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ABSTRACT: State-of-charge (SOC) estimation for lithium−iron phos-
phate (LFP) batteries is a challenging task due to their path-dependent
behavior, flat open circuit voltage (OCV) characteristics, and hysteresis
effects. This work proposes a machine-learning-based SOC estimation
method designed for onboard applications, addressing the challenges of
SOC initialization when using the Coulomb counting method. The
proposed approach relies on low sampling frequency measurements
during short-term rest periods. Experiments were conducted on LFP
26650 cells across more than 430 working conditions, involving four
temperatures, three current rates, four cycling scenarios, with various
resting periods at different SOC levels. A comprehensive analysis of SOC
estimation errors, including initial value errors, sensor noise, and
sampling frequency, is provided. Using relaxation voltage data recorded
at intervals as short as 1 min, the SOC resetting estimation solution proposed in this paper achieves mean absolute errors
lower than 3.25%, demonstrating its potential for real-world applications. This solution can be readily integrated into existing
battery management systems.

Lithium-ion batteries are the most widely used electro-
chemical energy storage devices in consumer elec-
tronics, electrified transportation, and grid applications

due to their high energy density, continuously decreasing cost,
and long cycle life.1,2 Lithium−iron phosphate (LFP) batteries,
which utilize graphite anodes and LFP cathodes, are free of
cobalt and nickel. Due to its excellent thermal stability and low
risk of thermal runaway, LFP is considered one of the safest
cathode materials, providing enhanced safety.3 This combina-
tion of safety, long cycle life, and stable performance makes
LFP batteries a strong candidate for use in electric vehicles,
energy storage systems, and other applications where safety
and durability are critical.4,5 In addition, the abundance of
phosphate resources ensures a stable and sustainable supply
chain for LFP batteries, contributing to their growing adoption.
These advantages have led to LFP batteries capturing over 30%
of the market share in cathode chemistries,6 a figure that
continues to rise.

A battery management system (BMS) is designed to ensure
functional, safe, and reliable operation of the system when used
in real time.7 One of the critical tasks performed by the BMS is

state-of-charge (SOC) estimation, which becomes particularly
challenging for LFP batteries.

This difficulty arises from several factors, including hysteresis
effects, path-dependent dynamics, and the flat characteristics of
the open-circuit voltage (OCV). Accurate SOC estimation is
vital for optimizing battery performance, extending battery life,
and preventing potential safety issues, making it a key focus
area in the development of advanced BMS technologies.8

Hysteresis in LFP batteries refers to the voltage gap
observed between the charging and discharging processes at
similar SOC levels.9 Several factors contribute to hysteresis in
LFP batteries, including thermodynamic effects, mechanical
stress, and microscopic distortions within the active material
particles induced by dopants.10 Hysteresis in LFP batteries has
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been modeled in two main ways in the literature. The first
method employs an empirical approach, using a first-order
ordinary differential equation to characterize the dynamics.
This model captures the dynamic response of the battery by
relating the voltage gap between charging and discharging
processes to changes in SOC and current, allowing for a more
accurate representation of hysteresis behavior.11 The param-
eters of this model must be carefully calibrated using data from
both major and minor loop experiments. In current studies,
both equivalent circuit models (ECMs)12 and physics-based
models13 have integrated this empirical equation to improve
the accuracy of LFP battery modeling.

