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a b s t r a c t

The paper presents a formulation of the energy management problem for Hybrid Electrical Vehicles and
Plug-in Hybrid Electrical Vehicles alike, which permits to consider different cost indexes like fuel
consumption, total and primary energy consumption, economic cost or CO2 footprint. In-depth analysis
of the problem optimal solution is done by means of the application of the λ�plot method, which also
permits the optimal tuning of other implementable control strategies. Such an approach is used to
understand the effect of the selected cost index, the regional energetic share, the driving conditions, and
for deriving rules for battery sizing.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing concern about global warming and availability of fossil
fuel resources is pushing society to search for new solutions towards
sustainable mobility (Mierlo, Maggetto, & Lataire, 2006). Accordingly,
over the past decades important efforts started being carried out in
order to increase the efficiency of internal combustion engines (ICE).
Despite ground vehicles have been powered almost exclusively by ICEs
since more than 100 years ago, alternative powertrain architectures
are currently under evaluation for reducing transport ecological
footprint (Fernández, Garcia, Garcia, & Jurado, 2011; Katrašnik,
2007a, 2007b). Hybrid Electric Vehicles (HEVs) combine a fuel-
driven power source with an electric drivetrain allowing the engine
to stop at idling and low load conditions where its efficiency is low
(Banjac, Trenc, & Katrašnik, 2009; Xiong, Zhang, & Yin, 2009).
Regenerative braking is also possible with HEVs. Then, HEVs have
aroused the interest of the transportation sector, at least as a
temporary solution on the way to zero emission road vehicles.

HEV is a general term referring to a vehicle whose powertrain
combines an ICE with one or more electric machines and a
reversible energy storage system, however its use is usually
restricted to charge sustaining HEVs, i.e. the class of vehicles for
which energy consumed comes ultimately from the fuel tank. On
the other hand, Plug-in Hybrid Electric Vehicles (PHEVs) are able

to recharge their batteries through direct connection to the energy
grid, allowing depleting the battery during driving mission and
then improving the vehicle fuel economy.

HEV control has been widely studied and many works address
it through the optimal control theory (Sciarreta & Guzzella, 2007):
optimal control policy is that providing the minimum fuel con-
sumption while satisfying the battery charge sustainability
(Delprat, Guerra, Paganelli, Lauber, & Delhom, 2001). Nevertheless,
the introduction of other primary energy sources than the fuel
tank in the PHEV may require to take into account other costs in
addition to fuel consumption, since battery recharging contributes
to vehicle operation cost and emissions.

The present paper uses a general formulation of the energy
management problem for HEVs and PHEVs alike. The formulation
is able to easily consider different cost indexes (i.e. fuel consump-
tion, total energy consumption, primary energy consumption,
economic cost or CO2 emission footprint). The general problem
is solved through three of the most common methods in HEV/
PHEV energy management: Dynamic Programing (DP) (Mosbech,
1980; Sundström, Ambühl, & Guzzella, 2010), Pontryagin Mini-
mum Principle (PMP) (Serrao, Onori, & Rizzoni, 2011) and Equiva-
lent Consumption Minimization (ECMS) (Paganelli, Ercole,
Brahma, Guezennec, & Rizzoni, 2001; Sciarretta, Back, &
Guzzella, 2004; Won & Langari, 2005).

The method used in this paper to tune both PMP and ECMS
builds upon the results presented in Guardiola, Pla, Onori, and
Rizzoni (2012). The method is based on the numerical analysis of
the optimal solution from DP and provides a suitable framework
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for comparing different control strategies. Such an approach will
be used to highlight the differences between the HEV and PHEV
optimisation problem: while in the HEV control the final state of
the battery is always constrained, in the case of the PHEV this
constraint will only be active depending on the selected cost
index, the energetic share and electrical grid characteristics, the
driving conditions, and the battery size.

Although the methodologies shown in the paper are general
and could be applied to a wide variety of powertrain configura-
tions, the simulations have been restricted to the series hybrid
configuration, which is being actively screened for PHEV (using the
ICE engine as range extender).

2. Problem formulation

The Energy Management Problem in a HEV consists in finding
the sequence of power split that minimises a cost index over a
driving cycle. The index or function to minimise depends on the
vehicle objectives and its application. Energy, economical cost and
CO2 emissions are some of the most widely used variables to
minimise and, for the sake of generality, the problem can be
formally defined as finding the control law uðtÞ over time t that
minimises the cost:

J ¼
Z tf

t0
Pf ðuðtÞ; tÞþαPbðuðtÞ; EbðtÞ; tÞ dt ð1Þ

where Pf and Pb are the fuel and battery power consumed at each
instant of the driving cycle, respectively, and α is a weighting
constant whose value depends on the optimisation objective. The
battery power is considered positive when the battery is being
discharged and negative when the battery is being charged. Eb is
the only state variable in the problem and represents the energy
stored in the battery, whose dynamics is given by

_Eb ¼ �Pb ð2Þ
Although Eb has been selected in the current formulation as

state variable, all plotted results will be normalised by the total
battery energy Eb;max resulting in the battery state of energy SOE:

SOE¼ Eb
Eb;max

ð3Þ

Both the SOE and the battery state of charge SOC are other
possible choices for the state variable; this aspect will be treated in
the Appendix.

