.2. Parallel mode with neutral gear
In this mode of operation, the vehicle is stoppedwith the clutch

closed and gearbox in neutral position. Though both the devices
are connected to the transmission, because the gear is in neutral
condition, the engine can be operated at any desired speed. This
mode of operation mimics the real world situation of the vehicle
being stopped at a traffic signalwhen the gearbox torque requested
by the driver is zero. The engine is kept on and used in conjunction
with the battery and electricmotor to charge/discharge the battery.
The torque/power balance equations that must be satisfied areTmot(t) + Tice(t) = Taccmech(t),
Pbatt(t) = Pmot,e(t) + Paccelec(t), ∀t ∈ [t0, tf ]
ωmot(t) = ωice(t) = ωice,opt(t),

(11)

where Tice(t), ωice(t) represent the instantaneous engine torque
and speed, Taccmech(t) represents the instantaneous mechanical
accessory torque and ωice,opt(t) represents the instantaneous
optimal engine speed based on the maximum efficiency operating
line of the engine. Assuming a constant efficiency for the electric
motor (ηmot ), the engine power, Pice(t), can be represented as
a function of battery power, Pbatt(t), electrical, Paccelec(t) and
mechanical Paccmech(t) accessory power as

Pice(t) =
1

ηmot
Paccelec(t) + Paccmech(t) − ηmotPbatt(t). (12)

2.3.3. Parallel mode
With the clutch closed, the parallel mode of operation uses

both the devices to propel the vehicle and their speed is directly
determined by the vehicle velocity. In this mode of operation, the
vehicle is moving and the gear is free to operate in any condition.
The vehicle speed determines the speed of the devices and the
torque/power requested by the driver is supplied by the parallel
configuration. The only degree of freedom available in this mode
is the engine torque, Tice(t) or electric machine torque, Tmot(t). The
torque/power balance equations that must be satisfied areTmot(t) + Tice(t) = Tgb(t) + Taccmech(t),
Pbatt(t) = Pmot,e(t) + Paccelec(t), ∀t ∈ [t0, tf ]
ωmot(t) = ωice(t) = ωgb(t).

(13)

The battery power can be represented as a function of engine
power and the requested power, Preq(t), as

Pbatt(t) = −
1

ηmot
Pice(t) +

1
ηmot

Preq(t),

Preq(t) = Pgb(t) +
1

ηmot
Paccelec(t) + Paccmech(t).

(14)

2.4. Engine fuel consumption rate model

The optimal control problem in HEV minimizes the fuel
consumption (1) over a driving cycle, which is generally modeled
as a map for every possible combination of engine speed and
torque. The fuel consumption map of the engine used in this paper
is shown in Fig. 11. The engine fuel consumption rate can be
expressed as a function of the engine torque/power and speed
using an appropriate Willans line model Sciarretta and Guzzella
(2007). In general, for any energy conversion device, the efficiency
of the device can be modeled by representing the input power as
an affine function of the output power and losses. At a given engine
speed, the output power, Pice(t), can bewritten as an affine function
of the input chemical power, Pchem(t). The slope and intercept of
each of theWillans lines can be expressed as polynomial functions
(Figs. 3 and 4) of the engine speed, by

Pchem(t) = e0(ωice(t)) + e1(ωice(t))Pice(t),
e0(ωice(t)) = e00 + e01ωice(t) + e02ω2

ice(t),
e1(ωice(t)) = e10 + e11ωice(t) + e12ω2

ice(t),
(15)

where eij, i, j = 0, 1, 2 are constant coefficients, Pchem = ṁfQLHV
(QLHV is the lower heating calorific value of diesel in kJ/kg) is the
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Fig. 3. Quadratic fit for slope of Willans line model.

Fig. 4. Quadratic fit for intercept of Willans line model.

Fig. 5. Effectiveness of Willans line model.

chemical power input to the engine and Pice(t) = Tice(t)ωice(t) is
the engine power output. Given the engine torque Tice(t) and speed
ωice(t), the fuel consumption rate can be written as

ṁf (t) =
1

QLHV
[e0(ωice(t)) + e1(ωice(t))Pice(t)]. (16)

The effectiveness of the Willans line model in approximating the
fuel consumption rate of the engine is shown in Fig. 5.
2.4.1. Parallel mode with neutral gear
In this mode, the engine speed ωice(t) is independent of the

vehicle speed and can be chosen to operate the engine in its
most efficient region. The optimal engine speed, ωice,opt(t), can be
calculated by minimizing the chemical power, Pchem(t), as