The second type of method proposed in the literature
utilizes a hybrid approach that integrates an electrochemical
model describing the two-phase transition operation in the
positive electrode,14 with a machine learning component. This
component, designed to capture the hysteresis effects and
path-dependent dynamics of the battery, is trained on data that
includes current profiles collected from various electric vehicle
(EV) driving scenarios and electrochemical states derived from
the physics-based model.15

The OCV of a battery, in thermodynamic terms, is defined
as the difference in electrochemical potential between the two
electrodes where no current is flowing.16 For nickel manganese
cobalt (NMC) and nickel cobalt aluminum oxide (NCA)
cathodes, the OCV is a monotonic function of SOC. This
characteristic is advantageous because it allows for the direct
and reliable correlation of the OCV readings with the SOC
values. Instead, LFP batteries are characterized by a full cell

OCV curve which is flat usually over an SOC range of 30−
80%17 (this can extend up to 20−90% in some cases, see
Figure S1). This is the SOC range within which EV batteries
commonly operate. This presents a significant challenge for
model-based SOC estimation methods, as they rely heavily on
the inversion of the OCV−SOC lookup table to infer SOC
from voltage measurements. The flatness of the OCV curve in
this range reduces the sensitivity of voltage to SOC changes
(i.e., 0dOCV

dSOC
), making it difficult to accurately estimate the

SOC based on voltage alone. In model-based methods, a
“copy” of the battery dynamics, either in the form of ECMs18,19

or physics-based electrochemical models,14,20 is used to design
closed loop feedback estimators. Commonly used filters
include extended Kalman filter (EKF),21 unscented Kalman
filter (UKF),22 and adaptive EKF (AEKF).23,28 However, the
flatness of the OCV curve makes traditional OCV-based
filtering methods less effective for LFP batteries.

When the battery is at rest or operating at low current levels,
the low signal-to-noise ratio of the current measurements
further hampers the accurate SOC estimation. Additionally, the
path-dependent behavior of LFP batteries causes relaxation
voltages for the same SOC to vary depending on previous
loading conditions. This makes the OCV−SOC map inversion
operation ineffective for accurate SOC estimation, as the
voltage response is no longer solely a function of SOC but also
influenced by the battery’s history.

This study focuses on enhancing the model-free Coulomb
counting method. The Coulomb counting method directly
calculates battery SOC by integrating the current over time

Figure 1. Analysis of error sources for inaccurate initial SOC values. (a) Voltage and SOC from the WLTP profile followed by a 1 h rest. The
orange dash line represents the OCVGITT when the LFP battery is at equilibrium state. The solid red line represents the SOC calculated from
the Coulomb counting method. In the zoomed-in plot, the blue line represents the voltage trajectory during the 1 h rest period after the end
of discharge. The difference between the measured voltage Vmea and the OCVGITT decreases as the resting time increases, indicating that a
long-time rest period is needed to accurately determine the battery SOC using the OCV−SOC inversion. (b) SOC errors caused when
voltage offset noise is applied to the OCVGITT at different SOC levels. Insert I shows SOC errors when 30 mV voltage offset is added to the
OCVGITT values of 3.2947 V (corresponding to 40% SOC).
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and is widely used in BMS for onboard SOC estimation due to
its low computational requirements.24 However, despite its
simplicity, the accuracy of this method can drift over time due
to cumulative integration errors, reliance on precise current
measurements, incorrect initialization, and inaccurate capacity
estimation, making it less robust in long-term use compared
with more sophisticated model-based methods.

The Coulomb counting method is summarized by the
following equation:

t t
Q

ISOC( ) SOC( )
1

( )d
t

t

0
0

=
(1)

where SOC(t0) is the initial SOC calculated by inverting the
OCV−SOC map using the measured voltage after the battery
has undergone a prolonged rest period, allowing it to reach
equilibrium. With this initial condition (i.e., SOC (t0)), the
battery’s SOC over time, SOC(t), is calculated by integrating
the current I(τ). The battery capacity, Q (a function of
temperature), serves as a normalization factor in the SOC
calculation, ensuring that SOC values accurately represent the
available charge as a proportion of the battery’s total capacity.
In the SOC calculation using the Coulomb counting method,

four primary error sources can significantly impact the accuracy
of the SOC estimation, as described below.

