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Dynamic cycling enhances battery lifetime

Alexis Geslin    1,2,3,4, Le Xu    2,3,4, Devi Ganapathi    1,3,4, Kevin Moy    2, 
William C. Chueh    1,2,3  & Simona Onori    2,3 

Laboratory ageing campaigns elucidate the complex degradation behaviour 
of most technologies. In lithium-ion batteries, such studies aim to capture 
realistic ageing mechanisms to optimize cell chemistries and designs as 
well as to engineer reliable battery management systems. In this study, 
we systematically compared dynamic discharge profiles representative 
of electric vehicle driving to the well-accepted constant current profiles. 
Surprisingly, we found that dynamic discharge enhances lifetime 
substantially compared with constant current discharge. Specifically, 
for the same average current and voltage window, varying the dynamic 
discharge profile led to an increase of up to 38% in equivalent full cycles at 
end of life. Explainable machine learning revealed the importance of both 
low-frequency current pulses and time-induced ageing under these realistic 
discharge conditions. This work quantifies the importance of evaluating 
new battery chemistries and designs with realistic load profiles, highlighting 
the opportunities to revisit our understanding of ageing mechanisms at the 
chemistry, material and cell levels.

Lithium-ion batteries (LIBs) age through intertwined mechanisms 
that depend critically on conditions of use, as do solar cells, poly-
meric materials, biomedical devices and so on. Understanding how 
degradation occurs across realistic use cases is essential to acceler-
ate material design and improve battery management systems1. As a 
well-accepted practice, the vast majority of laboratory battery studies 
are conducted under constant current discharge profiles2–10. In actual 
use cases, however, LIBs are subjected to dynamic current profiles 
during discharge11–23.

In electric vehicles (EVs), load profiles consist of oscillations, 
pulses and rests24–28. On the one hand, several studies have investigated 
current profiles with alternating current frequencies, typically well 
above 1–10 Hz (ref. 29–38). Above such frequencies, limited degrada-
tion has been observed as electrochemical processes such as charge 
transfer and diffusion are only partially activated30,39,40. On the other 
hand, regenerative braking, driving in stop-and-go traffic and so on 
occur at lower frequencies (<1 Hz)41, but are not well understood42,43. 
In addition, time-induced ageing (including calendar ageing at zero 
current15,16,44–48) is another critical component of realistic usage49 
but requires several years of experiments before being observed. 

Therefore, a gap exists at the intersection of data-driven approaches 
and battery ageing experiments with realistic discharge protocols. We 
aimed to fill this gap by generating and analysing a non-accelerated and 
dynamically cycled battery dataset that represents realistic EV driving.

Thus, in this study, we compared 47 different dynamic discharge 
profiles with realistic average discharge currents ranging from C/16 
to C/2, cycled over 24 months (where 1C corresponds to the nominal 
current that discharges the battery in 1 h) on 92 commercial silicon 
oxide–graphite/nickel cobalt aluminium lithium-ion EV energy cells. 
We elucidated the effect of dynamic, non-constant current discharge 
profiles while holding the average C-rate and voltage window constant. 
We found that dynamic cycling enhances battery lifetime by up to 38%. 
Moreover, we determined the window for the tip-over C-rate that bal-
ances time-induced ageing and cycling ageing for this commercially 
relevant chemistry to be approximately between 0.3C and 0.5C, in 
the range of realistic average C-rates. Finally, we applied explainable 
machine learning (ML) to deconvolute the impacts of dynamic dis-
charge profiles on battery degradation. Specifically, we discovered the 
importance of low-frequency current pulses (8.2 mHz on average) in 
the discharge profile signal for lifetime metrics. This work illustrates 
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shows state-of-health (SOH) degradation trajectories (defined on the 
basis of the C/2 constant current discharge capacity obtained from the 
RPTs) as a function of equivalent full cycles (EFCs) for cells discharged 
at the same average C-rate (C/10, C/5 or C/2), either dynamically or 
under constant current conditions (protocol with no rest period). 
We observe that the constant current profiles give among the lowest 
cycle life across all average C-rates (with end of life (EoL) defined as 
85% SOH). Supplementary Figs. 1 and 2 highlight that, from constant 
current to periodic profiles to synthetic and real driving profiles, the 
more realistic the discharge, the greater the gain in lifetime. These 
results confirm that constant current cycling is not representative of 
realistic conditions of use.