∂Pchem
∂ωice

= 0 ⇒ ωice,opt = −
1
2
e01 + e11Pice
e02 + e12Pice

,

∂2Pchem
∂ω2

ice
> 0,

ωice ∈ [ωice,idle, ωice,max],

(17)

where ωice,idle, ωice,max represent the idle and maximum speed of
the engine. The fuel consumption rate can be expressed as an affine
function of Pice(t), as

ṁf (t) = m0 + m1Pice(t) (18)

wherem0 andm1 are known constants obtained from (16) and (17).
Moreover, because Pice(t) is a function of the control input Pbatt(t)
as given by (12), ultimately the fuel consumption rate ṁf (t) can be
expressed as a direct function of the control input, Pbatt(t), i.e.,

ṁf (t) = p0 + p1Pbatt(t), (19)

through coefficients p0, p1 expressed as follows:p0 = m0 + m1


Paccmech +

1
ηmot

Paccelec


,

p1 = −m1ηmot .

(20)

2.4.2. Parallel mode
In this mode, engine and electric motor speed are directly

determined from the vehicle speed. The fuel consumption rate
model can be written as

ṁf (t) =
1

QLHV
[e0(ωgb(t)) + e1(ωgb(t))Pice(t)]. (21)

Depending on the control input chosen, the fuel consumption rate
can be expressed as a function of the control input using (14). Un-
der the assumption that the slope and intercept of theWillans line
model are independent of the engine speed, the fuel consumption
rate can be expressed as an affine function of engine power Pice(t)
in the manner

ṁf (t) = p2 + p3Pice(t), (22)

where p2, p3 are known constants calculated by using the ωgb(t)
into (15). The coefficients p0, p1, p2, p3 are in general a function of
time as they depend on the vehicle mode of operation. TheWillans
line based engine fuel consumption ratemodel and the battery SOC
dynamics described in this section are used in the remainder of the
paper to cast the energy management problem as a nonlinear op-
timal regulation problem. The closed-form expression for the fuel
consumption rate using the Willans line model is used in finding
the analytical optimal control law.

3. Stability framework for HEV optimal control problem

In this section, we focus on creating a generalized stability and
optimality framework to analyze and design energy management
strategies that can be implemented in a real vehicle. The frame-
work developed can be adapted to various powertrain architec-
tures and is scalable with respect to different component sizes.
The asymptotic stability of the origin and optimality of the con-
trol law are developed by formulating the energy management
problem intononlinear optimal regulation theorywith disturbance
rejection. This section provides the mathematical preliminaries
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Fig. 6. Energy management strategy as a nonlinear optimal regulation problem.
necessary for the framework and we propose and prove a series
of theorems on how the state feedback control law guarantees
optimality and asymptotic stability, both with and without exter-
nal disturbances, thereby leveraging results from nonlinear opti-
mal regulation theory Bernstein (1993), Haddad and Chellaboina
(2008). Section 3.1 provides a theorem to find an analytical expres-
sion for a state-feedback based control law that asymptotically sta-
bilizes the origin while minimizing the fuel consumption over an
infinite time horizon in the absence of external disturbances. Sec-
tion 3.2 extends the theorem in the presence of external distur-
bances.

3.1. Nonlinear optimal regulation of HEV

This subsection deals with formulating a theorem that uses
a control Lyapunov function to develop a state-feedback based
control law that minimizes the fuel consumption over infinite
horizon and stabilizes the battery SOC in the absence of external
disturbances. We formulate the energy management problem
assuming that the power requested at the wheels is zero as a
nonlinear optimal regulation problem as shown in Fig. 6. The error
in battery SOC (e(t) = SOCref − SOC(t)) and battery power are
considered as the state and control variables of the system. The
battery SOC(t) error dynamics are defined as

e(t) = SOCref − SOC(t),

ė(t) = α
Voc −


(Voc)2 − 4ReqPbatt(t)
2ReqQmax

= fe(Pbatt(t))
(23)

where Pbatt(t) is the control input of the system. Some mathemat-
ical preliminaries for the scalar system (23) with single control
input, which are instrumental to the following discussion, are pre-
sented next Bernstein (1993).

Consider an open set D ⊂ R such that e ∈ D , an arbitrary set
U1 ⊂ R such that Pbatt ∈ U1 and 0 ∈ D, 0 ∈ U1. In the HEV
problem, the state domain and control domain can be defined as
e ∈ D = [SOCref − SOCmax, SOCref − SOCmin],
Pbatt ∈ U1 = [Pbatt,min, Pbatt,max].