Wrong Initialization. One common error in the SOC
calculation using the Coulomb counting method is incorrect
initialization. According to eq 1, the initial SOC, SOC(t0),
serves as the reference point for subsequent SOC estimation.
To determine SOC(t0), the measured voltage after a prolonged
rest period is typically utilized through the inversion of the
OCV−SOC map. Figure 1a shows the voltage and SOC
profiles over the Worldwide Harmonized Light Vehicles Test
Procedure (WLTP) cycle, followed by a 1 h rest period. The
battery starts fully charged at initial SOC of 100% and then is
discharged to an SOC of 10% (i.e., solid red line calculated
using Coulomb counting). Once the battery reaches 10% SOC,
the load is disconnected (zero current) and the voltage relaxes
to its equilibrium, OCV. As illustrated in Figure 1a, during the
relaxation period, the difference between the voltage and OCV
decreases as the rest time increases. However, it is noteworthy
that for LFP cells, a discrepancy between the measured voltage
and the OCV can still be present even after a 48 h rest period.9

This persistence of the voltage difference is particularly
important because the flatness of the SOC−OCV curve

Figure 2. Analysis of error sources due to sampling frequency and sensor noise in the current measurements. (a) Current profiles at different
sampling frequencies. The reference profile is the WLTP profile sampled at 1 Hz, then downsampled to 0.2 and 0.1 Hz. The zoomed-in plots
illustrate the changes in the current profile as the sampling frequency decreases. (b) SOC calculated by the Coulomb counting method using
the downsampled current profiles. SOC error arises when down-sampled profiles are used in the Coulomb counting method. (c) Current
profiles with added noise. The reference current profile is the WLTP profile sampled at 1 Hz without noise. Gaussian noise N(0.10,0.04) and
N(0.15,0.04) (i.e., variance of 0.04 A and mean of 0.10 A and 0.15 A, respectively) was added to the reference profile. (d) SOC calculated by
the Coulomb counting method using current profiles with and without the Gaussian noise.
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means that even minor variations in voltage readings can lead
to significant errors in SOC estimation.

Voltage measurement noise, represented as offsets, can
significantly impact the SOC accuracy. In Figure 1b, we
analyze how such offset-induced noise on OCV measurements
affects SOC estimation derived from OCVGITT−SOC map
inversion. Here, OCVGITT refers to the OCV obtained from the
Galvanostatic intermittent titration technique (GITT) test
(see Figure S1). Effects of offset noise spanning from 5 to 30
mV are analyzed. Figure 1b (inset I) provides a closer look at
these errors in the case of an overall offset of 30 mV on the
value of the measured voltage of 3.2947 V (corresponding to
40% SOC). An offset of +15 mV added to 3.2947 V induces a
voltage reading of 3.3097 V which from the OCVGITT−SOC
lookup inversion corresponds to 70.67% SOC (¯(SOC_mea)),
whereas an offset of −15 mV leads to a voltage reading of
3.2797 V, hence SOC = 30.81% (¯(SOC_mea)). Even a small
5 mV offset can result in a 20% SOC error. When such errors
are used to initialize SOC in the Coulomb counting method,
they propagate as SOC offset errors.

Sampling Frequency. Another critical factor affecting
SOC estimation accuracy, in both Coulomb counting and
model-based methods, is the sampling frequency. To minimize
memory usage, the sampling frequency of current and voltage
measurements is often reduced in BMS algorithms. For
example, according to the Chinese Technical Specifications
for the Remote Service and Management System of Electric
Vehicles, the data sampling frequency is set at 0.1 Hz.25 Figure
2a presents the current profile with different sampling
frequencies. The reference current profile, shown in blue, is
the WLTP profile sampled at 1 Hz. This profile is then
downsampled to 0.2 and 0.1 Hz, respectively. As seen in the

zoomed-in plot, as the sampling frequency decreases, the shape
of the curve profile deviates from the reference current, leading
to cumulative errors in current integration, as shown in Figure
2b.