The lifetime gain due to dynamic cycling is amplified at lower 
average C-rates, in part because of more pronounced calendar ageing, 
and emphasizes the importance of carrying out ageing in dynamic and 
non-accelerated conditions. The low C-rates here are critical in reveal-
ing this finding, otherwise not reported in the literature23,55. Figure 2b 
shows the distributions of EFCs with respect to constant current cycling 
at EoL. For all C-rates (C/10, C/5 or C/2), the constant current protocols 
underestimate lifetime compared with almost all dynamic discharge 
protocols by up to 38%. For a typical powertrain, this corresponds to 
an underestimation of lifetime mileage of up to 195,000 miles (see 
Supplementary Figs. 3 and 4, Supplementary Tables 1 and 2 and Sup-
plementary Method 1 for details of the powertrain model).

We note that, although the lower voltage cut-off is identical across 
all cells, the depth of discharge (DoD), defined by Coulomb counting, 
varies slightly from cell to cell because of differences in the overpoten-
tials induced by the dynamic profiles. Supplementary Fig. 5 shows that 
such DoD variations (reaching up to 10% at C/2) have no impact on EFCs 
for fast-cycled cells (C/2). Although slow-cycled cells (C/10 or C/5) show 
a dependency on DoD, slow-cycled cells with a similar DoD (within a 4% 
DoD window) also exhibit spreads in EFCs in line with those of Fig. 2b,c. 
This confirms that the variability is mainly induced by differences in 
the dynamicity of the discharge profiles.

To evaluate the impact of cell-to-cell variability versus 
protocol-to-protocol variability, the spread between cells cycled 

the importance of testing batteries under realistic conditions of use 
and challenges the broadly adopted convention of constant current 
discharge in the laboratory. Evaluating batteries with realistic cycling 
profiles is necessary to properly understand ageing mechanisms at the 
chemistry, material and cell levels.

Dynamic discharge profiles
We designed four different types of discharge duty cycle to simulate 
different operating conditions (Fig. 1). These consisted of (1) baseline 
constant current cycling profiles (with or without rest periods), (2) 
periodic duty cycles (including regenerative braking portions), (3) 
synthetic discharge profiles generated from field data and (4) real dis-
charge profiles from field data. To create the synthetic profiles, we used 
field driving data that encompassed both highway and urban driving41. 
We tested multiple average discharge C-rates for the same protocols to 
simulate the effect of battery pack sizing. Based on continuous-use EV 
applications (autonomous and non-autonomous) such as buses, taxis, 
commercial or industrial vehicles, average C-rates of C/10, C/5 and C/2 
were chosen as realistic driving rates, as well as C/16 (see Methods for 
more details). As charging protocols are typically standardized and are 
carried out using a constant current governed by battery management 
systems and charging stations50, we used the same charging profile 
across all experiments (C/2 to 4.2 V, 0.05C cut-off).

We cycled all batteries in a temperature-controlled chamber set 
at 35 °C for technological relevance51. Each test protocol was dupli-
cated. Throughout the ageing experiments, we periodically carried 
out reference performance tests (RPTs) and hybrid pulse power char-
acterizations (HPPCs) to probe the state of degradation of the cells 
(see Methods for details). We extracted resistances from the HPPCs 
and fitted a half-cell differential voltage model to the C/40 RPTs to 
extract electrode-specific capacities (negative electrode capacity 
(Qne), positive electrode capacity (Qpe) and lithium inventory (QLi))52–54.

Degradation in realistic conditions
This ageing campaign provides clear evidence that dynamic cycling 
does not accelerate degradation, rather it enhances lifetime. Figure 2a 
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Fig. 1 | Overview of discharge protocols. Examples of the discharge data are 
shown for the four protocol types explored in this study. The charge protocol, 
voltage window and environmental chamber temperature were kept constant. 

For each protocol type, different variants (protocol identifier) were created. All 
protocols cycled the batteries from 4.2 V to 3.1 V and charged them using the 
same constant current–constant voltage protocol (C/2 to 4.2 V, 0.05C cut-off).
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identically was calculated for each protocol (Fig. 2c). The results 
show that duplicate trajectories overlay well and the average differ-
ence due to cell-to-cell variability (represented by the hatched areas) 
is consistently below 5%. Specifically, the range of these cell-to-cell 
variabilities (represented by whiskers) does not explain more than 
half of the variability beyond 90% SOH. This statistical analysis con-
firms that the protocol-to-protocol variability dominates over the 
cell-to-cell variability in this dataset56. We report on how specific 
attributes of the dynamic discharge protocol control lifetime metrics 
in a later section.