(24)

Furthermore, let fe : U1 → R satisfy fe(0) = 0. Now consider the
controlled system

ė(t) = fe(Pbatt(t)), e(0) = e0, t ≥ 0, (25)

where the control input Pbatt(·) is restricted to the class of functions
such that

Pbatt(t) ∈ Ω1, t ≥ 0, (26)

where the control constraint set Ω1 ⊆ U1 is compact and 0 ∈

Ω1. The control input constraint Ω1 is defined the maximum and
minimum battery power depending on the battery parameters
at each instant. Let the optimal control law P∗

batt be a measurable
mapping P∗

batt : D → Ω1 satisfying P∗

batt(0) = 0. Now the system
(23) with feedback control Pbatt = P∗

batt(e), has the form

ė(t) = fe(P∗

batt(e(t))), e(0) = e0, t ≥ 0. (27)
In order to address the problem of characterizing feedback con-
trollers that minimize a performance functional, let H1 : R × R ×

R → R, ṁf : R → R and λ ∈ R such that,

H1(e, Pbatt , λ) , ṁf (Pbatt) + λ · fe(Pbatt), (28)

where H1(·, ·, ·) is the Hamiltonian function, ṁf (·) is the instanta-
neous cost function expressed in (19) and λ is the co-state variable.

Finally, without loss of generality, a new Hamiltonian function
H̄1 is defined to take on zero-value when evaluated at the optimal
control, as

H1(e, Pbatt , λ) = ṁf (Pbatt) + λfe(Pbatt),
H̄1(e, Pbatt , λ) , H1(e, Pbatt , λ) − p0,

(29)

where p0 is a parameter of the engine fuel consumption ratemodel
from (20).

The result that follows gives sufficient conditions under which
the origin e(t) = 0 can be locally asymptotically stabilized under
nonlinear state feedback control, while also assuring optimality of
the fuel consumption over an infinite time horizon. Sufficient con-
ditions for stability and optimality are given in the case where no
external inputs or disturbances enter the system (25), which cor-
responds to Pgb(t) = 0∀ t ≥ 0, and the system initial condition
different from zero, i.e. e0 ≠ 0. In the context of charge-sustaining
HEVs, the considered scenario (Fig. 6) corresponds to having the
vehicle switched on without any tractive force at the wheels (ve-
hicle velocity= 0) and the battery SOC is not at the reference value,
i.e. SOCref ≠ SOC(0). What follows is an original result on stability
and optimality in the context of energy management problem in
HEVs, that builds upon themain results shown in Bernstein (1993).

Theorem 1. Consider the system (25) with performance functional

J(e0, Pbatt(·)) ,


∞

0
ṁf (Pbatt(t))dt. (30)

Then with the feedback control Pbatt(t) = P∗

batt(e(t)), where P∗

batt
(e(t)) satisfies

P∗

batt(e(t)) =
2Voc

cµ
e(t) −

4Req

c2µ2
e2(t),

c =
2ReqQmaxp1

α
,

(31)

the solution e(t) = 0, t ≥ 0 of the closed-loop system (27) is locally
asymptotically stable and the optimal feedback control law P∗

batt(e(·))
minimizes J(e0, Pbatt(·))

Proof. Considering the candidate Lyapunov function V (e) =
1
2µe2; µ > 0, local asymptotic stability of the origin e(t) = 0 and
optimality of P∗

batt with respect to J(e0, Pbatt(·)) are proved using
the following conditions given in Bernstein (1993):

(1) The Lyapunov function V (e) has a minimum value of 0 at the
origin

V (0) = 0. (32)
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Fig. 7. Energy management strategy as a nonlinear optimal regulation problem with disturbance rejection.
(2) The candidate Lyapunov function V (e) is a positive definite
function of e

V (e) > 0 ∀ e ∈ D, e ≠ 0. (33)

(3) The optimal feedback control law is zero at the origin:

P∗

batt(0) = 0. (34)

(4) Asymptotic stability of the origin is achievedwhen the optimal
control law is applied, i.e. V̇ (P∗

batt) < 0:
∂V
∂e

fe(P∗

batt(e)) < 0 ∀e ∈ D, e ≠ 0,
= µefe(P∗

batt(e)) < 0,

⇒


fe(P∗

batt(e)) < 0 ⇒ P∗

batt(e) < 0 ∀e > 0,
fe(P∗

batt(e)) > 0 ⇒ P∗

batt(e) > 0 ∀e < 0.