Current Noise. Sensor noise also alters the shape of the
current profile. As shown in Figure 2c, two Gaussian noises,
each with a variance of 0.04 A and mean values of 0.1 A and
0.15 A were added to the reference WLTP current profile.
These current noisy profiles lead to SOC calculation errors
when the Coulomb counting method is applied, as illustrated
in Figure 2d. Notably, noisy current data leads to more
significant SOC errors compared to the downsampled current
profile. Further details are provided in Figure S2.

Battery Capacity Degradation. Over long-term oper-
ation, battery capacity gradually degrades, which may affect the
accuracy of SOC estimation using the Coulomb counting
method. However, LFP batteries exhibit a significantly longer
cycle life (approximately 4−5 times that of NCA or NMC
cathodes26,27), resulting in a slower rate of capacity
degradation, which can be monitored and calibrated during
routine maintenance. Although capacity degradation is not
addressed in this study, the framework is designed to
incorporate updated capacity values as they become available.
In this article, we depart from traditional model-based SOC
estimation methods for LFP batteries and propose a novel,
model-free machine learning approach. Specifically, we address
the main limitation of the Coulomb counting method caused
by incorrect initialization. To overcome this, we employ a
machine-learning-based approach that refines the initial SOC
guess using voltage and temperature time series during
relaxation periods (when the current is zero) and leverages

Figure 3. Feature extraction from the voltage, current, and temperature data. The first step in training the machine learning model is feature
extraction. In this study, a short-term relaxation period is introduced after charging or discharging the battery. During this rest period,
various features are extracted from the measured voltage, current (prior to the rest period), and temperature data. In this study, both direct
and intermediate features are extracted. The three types of direct features are type 1 (from voltage measurements), type 2 (from current
measurements), and type 3 (from temperature measurements). Intermediate features are then calculated based on these direct features.
Specifically, type 1 intermediate features are derived from type 1 direct features, using Vmea in the OCVGITT−SOC inversion, while type 2
intermediate features are obtained by combining type 1 and type 2 direct features.
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historical current data (see Supplementary Note 1 for more
details).

The feature vector (F = [t, Vmea, SOCmea, V10, Im, R, Iflag,
Tenv, dT], see Table S1 for detailed descriptions) is extracted
from current historical data (collected before the battery goes
to rest) as well as the voltage and temperature measurements
time series at a low sampling frequency during rest, as shown
in Figure 3. These extracted features are then used to train the
machine learning model according to the pipeline shown in
Figure 4, which includes the creation of three submodels.
Taking the feature vector F as input, the label for submodel 1
is Vdiff, defined as the difference between measured voltage,
Vmea (taken at 30 s intervals from 30 to 600 s), and OCVGITT.
Submodel 1 then generates OCV1 (calculated as Vdiff + Vmea)
and SOC1 (obtained from OCVGITT−SOC map inversion
using OCV1). Next, submodel 2 takes the feature vector F,
OCV1, and SOC1 (from submodel 1) as inputs and uses
SOCdiff, defined as the difference between real SOC (calculated
from Coulomb counting after charge/discharge the cell) and
SOCmea, as the label. Here, SOCmea is obtained from the
OCVGITT−SOC map inversion using Vmea. Submodel 2
generates SOC2 (defined as SOCmea + SOCdiff) and OCV2
(from OCVGITT−SOC map interrogation using SOC2).
Finally, submodel 3 uses the feature vector F, SOC1 and
OCV1 from submodel 1, and SOC2 and OCV2 from submodel
2 as inputs to estimate battery SOC (SOC*) and OCV
(OCV*).

For real time applications, the trained model takes the
extracted features from a short-term relaxation (i.e., voltage
and temperature data) and historical current data and outputs

both the estimated OCV, OCV*, and estimated SOC, SOC*.
In the proposed method, voltage and temperature features are
extracted during rest periods ranging from 30 to 600 s (at 30 s
intervals, with an additional voltage point V10 measured at 10 s
after the load is disconnected). These periods are termed
short-term rest in this study. Additionally, the current features
are calculated from historical data.