Note that in the case of a HEV, it is a charge-sustaining hybrid
vehicle, the battery may not be externally recharged. Usual
assumption (Ambühl, Sundström, Sciarretta, & Guzzella, 2010;
Delprat et al., 2001; Stockar, Marano, Canova, Rizzoni, &
Guzzella, 2011) is considering that the battery state of energy at
the beginning and the end of the trip is roughly the same (note
that this assumption can be extremely unrealistic when short
displacements are considered; some authors, Sciarretta et al.,
2004; Sciarreta & Guzzella, 2007, propose as an alternative to
add a penalty for compensating the deviations in the battery
charge at the end of the trip). Consequently, the only contributing
term in (1) is the fuel power Pf. Therefore, minimising fuel
consumption is equivalent to minimise energy consumption, fuel
cost or CO2 emissions (as far as a net quantity of energy is
required). Although the usual option in the HEV control biblio-
graphy is considering α¼ 0, any arbitrary selection of αwill lead to
the same solution if charge sustainability is imposed (i.e. the
integral of the battery power Pb over the cycle is zero).

If the depletion of the battery is allowed, as in the case of
PHEVs, the selection of the optimisation objective is of major
importance. Since two energy sources are available (electricity

from the grid and fuel), a weighted sum of the two concepts may
be considered in order to define a metric proportional to the
overall energy consumption, cost or emissions. Four different
options, summarised in Table 1, are next discussed.

If the goal is to minimise the vehicle energy consumption, both
fuel and battery power should be considered and they can be
directly summed (α¼ 1). The main drawback of this approach is
that primary energy consumption can importantly differ from the
direct addition, since electricity and fuel have different production
and distribution efficiencies.

Hence, in order to consider the primary energy consumption, α
should represent the ratio between the primary energy cost of the
engine fuel and the energy stored in the battery α¼ ϵb=ϵf , where ϵ
corresponds to the inverse of the well-to-tank efficiency for the
battery stored energy (referred with subscript b), and the fuel (f).
In case both grid electricity and engine fuel are produced from the
same source (e.g. petroleum), using α¼ ϵb=ϵf would lead to the
overall energetic optimal; however, in many cases different energy
sources are used in the electricity generation, and the primary
energy cost of the fuel and electricity may not be comparable.
In this case, availability or strategic factors may be of major
importance.

Another possibility for the cost index is the CO2 footprint.
Accordingly, α must adopt the value μb=μf , where μ refers to the
CO2 emissions attached to the electricity production or the fuel
burning (e.g. in g of CO2 per kW h). This selection of α explicitly
considers the CO2 emissions during the vehicle operation. In this
line, some authors have also proposed including in the cost index
(1) the emission of other pollutants, as NOx or particulate matter
(Nuesch, Wang, Voser, & Guzzella, 2012).

Finally, overall economic operation cost may be minimised,
which results in high interest for the end user. For that, α must be
equal to the ratio between χb=χ f , where χ is the energy price of
electricity or fuel.

Note that the values of the energy price χ, CO2 emission μ, and
primary energy consumption ϵ strongly depend on the regional
energy market and the share of different technologies in the
electrical production, and the selected value will affect the optimal
solution.

In addition to the cost function, the minimisation problem also
includes the following constraints:

Eb;minrEbðtÞrEb;max ð4Þ

Pm;i;minðtÞrPm;iðuðtÞ; tÞrPm;i;maxðtÞ 8 i¼ 1;…;N ð5Þ

0rPeðuðtÞ; tÞrPe;maxðtÞ ð6Þ

Pb;minðEbðtÞ; tÞrPbðtÞrPb;maxðEbðtÞ; tÞ ð7Þ

where subscript i refers to each of the N electrical machines m
(motors and generators) in the powertrain, while the subscript e
refers to the internal combustion engine. Other constraints asso-
ciated to the operation of the different subsystems could be also
considered, as emissions during transients or noise and vibration
of the engine (Millo, Rolando, Mallamo, & Fuso, 2013).

Table 1
Value of α according to different cost metrics.

α¼ 0 HEV
α¼ 1 PHEV vehicle energy
α¼ ϵb=ϵf PHEV well-to-wheel energy
α¼ χb=χf PHEV economic cost
α¼ μb=μf PHEV CO2 emissions
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Additionally, the following global constraint associated to the
charge sustainability should be considered for HEVs:
Z tf

t0
PbðuðtÞ; EbðtÞ; tÞ dt ¼ 0 ð8Þ

Finally, the vehicle power requirements PreqðtÞ should be
attended. The mathematical expression of this last constraint
depends on the powertrain architecture, which may exhibit
different numbers of electrical machines and transmission ele-
ments. Despite the wide range of existing powertrain configura-
tions (Chan, Wong, & Bouscayrol, 2009), the series architecture has
been chosen in this paper for illustrative purposes because of its
simplicity, and because it is being studied for PHEV applications
(Emadi, Rajashekara, Williamson, & Lukic, 2005). Nevertheless,
this arbitrary selection does not reduce the formulation applic-
ability, and the methods presented are independent of the selected
configuration; in Guardiola et al. (2012) the same methods have
been applied to a parallel configuration.