(35)

(5) The Hamiltonian function H̄1 takes on the minimum value of
zero when the optimal control law (Pbatt = P∗

batt(e)) is applied:
H̄1


e, P∗

batt(e),


∂V
∂e

T


= 0,

⇒ ṁf (P∗

batt(e)) = −
∂V
∂e

fe(P∗

batt(e)) ∀e ∈ D.

(36)

From (36), substituting the expression of fuel consumption
(19), the optimal control law P∗

batt(e) from nonlinear state
feedback is:

P∗

batt =
2Voc

cµ
e −

4Req

c2µ2
e2,

c =
2ReqQmaxp1

α
.

(37)

(6) TheHamiltonian function H̄1 takes on a value greater than zero
when a control law (Pbatt ) other than the optimal control law
(P∗

batt ) is applied:
H̄1


e, Pbatt ,


∂V
∂e

T


≥ 0,

⇒ ṁf (e, Pbatt) ≥
∂V
∂e

fe(Pbatt) ∀e ∈ D, u ∈ Ω1.

(38)

All the sufficient conditions are satisfied and the optimal control
law (P∗

batt(e)) as a function of the state variable is obtained.

3.2. Nonlinear optimal regulation of HEV with disturbance rejection

This subsection deals with extending the theorem proved in
Section 3.1 in the presence of external disturbances. The theorem
formulated in that section assumes that the vehicle is stopped
and the requested power at the wheels is zero. The situation
considered now corresponds to the vehicle moving and the energy
management strategy must find the optimal torque/power split
between the engine and electric motor. Thus we formulate the
energymanagement problemwith the vehicle operating in parallel
mode (Sections 2.3.3 and 2.4.2) as a nonlinear optimal regulation
problem with disturbance rejection as shown in Fig. 7. The power
requested at thewheels, Preq(t), is considered as disturbance to the
system. The error in battery state of energy (ζ = SOE − SOEref )
and engine power, Pice(t) are considered as the state and control
variables of the system. The battery SOE is used instead of battery
SOC because it is more convenient in formulating the theorem
and its proof from a control design stand point. The battery SOE
is defined as the amount of battery energy stored, relative to the
maximum energy capacity of the battery, which can be expressed
as

˙SOE = −ηbatt
Pbatt
Emax

,

Emax = QmaxVoc,max.
(39)

where ηbatt is the efficiency of the battery, Voc,max[V ] is the max-
imum open-circuit voltage of the battery and Emax[J] is the max-
imum battery energy capacity. The battery SOE can be calculated
from SOC using a simple linear transformation,

SOE = SOC
VL

Voc,max
, (40)

where VL(t) is the terminal voltage of the battery and SOC is the
battery state of charge as defined in (2). Define the battery SOE er-
ror, ζ , dynamics as a function of the control input, Pice(t), as:

ζ (t) = SOEref − SOE(t),
ζ̇ (t) = −kPice(t) + kPreq(t),
k =

ηbatt

Emaxηmot
,

(41)

where k(1/J) is a constant dependent on the battery and electric
motor parameters, ηmot is the electric motor efficiency and Preq(t)
is the requested power at the gearbox (external disturbance to the
system).

Consider an open set Z ⊂ R such that ζ ∈ Z, an arbitrary set
U2 ⊂ R such that Pice ∈ U2 and 0 ∈ Z, 0 ∈ U2. In this case, the
state domain and control domain can be defined as
ζ ∈ Z = [SOEref − SOEmax, SOEref − SOEmin],
Pice ∈ U2 = [0, Pice,max].

Also consider the disturbance input to the system as w ∈ W such
that W ⊂ R. In the parallel mode of operation, the power re-
quested at the gearbox, Preq(t), as defined in (14), is the disturbance
input w(t) = Preq(t). Now consider the controlled system

ζ̇ (t) = −kPice(t) + kPreq(t), ζ (0) = ζ0, t ≥ 0,
z(t) = ζ (t), (42)

where z is the performance variable. The control input Pice(·) is re-
stricted to the class of admissible controls consisting of measurable
functions Pice(·) such that

Pice ∈ Ω2, t ≥ 0, (43)

where the control constraint set Ω2 ⊂ U2 is compact and 0 ∈ Ω2.
Let the optimal control law P∗

ice be ameasurablemapping P∗

ice : Z →

Ω2 satisfying P∗

ice(0) = 0. Now the system (42) with feedback con-
trol Pice = P∗

ice(ζ ), has the form

ζ̇ = −kP∗

ice + kPreq, ζ (0) = ζ0, t ≥ 0. (44)
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In order to address the problem of characterizing feedback
controllers that minimize a performance functional, let Γ (ζ ) :