The machine learning pipeline proposed in this study
enables accurate and rapid SOC resetting during short-term
voltage relaxation, making it a promising and easy to
implement solution for BMS applications. The proposed
pipeline performs effectively with low sampling frequency
voltage and temperature data (1/30 Hz) and historical current
data (the sampling frequency has minimal impact provided the
mean current value is utilized) and has been experimentally
validated across 434 different working conditions (see Figure
S3, Figure S4, and Supplementary Note 2).

Battery experimental data sets are essential for developing
battery models and state estimation algorithms. In this study,
we developed a comprehensive design of experiments (DOE)
and conducted testing at the Stanford Energy Control
Laboratory (Figure S5) on cylindrical 26650 LFP/graphite
cells (Table S2). The data set includes 434 testing conditions
(Supplementary Note 2) across eight battery cells (Figure S3).
The experiments were specifically designed to capture resting
voltage segments under a wide range of loading (constant and
dynamics) and temperature conditions, in both charge and
discharge. Tests included capacity tests (Supplementary Note
3), OCV tests (Figure S1), and training/validation tests
(Figure S3). Tests for cells 1 to 6 were conducted at 10, 25,

Figure 4. Flowchart of the proposed machine learning pipeline for onboard battery SOC resetting. Based on the extracted features, a
machine-learning pipeline consisting of three submodels is built to correct battery initial SOC. In submodel 1, using extracted feature vector
F as the input, the label for random forest 1 is the voltage difference Vdiff. Then, submodel 1 generates OCV1 and SOC1. In submodel 2, both
the feature vector F, OCV1, and SOC1 are taken as inputs, and the label for random forest 2 is the SOC difference SOCdiff. After that,
submodel 2 outputs SOC2 and OCV2. Finally, in submodel 3, the feature vectors F, SOC1, OCV1, SOC2, and OCV2 are used as inputs and
OCVGITT and SOC (calculated from Coulomb counting after discharge/charge) are used as the training labels. During the testing process,
the feature vector F extracted from both the short-term relaxation period and historical current data is used as input for the trained machine
learning model, which gives the estimated SOC, SOC*, and estimated OCV, OCV*, of the cell.
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and 45 °C, while tests for cells 7 and 8 were performed at 25
and 35 °C. During testing, cells were subjected to different
current profiles across the full SOC range (i.e., from 0% to
100% SOC) with a 1 h rest period after each charge or
discharge to a designated SOC.

In the capacity tests, the batteries are fully charged and
discharged using constant current (CC) profiles at C/5. The
C/5 test data is then used to calculate the battery’s nominal
capacity (Supplementary Note 3). In this work, the reference
OCV (i.e., OCVGITT) is derived from GITT tests. During the

GITT test, the battery is discharged from 100% SOC
(corresponding to 3.6 V) to 0% SOC (corresponding to 2
V) or charged from 0% SOC (2.8 V) to 100% SOC (3.6 V) at
a C/5 rate, in 2.5% SOC increments, followed by a 2 h rest
period after each step. In this work, the GITT−OCV curves
are compared with the pseudo-OCV curves obtained at C/30
(see Figure S1). Given the differences observed between those
two curves, using pseudo-OCV as the benchmark for the
inversion of the OCV−SOC leads to errors in the SOC
calculation. In the training/validation tests for cells 1 to 6, the