Fig. 1 shows a scheme of the power flow in the series hybrid
architecture with the sign criterion used; there the motor is
supplied with electrical energy coming from an electric storage
system (usually batteries) or alternatively from a generator con-
sisting of an internal combustion engine and an electrical machine
(i.e. range extender). In this sense, the engine is not directly
coupled to the wheels, thus allowing the engine to operate in a
narrow region around its sweet spot or maximum efficiency line.
Since Pm;2þPb must provide the electrical input for Pm;1, control
action may be defined as the electrical output of the generator:

uðtÞ ¼ Pm;2ðtÞ ð9Þ
Since the vehicle wheels are exclusively driven by an electric

motor (or a set of electric motors), the constraint due to the power
requirements becomes

PreqðtÞ ¼ Pm;1ðtÞ ð10Þ

2.1. Implementation details

For the present work a backward quasi-static approach was
employed to model the vehicle dynamics (Rizzoni, Guzzella, &
Baumann, 1999), which allows the computation of the benchmarking
solution based on DP. Engine and motor efficiencies were mapped
with rotational speed and torque, while maximum and minimum
torques were defined as functions of the speed. Main characteristics

for the powertrain architectures used in the HEV and PHEV simula-
tions are summarised in Table 2. Basically, the same configuration was
used for the PHEV and HEV alike, except for the bigger battery size of
the PHEV configuration.

A zero order model was considered for the battery, whose open
circuit voltage and equivalent resistance were mapped as a
function of SOE as shown in Fig. 2. In order to analyse the influence
of the battery characteristics on the final solution, two different
battery chemistries, hereinafter called A and B, were considered.
Battery A is based on a NiCd battery, while battery B is based on
lithium-ion technology. For both batteries the model parameters
were obtained from actual measurements.

For illustrating different aspects of the research, the NEDC,
US06 and FTP75 cycles were considered, whose speed profiles are
shown in Fig. 3. Because the range of the vehicle is usually higher
than the cycles selected, in some simulations several consecutive
repetitions of a given cycle are used (the notation 3 � US06 is used
for 3 repetitions of the US06 cycle).

3. Energy management strategies

There is a wide literature on HEV/PHEV control that ranges
from rule-based control (Baumann, Washington, Glenn, & Rizzoni,
2000; Poursamad & Montazeri, 2008; Schouten, Salman, & Kheir,
2003) to the application of the optimal control theory (a few
examples may be found in Bernard, Delprat, Guerra, & Büchi, 2010;
Kermani, Delprat, Guerra, Trigui, & Jeanneret, 2012; van Keulen,
van Mullem, de Jager, Kessels, & Steinbuch, 2012; Wei, Guzzella,
Utkin, & Rizzoni, 2007); in some cases, simple implementable
rule-based control may be explicitly obtained from the application
of the optimal control theory (Ambühl et al., 2010; Bianchi et al.,
2011; Lin, Peng, Grizzle, Liu, & Busdiecker, 2003).

Fig. 1. HEV/PHEV powertrain layout, nomenclature and sign criteria.

Table 2
Description of the main vehicle features.

Characteristic HEV PHEV

Vehicle mass 1600 kg 1600 kg
Engine power 75 kW 75 kW
Generator power 60 kW 60 kW
Motor power 160 kW 160 kW
Battery power 80 kW 80 kW
Battery energy capacity (A/B) 6.33 MJ/7.82 MJ 11.02/13.61 MJ

Fig. 2. Open circuit voltage and equivalent electrical resistances during charge
(circles) and discharge (triangles) and open circuit voltage for batteries A (grey) and
B (black).
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For the optimal control approach, the a priori knowledge of the
driving cycle is usually assumed (although stochastic optimisation
concepts have also been applied, as for example in Chan-Chiao,
Huei, & Grizzle, 2004; Moura, Fathy, Callaway, & Stein, 2011). Next
three usual approaches are described.

3.1. Dynamic programming

The DP algorithm is based on Bellman's principle of optimality,
which reads “An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state
resulting from the first decision” (Lewis & Syrmos, 1995). The
method consists in applying a proper discretisation of the problem
in both controls and states; starting from the final state, the DP
algorithm determines the optimal control law choosing at each
step the control which minimises the cost function subject to the
set of constraints. The DP code used in this work is that presented
in Sundström and Guzzella (2009) and Sundström et al. (2010).

Since the DP uses a non-causal backward approach to solve the
optimisation problem, it is assumed that the complete driving
profile is known a priori, which prevents its utilisation for on-line
control purposes. Nevertheless, the result can be used as a bench-
mark for the performance of other strategies, or even to derive the
tuning parameters required by other methods.