Z → R, H2 : R × R × R → R, ṁf : R → R and λ ∈ R such that,

H2(ζ , Pice, λ) , ṁf (Pice) + Γ (ζ ) + λ · (−kPice), (45)

where H2(·, ·, ·) is the Hamiltonian function, ṁf (·) is the instan-
taneous cost function expressed in (22), Γ (ζ ) is a positive definite
function of ζ and λ is the co-state variable. Finally, without loss of
generality, a new Hamiltonian function H̄2 is defined to take on
zero-value when evaluated at the optimal control, as:

H2(ζ , Pice, λ) = ṁf (Pice) + Γ (ζ ) + λ · (−kPice),
H̄2(ζ , Pice, λ) , H2(ζ , Pice, λ) − p2,

(46)

where p2 is a parameter of the engine fuel consumption ratemodel
as shown in (22).

The result that follows gives sufficient conditions under which
the origin ζ = 0 can be locally asymptotically stabilized under
nonlinear state feedback control, while assuring optimality with
respect to the fuel consumed over an infinite time horizon in the
presence of external disturbances. The feedback controller guaran-
tees stability, minimizes an auxiliary performance functional, and
guarantees that the input–output map of the closed-loop system
is dissipative, nonexpansive, and passive (Haddad & Chellaboina,
2008) for bounded input disturbances. In the context of charge-
sustaining HEVs, the considered scenario corresponds to the ve-
hicle driven for a driving cycle considering the power request at
the wheels as an external disturbance to the system (Fig. 7). What
follows is an extension of the theorem proposed in Section 3.1 in
the presence of external disturbances based on the results given
in Haddad and Chellaboina (2008).

Theorem 2. Consider the system (42) with performance functional

J(ζ0, Pice(·)) ,


∞

0
ṁf (Pice)dt. (47)

Then with the feedback control Pice = P∗

ice(ζ ), where P∗

ice satisfies

P∗

ice =
k2µ2ζ 2

4γ 2 (kµζ + p3)
, (48)

the solution ζ (t) = 0, t ≥ 0 of the closed-loop system (44) is locally
asymptotically stable and the optimal feedback control law P∗

ice(ζ (·))

minimizes J(ζ0, Pice(·)).

Proof. Considering the candidate Lyapunov function V (ζ ) =

1
2µζ 2, µ > 0 and functionsΓ (ζ ) =

1
4γ 2


∂V
∂ζ

2
k2, and r(ζ , Preq) =

γ 2P2
req − ζ 2, γ , k > 0 the local asymptotic stability of the origin

ζ (t) = 0 and optimality of P∗

ice with respect to J(ζ0, Pice(·)) are
proved using the following conditions taken from the bookHaddad
and Chellaboina (2008):

(1) The Lyapunov function V (ζ ) has a minimum value of 0 at the
origin

V (0) = 0. (49)

(2) The candidate Lyapunov function V (ζ ) is a positive definite
function. In fact, V (ζ ) is a quadratic function of ζ

V (ζ ) > 0 ∀ ζ ∈ Z, ζ ≠ 0. (50)

(3) The optimal feedback control law is zero at the origin:

P∗

ice(0) = 0. (51)
(4) Asymptotic stability of the origin is achievedwhen the optimal
control law is applied, i.e. V̇ (P∗

ice) < 0:
∂V
∂ζ

(−kP∗

ice(ζ )) < 0 ∀ζ ∈ Z, ζ ≠ 0,

⇒


P∗

ice(e) < 0 ∀e < 0,
P∗

ice(e) > 0 ∀e > 0.

(52)

This analysis provides conditions on the sign of state feedback
control law P∗

ice(ζ ) and because the engine power cannot
be negative, the signs of the optimal feedback law can be
expressed as:
Pice∗(ζ ) = 0, ∀e ≤ 0,
Pice∗(ζ ) > 0, ∀e > 0. (53)

(5) The Hamiltonian function H̄2 takes on the minimum value of
zero when the optimal control law (Pice = P∗

ice(ζ )) is applied:
H̄2


ζ , P∗

ice,


∂V
∂ζ


= 0,

p3P∗

ice +
1

4γ 2
k2µ2ζ 2

− kµζP∗

ice = 0 ∀ζ ∈ Z.

(54)

The optimal nonlinear state feedback control law (P∗

ice) can now
be expressed as

P∗

ice =
k2µ2ζ 2

4γ 2 (kµζ + p3)
,

k =
ηbatt

Emaxηmot
> 0, γ > 0, µ > 0.