Figure 5. Validation of the proposed machine learning pipeline. Estimation accuracy using data obtained after 10 min rest. The case split
strategy was employed to generate the train−test split. The data ratio for training is 0.55, and the data ratio for testing is 0.45. (a) Parity
plots for estimated OCV* and OCVGITT. (b) Parity plot for estimated SOC* and SOC calculated from Coulomb counting. Estimation
accuracy using data from rest periods ranging from 30 to 600 s. Case split was applied to create training−test splits, with training data ratios
varying from 0.3 to 0.9 (corresponding testing data ratios ranging from 0.7 to 0.1). (c) MAE of the estimated OCV*. (d) MAE of the
estimated SOC*. (e) Testing design for the first type of unseen cell validation including cells 1 to 6. (f) Testing design for the second type of
unseen cell validation including cells 7 and 8. (g) Estimation accuracy for OCV* and SOC* under unseen cells validation 1. (h) Estimation
accuracy for OCV* and SOC* under unseen cells validation 2.
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batteries are discharged using CC, WLTP, and hybrid pulse
power characterization (HPPC) + WLTP profiles to different
SOC levels, followed by a 1 h rest period (see Supplementary
Note 3) and charged using CC at different C-rate. Data
collected from cells 7 and 8 are used to validate the SOC
resetting algorithm under “unseen cell scenarios”.

We used two split strategies, case split and data split, to
create the training and testing data sets for the machine
learning model (see Figure S3b). Each case is defined by
combining data from a specific temperature, C-rate, current
profile, and rest SOC point, as shown in the first column of
Figure S3b. For each case, the feature vector F was extracted
from voltage and temperature measurements every 30 s during
the rest period (from 30 to 600 s) and from historical current
data before resting. In the case split scenario, the feature vector
F extracted from the same case is assigned exclusively to either
the training or testing data set. In contrast, the data split
strategy randomly assigns feature vector F from all cases
between the training and testing data sets. For example, in the
case split scenario, data collected at intervals from 30 to 600 s
(every 30 s) from the cell discharged to 30% SOC at 25 °C
using an average 1C WLTP profile is assigned to the training
data set. In contrast, data (at 30 s intervals from 30 to 600 s)
from the cell discharged to 30% SOC at 25 °C using an
average 0.5C WLTP profile is assigned to the testing data set.
In the data split scenario, data extracted at 30 s from the cell
discharged to 30% SOC at 25 °C using an average 1C WLTP
profile is used as the training data set, while data extracted at
60 s from the cell tested under the same condition is used as
the testing data set.

The data generated in this study can be accessed through the
following link: https://github.com/LeXuSECL/ML_SOC_
Estimation_ACS_Energy_Letters.

The voltage difference between the OCVGITT and the
measured voltage Vmea, caused by polarization, can be
significant during the first 10 min of rest after the operational
current is removed. Figure S6a shows the difference between
Vmea and OCVGITT during a 10 min relaxation period with a 30
s sampling interval (i.e., 20 entry vector). Significant SOC
estimation errors are observed when using the OCVGITT−SOC
inversion based on Vmea. This challenge is escalated when the
battery is traveling over SOC ranges within the flat region of
the OCV−SOC curve, as shown in Figure S6b. For example,
within the SOC range of 40% to 70%, 58.3% of all cases exhibit
SOC estimation errors exceeding 20% when using Vmea
obtained from a 10 min rest in the OCVGITT−SOC look-up
table inversion.

The validation results of the proposed SOC resetting
method are shown in Figure 5. Figures 5a and 5b present
the errors of estimated OCV, OCV*, and estimated SOC,

SOC*, using features extracted after a 10 min rest. Using the
case split strategy for train−test data set split (data from cells 1
to 6), the data ratio for training is 0.55 and the data ratio for
testing is 0.45. It can be seen from Figures 5a and 5b that most
estimatedOCV* errors are below 5 mV (91.7% of the points)
and most estimated SOC* errors are below 5% (89.0% of the
points). The cumulative density for SOC* and OCV*
estimation errors is given in Figure S7. Besides, a few high-
error estimation points exist (e.g., 0.14% of the SOC
estimation points exceed 12% error) in Figures 5a and 5b.
One approach to further reduce these high-error points is to fix
the rest time for feature extraction (e.g., only use data after 10
min rest), as detailed in Supplementary Note 4. The mean
absolute error (MAE) and root-mean-square error (RMSE)
(Supplementary Note 5) for all of the estimation points in
Figures 5a and 5b are listed in Table 1. Also, these values are
compared with results without using the proposed machine
learning method (i.e., Vmea after 10 min rest is used to obtain
SOCmea from OCVGITT−SOC inversion). It can be seen that
the MAE for SOC exceeds 12% before using machine learning
and is reduced to less than 2.0% after machine learning
correction.