3.2. Pontryagin minimum principle

The application of the PMP allows us to reduce the global
optimisation into a local minimisation problem (Delprat et al.,
2001; Serrao et al., 2011). The PMP applied to minimising (1)
subject to (5)–(8) states that if un is an optimal solution of the
control problem as defined in Section 2, and En

b is the optimal
trajectory of the battery energy over the entire driving profile,

then

Hðun; En

b; λ
n
; tÞrHðu; En

b; λ
n
; tÞ 8uAU; tA ½t0; tf � ð11Þ

where U is the space of possible control actions, and H is the
Hamiltonian function for the optimal problem (1), subject to
(4)–(8), defined as

H¼ Pf þαPb�λ _Eb¼ Pf þðαþλÞPb ð12Þ
Note that the PMP provides necessary conditions of optimality

of a given control trajectory. Moreover, if the optimisation problem
admits a unique solution, that provided by the PMP is the optimal
solution (Kim, Cha, & Peng, 2011), leading to use the necessary
conditions of optimality as sufficient conditions to seek for the
optimum. It is also interesting to note that in Eq. (12), and as a
direct consequence of selecting Eb as the state variable, Pf and Pb
share the same units, and hence α and the Lagrange multiplier λ
are dimensionless. On the other hand, while α is a constant related
to the parameter to optimise, the PMP provides conditions to
define the evolution of λ:

_λ ¼ ∂H
∂Eb

¼ ðαþλÞ∂Pb

∂Eb
¼ ðαþλÞPel

∂ðPb=PelÞ
∂Eb

ð13Þ

where Pel is the electrical power provided by the battery. Note that,
according to Fig. 1, Pel only depends on the required power and the
power split between the generator and the battery (which is
imposed through uðtÞÞ:
Pel ¼ Preq�Pm;2 ¼ Preq�u ð14Þ
and consequently depends on uðtÞ and t, but not on Eb. However, as
the battery behaviour is affected by its state of energy, this
statement is not true for Pb; the ratio ηb ¼ Pb=Pel corresponds to
the battery efficiency (or its inverse) when charging (or dischar-
ging) and depends on the battery energy level due to the variation
of the battery characteristics as shown in Fig. 2. Consequently, (13)
may be rewritten as

_λ ¼ ðαþλÞPel
∂ηb
∂Eb

ð15Þ

This last expression is implementable if the battery efficiency is
mapped with Eb and Pel. Thus, given a time discretisation of the
problem and an initial value for the Lagrangian multiplier
λ0 ¼ λðt0Þ, the evolution of λ may be computed:

λi ¼ λi�1þðαþλi�1ÞPel;i�1
∂ηbðPel;i�1; Eb;i�1Þ

∂Eb
ðti�ti�1Þ ð16Þ

and the optimal control policy calculated through the minimisa-
tion of (12) at each time step.

Despite (16) superficially seems to be independent of the
driving cycle, the optimal value of λ0 depends on the considered
cycle and constraints. This issue can be partially solved through
the application of adaptive methods (Chasse, Sciarretta, & Chauvin,
2010).

Additionally, if the final state is not restricted, λðtf Þ ¼ 0 (Naidu,
2003; Pontryagin, Boltyanskii, Gamkrelidze, & Mishchenko, 1962),
while if the terminal value of the state is constrained as in

Eb;minrEbðtf ÞrEb;max ð17Þ
and such restriction becomes active, then λðtf Þa0. PMP also
allows considering constraints in the state variable evolution, as
(4) is, through the use of penalty functions (Stockar et al., 2011),
interior point constraints or slack variables (Naidu, 2003).

3.3. Equivalent consumption minimization strategy

The ECMS was introduced in Paganelli et al. (2001) as a method
to solve the energy management problem in charge sustaining HEV.
The idea underlying ECMS is that, as grid energy is not used for

Fig. 3. Speed profile of three homologation cycles used for the simulations: FTP75
(top), US06 (centre) and NEDC (bottom).
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recharging the battery, all the consumed energy ultimately comes
from fuel, so it is possible to define a cost for the battery usage in
order to take into account the potential of discharging the batteries
in the current moment and recharge them in the future or vice
versa. In this way, it is possible to define an instantaneous cost
which takes into account both fuel and electric energy consumption,
for instance:

f ¼ Pf þsPb ð18Þ

where the parameter s is traditionally defined as an equivalent
factor between fuel and battery energy sources. From a mathema-
tical point of view, ECMS can be seen as a simplification of the PMP
approach in which the Lagrangian multiplier λ is constant over the
driving cycle (Serrao, Onori, & Rizzoni, 2009); according to (13) this
will be exactly true if the battery efficiency is independent of the
battery energy level, thus is a reasonable simplification in most
cases.

As in the case of PMP, the optimal value of the parameter s
depends on the driving profile; nevertheless, different adaptive
methods have been developed for mitigating this issue (Musardo,
Rizzoni, Guezennec, & Staccia, 2005; Onori, Serrao, & Rizzoni,
2010).