(55)

(6) TheHamiltonian function H̄2 takes on a value greater than zero
when a control law (Pice) other than the optimal control law
(P∗

ice) is applied:

H̄


ζ , Pice,


∂V
∂e


≥ 0. (56)

(7) In order to prove the passivity with respect to the disturbance
input Preq(t), the following condition must be satisfied

∂V
∂ζ

kPreq ≤ r(ζ , Preq) + ṁf (P∗

ice(ζ )) + Γ (ζ ),

⇒ kµζPreq ≤ γ 2P2
req + ζ 2


k2µ2

4γ 2
− 1


+ p3.

(57)

If there exists a constant γ such that γ ≥ 3k, then a minimum
bound for µ can be calculated as

ζ 2

36
µ2

− (kζPreq)µ + 9k2P2
req − ζ 2

+ p3 ≥ 0. (58)

The passivity condition (57) is satisfied only if we can find a
suitable γ and µ.

All the conditions are satisfied and the optimal control law (P∗

ice(ζ ))
as a function of the state variable is obtained.

3.3. Optimal and stabilizing control law

The control law (Pice = P∗

ice(ζ )) developed using the theorem
can be expressed as

P∗

ice =
k2µ2ζ 2

4γ 2 (kµζ + p3)
, (59)

where ζ (t) is the error in battery SOE, k, γ , p3 > 0 are known
constants, and µ is the only calibration parameter of the control
law.

These parameters and constants depend on the powertrain
architecture and the components; for example,
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Table 1
Vehicle characteristics.

Vehicle mass 19,878 kg
Engine capacity 6.7 L Diesel
Engine power 194 kW
Motor power 200 kW
Battery energy capacity 7.5 kWh (27 MJ)
Electrical Accessory 7 kW
Mechanical Accessory 4 kW

(1) k =
ηbatt

Emaxηmot
is a constant depending on the battery capacity,

efficiency and electric motor efficiency and the size/type of
battery and electric machine;

(2) γ = 3k is a constant expressed as a function of k obtained from
the passivity condition in (57);

(3) p3 is a Willans line coefficient of the engine as in (22) which
depends on the size and type of the engine used;

(4) µ is the calibration parameter that must be tuned to achieve
the best performance.

According to the theorem, the control law P∗

ice locally asymp-
totically stabilizes the origin e = 0. This implies that the battery
SOE asymptotically converges to the SOE reference value. Because
the battery SOC is linearly related to the battery SOE (40), the con-
trol law results in asymptotic convergence of the battery SOC to its
reference value. In a charge-sustaining HEV, the battery SOC refer-
ence value is ideally the initial value with which the trip began.
In addition to stabilizing the battery SOC, the control law mini-
mizes the amount of fuel consumed over the infinite time horizon.
That is, it is also optimalwith respect to the performance functional
J(ζ0, Pice(·)),

J(ζ0, P∗

ice(ζ )) = min
Pice

J(ζ0, Pice(ζ )). (60)

Though the theorem guarantees that the control law minimizes
the fuel consumed over an infinite time horizon, the energy
management problem in a HEV minimizes the amount of fuel
consumed over a finite length of a driving cycle (as shown in (9)
in Section 2.3). The presence of calibration parameter µ in the
control law (59) signifies the application of theoretically developed
control law in a real-world application. Thus, for a given driving
cycle, the sufficient conditions of asymptotic stability of battery
SOE and optimalitywith respect to fuel consumed, are assured only
with the optimal µ (µ∗). The optimal value of µ for a given driving
cycle is obtained by studying the behavior of battery SOC and the
fuel consumed over the driving cycle. The calibration of µ and
its performance in comparison with the global optimal solution is
described in Section 4.

4. Simulation results

This section describes the simulation environment used to
implement the optimal control law developed using the theorem
in Section 3 and its performance compared to several other
energy management strategies. The pre-transmission parallel HEV
(Fig. 2) is modeled in the MATLAB/Simulink environment. The
characteristics of the vehicle used in this paper are shown in
Table 1.

4.1. Vehicle simulator

In general the vehicle model can be simulated using a forward
or backward structure. The former is a longitudinal and quasi-
static vehicle simulator with standard representation of road
load based on inertial, rolling and aerodynamic resistances. It is
called a forward simulator because the torque/speed signals are
propagated to/from the different components of the vehicle. Based
on the vehicle velocity profile to be followed, a simple PID based
Fig. 8. Effect of µ on SOC .

driver model generates acceleration and brake pedal commands
(much like the real driver). Because the forward simulator is
primarily used in the analysis of energy management strategies,
all the components are modeled using quasi-static map based
models with the most relevant dynamics.In order to compare
the performance of the proposed control law with the optimal
global solution obtained from dynamic programming, a backward
vehicle simulator is used. Based on the assumption that the
vehicle is supposed to follow the desired velocity trajectory, the
torque required at the wheels and subsequently the torque/speed
required from the components are calculated using simplified
stationary maps.