Besides, we ran the above validation 10 times, and the results
for the best and worst estimation are shown in Figure S8. The
results indicate that there are no significant differences
between the best and worst conditions, demonstrating the
reliability of the proposed method. More importantly, the
proposed method is generally applicable with various machine
learning models (details are provided in Supplementary Note
6). The above results were obtained using the case split
strategy to generate the training and testing data sets.
Additionally, the validation of the proposed machine learning
method using data sets from the data split strategy is shown in
Table 1 and Figure S9. It can be seen that the MAE of
predicted SOC* is less than 0.6%.

To evaluate the performance of the proposed machine
learning pipeline more comprehensively, we investigated its
accuracy across three different use cases.

Voltage Obtained from Different Relaxation Times.
Figures 5a and 5b present the estimation accuracy using
features extracted after a 10 min rest. However, features from
shorter rest times can also be used in the proposed machine
learning pipeline when such long rest time data is unavailable
in real-world applications (i.e., waiting for the red light). Using
data from cells 1 to 6, and using case split to generate the
testing and validation data sets, the proposed machine learning
method is validated using features from rest periods ranging
from 30 to 600 s. Figures 5c and 5d show the MAE of the
estimated OCV and SOC. Each block in Figures 5c and 5d
represents the estimation for a specific combination of split

Table 1. Comparison of OCV and SOC Obtained after a 10 min Rest, Directly Using Measured Data and Estimated by the
Proposed Machine Learning Method

OCV SOC

data set
generation method

MAE
(mV)

RMSE
(mV) method

MAE
(%)

RMSE
(%)

case spilt directly using Vmea 16.566 19.972 using Vmea for OCVGITT−OCV inversion for
SOCmea

12.665 15.480

using proposed method to estimate
OCV*

1.701 3.502 using proposed method to estimate SOC* 1.629 2.942

data spilt directly using Vmea 15.983 19.393 using Vmea for OCVGITT−OCV inversion SOCmea 13.228 16.004
using proposed method to estimate
OCV*

0.462 1.981 using proposed method to estimate SOC* 0.588 1.785
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ratio and rest time (i.e., blocks a and b correspond to the MAE
for Figure 5a and Figure 5b, respectively). The results indicate
that even with a rest period of just 30 s and using only 30% of
the training data set, the estimation error for battery SOC is
less than 3.5% (block I). When more training data is available,
the SOC estimation error reduces to 2% (block II). Besides, if
longer rest voltage data are available, the estimation error for
both the OCV and SOC can be below 1%, even with only 30%
of the training data (see Figure S10). Moreover, as shown in
Figures 5c and 5d, the estimation accuracy of the proposed
method improves with increased training data and the use of
features extracted from longer rest periods. For instance, when
the SOC resetting algorithm is first deployed in a BMS,
features should be extracted from long rest periods (e.g., at
least 10 min) to ensure high accuracy. As the BMS continues
to operate and more data are collected to train the algorithm,
the required rest time for feature extraction can be gradually
reduced.

Prediction Accuracy over Unseen Cells. To further
validate the accuracy of the proposed machine-learning-based
SOC estimation method, we tested its performance on data
from unseen cells. We conducted two types of unseen cell
validations.