4. Control strategy tuning through the λ�plot method

Although both ECMS and PMP may be implemented in a
forward looking simulator, their optimality is not guaranteed
online, since their behaviour is strongly dependent on the selec-
tion of the initial value of λðt0Þ and s respectively. Additionally,
since these values depend on the driving cycle, their optimal value
cannot be obtained a priori. The issue of obtaining the initial value
of λ can be solved by means of a shooting method (Serrao et al.,
2011); however, if the optimal solution is available (through DP or
otherwise), this information can be used for inferring the initial

value by means of the λ�plot method presented in Guardiola et al.
(2012), which was developed exclusively for α¼ 0, but that can be
slightly modified for coping with the more general problem. The
underlying idea is that, according to (11), the optimal Lagrange
multiplier (λn) must satisfy along the whole optimal trajectory
ð∂H=∂PbÞopt ¼ 0, what applied to (12) yields to

λnðtÞ ¼ � ∂Pf

∂Pb

� �
opt

�α ð19Þ

However, due to the existence of singular points and satura-
tions, Pb or Pf may not be differentiable in some points of their
domains, and also ð∂Pf =∂PbÞ may depend on the sign of the
considered variation δPb. To deal with this issue, numerical
differentiation of the optimal solution is done by considering
variations of different size in the control action δu, and analysing
their effect on the battery power δPb, and on the fuel power δPf ; in
all cases the satisfaction of the different constraints must also be
checked. This allows us to compute λþ ðtÞ ¼maxð�δPf =δPbÞ with
δPb40, and λ� ðtÞ ¼minð�δPf =δPbÞ with δPbo0, which provide a
manifold where the value of the λn trajectory should be contained:

λþ ðtÞrλnðtÞþαrλ� ðtÞ ð20Þ
Fig. 4 shows an example of the results obtained during

simulations with battery A and a HEV configuration in both NEDC
and US06 cycles; the DP solution has been locally differentiated in
order to provide estimates for λþ ðtÞ and λ� ðtÞ, marked in the top
plots as þ and � respectively. The precision of the λþ and λ�

estimates depends on the numerical differentiation used, and also
on the precision of the original DP solution; in general the
resolution in the numerical differentiation (δPb) should be kept
in the same order of magnitude of the discretization used in the
DP solution. On the other hand, if a saturation is reached with
δPb40, λþ may not be calculated because there are no feasible
points and λ� provides an abnormal high value; this is due to the
fact that the constraint in the saturated variable is restricting the

Fig. 4. Evolution of the λ parameter during the NEDC (left) and US06 cycle (right) inside the manifold provided by λ� (�) and λþ (þ) for a HEV (α¼ 0); dashed line represents
the value of s used for the ECMS. In lower plots, the evolution of the SOE calculated with DP (dashed black), PMP (grey) and ECMS (black) is presented; driving profile is also
shown for reference (light grey).
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solution. Correspondingly, λþ exhibits low values when the
solution is not feasible with δPbo0.

Initial values of λþ ðtÞ and λ� ðtÞ provide an interval for λðt0Þ (as
for the HEV case α¼ 0), which may be used as an initial guess for
λðt0Þ to be used for PMP simulation (some fine tuning through
shooting may be still necessary, but the search interval is
bounded). Fig. 4 also shows the trajectory of λ for the PMP
simulation if such initial value is used. Despite the existence of
few outliers, λ trajectory is always within the ½λþ

; λ� � range, and
the evolution of the battery SOE for the PMP strategy is almost
identical to that of the DP solution, as depicted in the lower plots
of Fig. 4. This illustrates that the PMP tuned through the so-called
λ�plot method replicates the DP solution, which is assumed to be
optimal. The few detected outliers are probably related with
(limited) non-convexities in the problem, which can be a conse-
quence of the local restrictions, saturations or the time discretisa-
tion considered; however, this issue clearly exceeds the scope of
the present paper (note that the optimisation methods used are
based on the convexity assumption).

As shown in the top plots of Fig. 4, λ variation during the cycle
is not significant. Hence using a constant parameter s (dashed line
in top plots) with the ECMS approach would provide similar
results. The manifold ½λþ

; λ� � also provides a good initial estimate
of s. Results of the SOE trajectory for the ECMS are shown in
bottom plots of Fig. 4; as one could expect ECMS provides a
solution almost identical to the one of the DP and the PMP in the
NEDC cycle (left plots), since there the variation of λ is lower. For
the US06 cycle (right plots) although the SOE trajectory is quite
similar, some differences can be appreciated.

5. Results and discussion

5.1. Differences between HEV and PHEV control and α effect

For investigating the effects of the differences between the HEV
and PHEV control, several simulations were run for the three
repetitions of the studied cycles with the PHEV configuration and
varying the value of α (for HEV α¼ 0 was considered and the
charge sustainability was imposed). DP solution was computed in
all cases, and both PMP and ECMS were tuned on the basis of the
λ�plot derived from the DP using the approach sketched in
Section 4.

Fig. 5 shows the results of the final battery state of energy for
the three cycles when varying the value of α. Results are shown for
the PMP simulation once λðt0Þ was adjusted; DP results are not
shown but are almost identical. As it can be clearly noticed, for low
values of α, the solution is limited by the battery minimum charge;

this situation corresponds to depleting the battery, and since in
that situation the amount of net energy coming from the battery is
kept constant, the solution is not sensitive to variations of α. For all
these cases SOEðtf Þ ¼ SOEmin. For values of α higher than a critical
value (αc), the restriction in the end state (Ebðtf Þ or its equivalent
SOEðtf Þ) is no longer active, and then the solution is sensitive to the
selected value of α.