4.2. Implementation of analytical control Law

In order to evaluate and compare the performance of the analyt-
ical control law proposed in Section 3 with DP, it is implemented
in a backward vehicle simulator. Though the theorem proved in
that section assumes an infinite time horizon, the developed con-
trol law has been implemented over a finite length driving cycle.
The control law is thus implemented as a solution to the energy
management problem described in Section 2.3.

4.2.1. Calibration of parameter-µ
The optimal control law P∗

ice(ζ ) shown in (59) has a tuning
parameter µ that must be calibrated to obtain the optimal and
stable battery SOC. The effect of the calibration parameter µ is
shown in Fig. 8.As seen from these plots, the value of µ impacts
the convergence of SOC to SOCref at the end of the driving cycle.
The optimal value of µ is selected based on this deviation (∆SOC)
and the equivalent fuel consumed (FCeqv), defined as

∆SOC =
SOC(tf ) − SOCref

SOCref
· 100,

FCeqv =
∆SOCEmax

ηpathQLHV
,

(61)

where SOC(tf ) is the battery SOC at the end of the driving cycle
and ηpath is the approximate efficiency of the drivetrain used in
regenerating/discharging the SOC. If ∆SOC is positive, it implies
that SOC(tf ) > SOCref and the excess battery SOC can be used later
to save fuel. If∆SOC is negative, it implies thatmore fuel is required
to recharge the battery SOC to the reference value. The effects of
using different values of µ are summarized in Table 2. The optimal
value ofµ ensures convergence of SOC to the reference value SOCref
while consuming the least amount of fuel over the driving cycle.
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Table 2
Effect of µ for Manhattan driving cycle.

Strategy µ (kg) ∆SOC (%) FCeqv(%)

Optimal Control Law(OCL)

10 −4.16 106.3
30 −0.79 105.1
50 −0.07 104.9
70 0.25 105.1

DP – −0.072 100

Table 3
Performance comparison with DP for Manhattan driving cycle.

Strategy ∆SOC (%) FCeqv (%)

Optimal control law (µ∗
= 53.13) −0.002 103.5

DP −0.072 100
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Fig. 9. SOC and equivalent fuel consumed-Manhattan.

4.2.2. Performance comparison with DP
The calibration parameter µ of the control law is optimized

for a Manhattan driving cycle by selecting µ that corresponds to
minimum value of ∆SOC and FCeqv . In order to find the optimal
µ (µ∗) for each driving cycle, an iterative shooting method is
used (Serrao, Onori, & Rizzoni, 2011). The results of such a shooting
method is shown in Table 3. The performance of the control law
(Eq. (59)) with the optimum value of µ is evaluated against the
global optimal solution obtained from DP and is shown in Figs. 9–
12. The analytical control law consumes 4% more fuel than the
global optimal solution and uses the battery SOC similar to the
DP solution throughout the driving cycle. The engine and electric
motor torque resulting from the analytical control law and DP are
compared in Fig. 10. The engine and electric motor are operated
mainly in their most efficient regions similar to the DP solution as
shown in Figs. 11 and 12.

In addition to urban driving cycle represented by Manhattan
driving cycle, the control law is tested on the WVU-Interstate
driving cycle. This driving cycle is a representative of the highway
driving conditions experienced by heavy-duty HEVs. The control
law performswithin 3% of the fuel consumed by DP and the charge
sustainability is also assured as shown in Table 4. The performance
of the optimal control law in comparison with global optimal
solution is shown in Figs. 13 and 14.

4.2.3. Sensitivity of analytical control law with µ

Because the optimality and stability properties of the control
law developed in Section 3.2 depends on the optimal value of µ,
it is important to study the sensitivity of the results to µ. In order
to generalize the effects of µ, ∆SOC is calculated for a wide range
0
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Table 4
Performance comparison with DP for WVU-Interstate driving cycle.