In the first validation, data from cells 1 to 6 are used. As
shown in Figure 5e, six different unseen cell tests were
designed. In each test, data from five cells (shown in gray)
were all used in training, and data from the remaining cell
(shown in green) was used for testing. Figure 5g illustrates the
accuracy of estimated OCV, OCV*, and estimated SOC,
SOC*, after the proposed method. In Figure 5g, features were
extracted using 10 min relaxation data, and each column in the
figure represents one test in Figure 5e. For instance, the first
column in Figure 5g indicates that cells 2−6 were used as
training cells, while cell 1 was used as the testing cell. The
MAE for the OCV and SOC are consistently below 4 mV and
4%, respectively.

In the second validation scenario, additional experiments
were conducted using two new cells, 7 and 8 (Figure S3). The
machine learning model was first trained on the entire data set
from cells 1 to 6 and then tested on the data sets from cells 7
and 8 (referred to as test 7 and test 8 in Figure 5f). In test 7,
the experiment’s C-rates and temperature were included in the
training data set, but unseen current profiles (i.e., the shifted
WLTP profile described in Figure S4’s caption) were used for
data generation. Therefore, test 7 represents a validation with
both unseen cells and unseen profiles. Moreover, test 8
contains both one unseen temperature (i.e., 35 °C) and one
unseen profile (shifted WLTP). Estimation accuracy for tests 7
and 8 is shown in Figure 5h and Figure S11. It can be seen that
the estimated OCV, OCV*, and estimated SOC, SOC*, have
high accuracy, with errors below 3 mV and 4.3%, respectively.

Effects of Noise. Finally, the influence of noise on the
model accuracy is considered. In real applications, the quality
of measured voltage data is generally lower than that obtained
under laboratory test conditions due to sensor noise. To
evaluate the robustness of the proposed machine learning
pipeline, we introduced Gaussian noise with different standard
deviations into the experimental data.

V V Vuse mea Gaussian= + (2)

where vGaussian ≈ N (μ, σ2) is the Gaussian noise with mean μ
and variance σ2, where μ varies from −2.5 to 2.5 mV and σ

from 0 to 2.5 mV. Across all noise conditions, the prediction
MAEs for voltage remained below 2 mV, and the MAEs for
SOC estimation stayed below 3.5% (see Figure S12 for more
details). These results indicate that the proposed method
exhibits strong resilience to noise, highlighting its potential for
practical applications.

Accurate SOC estimation for LFP batteries is critical for the
safe and reliable operation of the battery systems. Traditional
model-based SOC estimation methods often face challenges,
such as hysteresis, path dependence, and flat OCV issues. This
paper proposes a machine-learning-based solution to address
the above challenges by accurately resetting the SOC in
Coulomb counting by utilizing relaxation data during a short
resting time using a low sampling frequency. This approach
ensures rapid and efficient SOC resetting for onboard BMS
estimation.

Experiments were designed and conducted for training,
validation and test under various scenarios. For the first time,
SOC error sources are quantitatively analyzed, providing
valuable insights for the development of SOC estimation
methods for real-world applications. Data show that SOC
errors caused by inaccurate voltage measurements are
significant for LFP batteries due to the flat OCV−SOC
curve. For instance, a 5 mV offset voltage error can result in
SOC estimation errors exceeding 20%. Validation results
demonstrate that using data obtained from a 1 min voltage
relaxation period, the MAE of the predicted OCV and SOC by
the proposed pipeline are less than 3 mV and 2.5%,
respectively. The generalizability of the pipeline was proven
by various machine learning algorithms. The robustness of the
pipeline was further validated using training data from different
time scales, unseen conditions, and with added noise. These
results indicate the potential of this method for adoption in
onboard applications. In addition to SOC estimation, the
proposed machine learning framework can also be extended to
estimate battery state-of-health. For instance, in addition to
features from the relaxation period, peak shifting values derived
from incremental capacity analysis or differential voltage
analysis conducted at different aging stages can be incorpo-
rated as input features. The machine learning algorithm can
then output both the battery’s SOC and capacity.
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