Fig. 6 shows two examples of the evolution for the 3 � NDEC
cycle, with a value of α lower (left) and higher (right) than αc . It
can be appreciated that with α4αc (right plot) the final state of
the battery is higher than the minimum allowed (SOEmin ¼ 0:225),
and then the problem solution corresponds to the optimum of the
unconstrained problem (i.e. the problem without considering the
terminal state constraint (17)). Accordingly, the terminal value of
the Lagrange multiplier λðtf Þ is zero (λðtf Þþα¼ α¼ 3:25, as shown
in the right λ�plot of Fig. 6).

On the other hand, with αoαc as in the left-hand plots in
Fig. 6, λðtf Þ gets a positive value (λðtf Þþα4α), that is needed for
forcing the state to fulfil the restriction of the final state (17). In
that case, the solution of the problem is qualitatively similar to
that of the HEV energy management, considering the following
restriction instead of (8):

Ebðt0Þ�Ebðtf Þ ¼
Z tf

t0
PbðuðtÞ; EbðtÞ; tÞ dt ¼ Ebðt0Þ�Eb;min ð21Þ

For investigating the transition between the constrained and
the unconstrained solution of the original problem, the optimisa-
tion problem was solved without considering the restriction on
the minimum energy in the battery. This was done by DP for
several values of α, and then PMP was tuned for replicating the DP
solution in order to provide insight on λðtf Þ. Fig. 7 depicts the
values obtained when (17) was not considered (circles) and the
solution of the constrained problem (squares). As in the case of
Fig. 5, here the solution of the problem with the constraint on the
final state also exhibits a transition between the solution of the
unconstrained problem (for α4αc , marked in the figure with a
black square) and the solution of the problem satisfying (21).

It is clear that the transition between the two problems and
that the value of λðtf Þ is a metric of the effort needed for fulfilling
the final state constraint. This fact is coherent with the PMP theory
(Naidu, 2003), since if no restriction is considered in the final state
λðtf Þ ¼ 0, while when the restriction is active, λðtf Þ gets the value
that ensures Hðtf Þ ¼ 0. As expected, in the case of the solution to
the unconstrained problem, marked with circles in the Figure, λðtf Þ
approaches 0 (actual values are slightly different to 0, but it is
attributed to the numerical precision and discretization errors).

The critical value αc corresponds to the transition between the
two situations, and consequently the solution for this case must
satisfy both Ebðtf Þ ¼ Eb;min and λðtf Þ ¼ 0.

5.2. Comparing fuel, energy and CO2 minimisation

On the basis of the precedent discussion, it is clear that there is
a shift in the system behaviour according to the considered value
of α with regard to the critical αc . As stated above, for αoαc, the
final state of the battery is an active constraint, and hence the
solution is the same regardless of the cost to be minimised. This is
similar to the situation that occurs with the HEV, where the total
amount of energy provided by the battery is constant (0, in the
case of HEV; Ebðt0Þ�Eb;min for the PHEV vehicle). In this case there
is no difference at all regardless of the cost to be optimised.

However, if α4αc (i.e. the battery is not depleted during the
operation), the selection of the cost function clearly impacts the
solution. In this case, optimising fuel consumption, energy or CO2

is no longer equivalent. The effect of the selection of α has been
shown in Fig. 5.

Fig. 5. Effect of the α parameter on the SOE at the end of the 3 � US06 (black),
3 � NEDC (dark grey) and 3 � FTP75 (light grey); critical values αc are marked with a
coloured circle. Dashed lines show the α values according to CO2 minimisation in
Spain (ES), United States of America (US) and Germany (DE).
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According to Table 1, α depends not only on the cost to be
minimised, but also on regional parameters including energy
generation and distribution costs (and taxing) and carbon intensity
in the energy production (energy generation mix). Fig. 8 shows the
value of α according to two different criteria (economic cost and
CO2 emission) for different countries; it may be noticed that there is
a huge variation among countries. In countries like France or
Sweden, where the share of the nuclear or renewable energy on
the electricity generation mix is very high, using αCO2 implies using
an almost pure electrical solution (combustion engine is only used
after the battery depletion); because electricity cost is also com-
paratively low, αcost is also quite low, and the resulting solution is
similar. However, in most countries αcostoαCO2 (dashed line in
Fig. 8 shows the equivalence between both factors), and optimal
economic cost (presumably end user objective) will increase the
electrical energy consumption beyond the CO2 optimal solution.

This issue could be corrected through taxation or regulation if the
final goal is the global warming control.

As an example, αCO2 for three different countries has been
marked in Fig. 5. Note that the optimal solution with regard to CO2

minimisation in the US06 cycle is shifted depending on the
considered country, although in the rest of the cycles αCO2 oαc

and all the solutions will be equal regardless of the considered
country. Because in all countries αcostoαc , the optimal solution
considering economic cost will be that depleting the battery.

5.3. Effect of the battery size on the solution and optimal
battery sizing

It is important to note that the value of αc depends on the
driving cycle characteristics and the battery size: driving profiles
with lower requirements or bigger batteries cause αc to diminish.

Fig. 6. Evolution of λ and SOE in the 3 � NDEC cycle for the PHEV considering α¼ 3 (left) and α¼ 3:25 (right).