Strategy ∆SOC (%) FCeqv (%)

Optimal control law (µ∗
= 58.88) −0.035 102.7

DP −0.069 100
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of µ for different representative driving cycles. For example, the
Manhattan, WVU-suburban, UDDS truck driving cycles represent
the urban driving conditions of heavy-duty vehicles. The WVU-
Interstate, HTUF driving cycles represent a combination of urban
and highway driving cycles. The effect of different values of µ
is shown in Fig. 15. For all the driving cycles, there is a single
value of µ that assures charge sustainability (∆SOC = 0) and
consumes the least amount of fuel. The sensitivity of the optimal
value of µ (µ∗) for the different driving cycles is shown in Fig. 15.
As seen from the plot, the optimal control law developed ensures a
minimum amount of ∆SOC as µ reaches a steady state value. This
is significant because the optimality and stability properties for a
wrong guess of µ are still close to the performance of µ∗.

5. Conclusion

The main contribution of the paper is a new stability and op-
timality framework for designing analytical energy management
strategy. The proposed strategy is designed and developed for a
charge sustaining pre-transmission parallel HEV, but the method-
ology is scalable to different vehicle architectures and component
sizes. The paper proves a series of theorems on solving the prob-
lem as a nonlinear optimal regulation problem with and without
disturbance rejection. The theorems are instrumental in develop-
ing a closed-formexpression for the nonlinear state feedback based
Fig. 15. Effect of µ on ∆SOC for different driving cycles (Manhattan, WVU-
Interstate, etc.)

optimal control law. The resulting novel control law is proved opti-
malwith respect to the fuel consumedover an infinite timehorizon
and guarantees local asymptotic stability of the origin. Though the
optimality of the control law and asymptotic stability property of
the origin are proved for an infinite time horizon, the paper shows
the performance of the optimal control law when applied to a fi-
nite time driving cycle. The optimality ensures that minimum fuel
is consumed and stability guarantees that battery SOC at the end
of the driving cycle converges to SOCref . The optimal control law
is implemented in a simplified backward simulator and its perfor-
mance is compared with the global optimal solution from DP. The
strategywith the optimal value of calibration parameter consumes
within 4% of the fuel consumed using DP.

Appendix. Nonlinear optimal regulation

Let D ⊂ Rn be an open set and let U ⊂ Rm be an arbitrary set,
where 0 ∈ D and 0 ∈ U . Furthermore, let f : D × U → Rn satisfy
f (0, 0) = 0. Now consider the controlled system

ẋ(t) = f (x(t), u(t)), x(0) = x0, t ≥ 0. (62)

The control u(·) in (62) is restricted to the class of admissible
controls consisting of measurable functions u(·) such that

u(t) ∈ Ω, t ≥ 0, (63)

where the control constraint set Ω ⊂ U is compact and 0 ∈ Ω .
A measurable mapping φ : D → Ω satisfying φ(0) = 0 is
called a control law. Given a control lawφ(·) and a feedback control
u(t) = φ(x(t)), the closed-loop system has the form

ẋ(t) = f (x(t), φ(x(t))), x(0) = x0, t ≥ 0. (64)

In order to address the problem of characterizing feedback con-
trollers that minimize a performance functional, let L : Rn

× Rm
×

Rn
→ R, L : Rn

× Rm
→ R and p ∈ Rn such that,

H(x(t), u(t), p) , L(x(t), u(t)) + pT f (x(t), u(t)). (65)

Furthermore, define the set of asymptotically stabilizing con-
trollers S(x0) for each initial condition x0 ∈ D, that is, S(x0) ,
u(·) : u(·) is admissible and x(·) given by (62) satisfies x(t) → 0 as
t → ∞.

Theorem 3 (Bernstein, 1993). Consider the controlled system (62)
with performance functional

J(x0, u(·)) ,


∞

0
L(x(t), u(t))dt. (66)
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Assume that there exists a C1 function V : D → R and a control law
φ : D → Ω such that

(1)

V (0) = 0, (67)

(2)

V (x(t)) > 0, x(t) ∈ D, x(t) ≠ 0, (68)

(3)

φ(0) = 0, (69)

(4)

∂V
∂x

f (x(t), φ(x(t))) < 0, x(t) ∈ D, x(t) ≠ 0, (70)

(5)

H


x(t), φ(x(t)),


∂V
∂x

T


= 0, x(t) ∈ D, (71)

(6)

H


x(t), u(t),


∂V
∂x

T


≥ 0, x ∈ D, u ∈ Ω. (72)

Then with the feedback control u(·) = φ(x(·)), the solution x(t) =

0, t ≥ 0, of the closed-loop system (64) is locally asymptotically
stable, and

J(x0, φ(x(·))) = V (x0). (73)

Furthermore, the feedback control u(·) = φ(x(·)) minimizes J(x0,
u(·)) in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (74)
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