Fig. 7. Value of λðtf Þ (top) and SOEðtf Þ bottom obtained with PMP for several values
of α considering (squares) or not (circles) the battery energy constraint in the
3 � NEDC cycle.

Fig. 8. Values of α considering cost (χb=χf ) or CO2 emission (μb=μf ) for different
countries. Data from EABEV (2008).
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This is because in that situations the battery energy limitations are
less stringent and the system is allowed to operate in the global
optimum (rather than the optimum of the problem constrained by
the terminal condition); this is the case of the 3 � US06 cycle (with
lower energy demand, despite higher power requirements) when
compared to the 3 � FTP75 or 3 �NEDC cycles, as shown in Fig. 5.

In order to evaluate the effect of the battery size on the
solution, 3 � NEDC and 3 � FTP cycles were run with different values
of α and batteries of different capacities, ranging from the original
battery of the considered PHEV configuration (12 A h) to an
infinite capacity battery. Fig. 9 summarises the results of such
simulations. If the infinite battery is considered, a characteristic
line for the cycle may be obtained, which provides the battery
energy consumed for a given α. As expected, this line depends on
the considered cycle, and for very low α values gets saturated
(α¼ 2:1 for the 3 � FTP and α¼ 1:3 for the 3 � NEDC): it corresponds
to a pure electrical solution and the battery provides all the
needed energy for running the cycle.

In the case of finite size batteries, they behave as the infinite
size battery if high values of α are considered. However, when the
battery efficiency drops as it is being depleted, its characteristic
line goes below that of the infinite battery. αc depends on the
battery, and it is defined on the basis of the minimum allowable
SOE and the battery characteristic line.

Correspondingly, given a value of α and a driving cycle, it is
possible to derive the minimum size of the battery that allows
operating in the global optimum. Despite many other criteria are
to be evaluated, this could be of interest as a design criterion for
sizing the battery for a given application.

Fig. 9 provides a good framework for the battery selection. For
example, for the case of the 3 � FTP cycle and α¼ 3, any battery
with a capacity lower than 18 A h would be depleted (i.e. αoαc),
while a battery of 18 A h will be able to operate without activating
the terminal restriction. However, its efficiency will be lower than
that of a higher capacity battery. Going to 40 A h capacity would
allow operating in a situation near the ideal infinite capacity
battery.

Note that the initial parts of the characteristic lines for all
battery sizes collapse in the infinite capacity battery line. This
provides the possibility of extrapolating the results between
batteries of different sizes. Fig. 10 represents the divergence
between the behaviour of the infinite capacity battery and the
different batteries simulated. It may be seen that approaching (or
extrapolating) the results between the different batteries is only

possible when SOE40:3, which corresponds to the battery linear
zone.

5.4. Effect of the battery chemistry on the solution

Since battery properties affect the powertrain efficiency, they
impact on the vehicle optimal behaviour. Fig. 11 shows the
evolution of the optimal SOE trajectory during the NEDC for the
HEV with two different batteries. It can be observed how battery B,
with lower equivalent resistance and higher open circuit voltage
(so higher efficiency) allows a wider range of variations in the SOE
during the driving profile, then taking advantage of the higher
efficiency of the electrical powertrain. Regarding the evolution of
the λ, it shows a quite flat behaviour due to the low variations in
the equivalent resistance and open circuit voltage in the operating
range when varying the battery charge level (see Fig. 2). However,
λ values with battery A are higher due to its lower efficiency (the
use of the electrical energy path involves a higher cost due to the
lower battery efficiency). As it can be noticed in Fig. 11, the flatter
the behaviour in λ, the most the ECMS behaviour fits that of the
PMP and DP.

Fig. 9. Consumed battery energy during 3 � NEDC (top) and 3 � FTP (bottom) with
different values of α and battery capacities. Black dashed line corresponds to an
infinite capacity battery.

Fig. 10. Divergence with regard to an infinite capacity battery as a function of the
final SOE for 3 � NEDC (top) and 3 � FTP (bottom).

Fig. 11. Evolution of the SOE (lower plot) and optimal λ (upper plot) for the NEDC
cycle obtained with PMP (continuous line) and ECMS (dotted line) approaches
during tests with battery A (grey) and B (black).
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5.5. Hints on the PMP and ECMS tuning by shooting for PHEV

PMP and ECMS tuning by shooting has been widely used for the
case of HEV, because the terminal value of the battery energy is
known. However shooting reference is not clear when the system
final state is unknown, as may occur in the PHEV control problem
(Stockar et al., 2011). As it has been demonstrated, the solution for
PHEV is quite similar in the cases where the final battery energy
constraint is activated (the battery is depleted), and then usual
shooting methods considering Ebðtf Þ ¼ Eb;min can be used. However,
in the cases where the optimal solution corresponds to Ebðtf Þ4
Eb;min no shooting reference is available. According to the discus-
sion in the present paper, PMP can be then tuned using λðtf Þ ¼ 0 as
shooting objective.

A two-step algorithm can be done then for tuning the PMP (and
ECMS likewise): initially solving the unconstrained problem by
shooting for Ebðtf Þ ¼ Eb;min; then, if the resulting λðtf Þ is negative,
shooting for λðtf Þ ¼ 0 (the reverse procedure can also be used:
searching λðtf Þ ¼ 0 and if Ebðtf ÞoEb;min, then shooting for
Ebðtf Þ ¼ Eb;min).

For the ECMS calibration the problem is similar: if the con-
straint in the battery size is active then it can be solved like in HEV
by shooting for Ebðtf Þ ¼ Eb;min. On the other hand, in the case the α
value yields a global optimum, then the final state is unknown;
however, because terminal value of λðtf Þ ¼ 0, then s¼ α will be a
good approximation of the optimum (note that if the variation of
the battery efficiency with the battery energy level is high, ECMS is
no longer able to provide the optimal solution).

6. Conclusions

A formulation of the Energy Management Problem for both
HEV and PHEV able to deal with different cost indexes has been
presented, and the λ�plot method has been extended for fitting
the formulation. The λ�plot method allows us to obtain a suitable
tuning of the ECMS and PMP control strategies from the differ-
entiation of the optimal solution provided by the DP. Despite
sometimes a fine tuning of s and λ0 parameters is required, the
λ�plot method provides a narrow range to search within. In any
case, the method advantages go beyond the co-state estimation,
since the λ�plot s provides insight into the optimal solution, and
shows the conditions in which ECMS is equivalent to PMP. Outliers
in the plot also reveal non-convexities in the problem which
prevent both strategies from reaching DP results.

The study of different cases has contributed to the under-
standing of the differences between the HEV and PHEV optimiza-
tion, mainly related to the final state constraint. In the same line, it
has been demonstrated that in the case of PHEVs, the minimisa-
tion of different cost functions is equivalent when the battery final
state of energy is constraining the solution; however, optimal
trajectories differ for the cases where constraint on the final
battery state of energy is not activated. Accordingly, a method
has been presented for estimating the battery size which allows a
vehicle to operate in the global optimum for a given cycle and a
given ratio between electricity and fuel costs (α). Finally, the
effects of the battery parameters have been studied, showing that
for a given driving cycle the SOE evolution and therefore the
operating range of the engine are strongly affected by the battery
efficiency curve.
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Appendix A. Equivalence between alternative formulations

A.1. Selection of the state variable

In the present paper the battery energy Eb has been selected as
state variable in the problem formulation; however, this is not by
far the most used variable. More usual selections are the battery
state of energy (SOE) or state of charge (SOC). The first one is
obtained through the normalisation of the battery energy with
respect to the maximum stored energy (SOE¼ Eb=Eb;max), while the
second considers electrical charge normalised with respect to the
maximum capacity, rather than energy.

The advantage of using Eb (and its time derivative �Pb) instead
of SOE or SOC is based on the dimension coherence in (12), that
causes α and λ to be dimensionless and easily interpretable.
However, the developed method is general and with a few
modifications can be directly applied to alternative formulations
employing SOE (with H0 ¼ Pf �ðλ0 þα0ÞS _OE) or SOC (H″¼ Pf �
ðλ″þα″ÞS _OC). Both formulations are quite common in the litera-
ture when dealing with HEV control (i.e. α¼ 0) (Guzzella &
Sciarretta, 2005).

For the first, it suffices to slightly modify (13)

_λ
0 ¼ ∂H0

∂SOE
¼ ðλ0 þα0Þ Pel

Eb;max

∂ηb
∂SOE

ðA:1Þ

For the second formulation, the relationship between the
stored energy and the battery charge must be considered. In the
case of the zero order model it stands

∂SOC
∂SOE

¼ v00
v0

ðA:2Þ

where v0 is the open circuit voltage of the battery for the given
energy level, and v00 is its value at maximum battery level
(SOC ¼ SOE¼ 1). Then, (13) results

_λ″¼ ∂H″
∂SOC

¼ ðλ″þα″Þ Pel

Eb;max

v00
v0

∂ηb
∂SOC

ðA:3Þ

A.2. Selection of the cost function

Alternatively, (1) can be written as

J‴¼ αðEbðt0Þ�Ebðtf ÞÞþ
Z tf

t0
Pf ðuðtÞ; EbðtÞ; tÞ dt ðA:4Þ

and its associated Hamiltonian results:

H‴¼ Pf þλ‴Pb ðA:5Þ
It is straightforward deducing that the graphical method may

be applied to this problem (i.e. λþ rλ‴rλ� ). As it can be easily
deduced, there is a direct relationship between the new Lagrange
multiplier and that of the initial formulation in Guardiola et al.
(2012):

λ‴¼ λþα ðA:6Þ
On the other hand, when the final value of the state is not

forced, and according to the PMP, then

λ‴ðtf Þ ¼ �∂ðαðEbðt0Þ�Ebðtf ÞÞÞ
∂Ebðtf Þ

¼ α ðA:7Þ

which is equivalent to λðtf Þ ¼ 0.
Note that the discussion in Section 5.5 is still valid but

the critical value of λ‴ðtf Þ for shifting between the two shooting
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problems is α (and the shooting objectives become Ebðtf Þ ¼ Eb;min

or λ‴ðtf Þ ¼ α, alternatively).
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