Furthermore, the spread in degradation trajectories is also 
observed in the low-rate C/40 capacity, the electrode-specific metrics 
Qne, Qpe and QLi, and the discharge resistances, all extracted from the 
diagnostic cycles (Supplementary Fig. 6). Interestingly, the normal-
ized low-rate capacity from the C/40 RPTs degrades at the same pace, 
if not faster, than the high-rate capacity (from the C/2 RPTs, Fig. 2a). 
This suggests that the degradation modes impacting the non-kinetic 
properties of the batteries (such as the loss of active material) become 
visible earlier than those impacting the kinetic properties of the battery 

(for example, resistance growth). However, we still observed notable 
differences in resistance growth. Specifically, among the synthetic 
protocols, those derived from urban driving (protocols 2b and 2c in 
Fig. 1) consistently resulted in higher resistance growth across different 
average C-rates compared with highway-based protocols (protocols 1a 
and 1b; Supplementary Fig. 7).

Finally, under real-use discharge conditions, we found that there is 
an optimal C-rate window balancing time-induced ageing and cycling 
ageing (Fig. 2d). This optimal window is in the range of realistic EV 
discharge rates, between 0.3C and 0.5C. Up to the tipping point, the 
number of EFCs increases with current. Notably, while correlated with 
the experimental time, the C-rate is also convoluted with the DoD, as 
discussed earlier. Both dependencies are responsible for the trend 
observed here below the tipping point. Above the tipping point, cycling 
ageing dominates. The fact that cycling- and time-induced degrada-
tions are equally important at rates near 0.4C for our EV cells chal-
lenges conventional battery wisdom and is key for battery pack sizing 
and lifetime optimization. We note that this optimal operating C-rate 
window may depend on cell design, chemistry and ageing conditions 
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Fig. 2 | Dynamic discharge profiles lead to a wide range of degradation 
profiles. a, C/2 RPT discharge capacity degradation trajectories, represented 
by SOH, for cells cycled at C/10, C/5 and C/2. Constant current cycling profiles 
(in colour) underestimate battery lifetime. To compare protocols with the same 
average C-rates, only constant current profiles with no rest are represented here. 
Supplementary Fig. 1 separates each ageing protocol by colour. b, Distribution 
of EFC differences with respect to constant current cycling at 85% SOH for three 
different C-rates. The differences are normalized by the mean of the constant 
current protocols. Kernel density estimation curves, represented by the grey 
dashed lines, are added for visualization purposes. Supplementary Fig. 2 
separates each ageing protocol by colour. c, Maximum EFC difference with 

respect to constant current cycling at 90%, 87.5% and 85% SOH for cells cycled at 
the same average C-rates. There are 26, 19, 13 cells in the C/10, C/5 and C/2 groups, 
respectively. The hatched areas show the cell-to-cell variability averaged across 
all protocols (there are 13, 9 and 6 protocols for the C/10, C/5 and C/2 C-rates, 
respectively); the whiskers represent its range. d, EFCs at 85% SOH as a function 
of the experimental average discharge C-rate. Each cross represents a group of 
cells cycled at a similar C-rate. The centre of the cross is the mean C-rate and mean 
EFC for that group of cells; the whiskers represent extrema. There are 26, 19 and 
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does not match C/10, C/5 or C/2 are represented in dark grey (30 cells in total).
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(such as temperature or voltage window), emphasizing the need for 
experiments representative of field conditions.

Impact of dynamic discharge features
To explain the variability in EoL metrics beyond the C-rate depend-
ence illustrated in Fig. 2d, we determined the correlations between the 
characteristics of these discharge profiles and the degradation metrics 
using ML models coupled with SHapley Additive exPlanations (SHAP) 
analysis. Leveraging the diversity of the dynamic cycling profiles, we 
extracted discharge profile features such as the current variance and 
maximum, the relative charge (or regenerative braking) fraction and the 
peak frequencies from a Fourier transform of the discharge current pro-
file (see Supplementary Table 3 for a complete list of features). Figure 3 
illustrates the relative importance of the extracted characteristics for 
predicting EFCs (Fig. 3a,b) and EoL metrics (Fig. 3c). We confirmed the 
correlations identified by the SHAP analysis by plotting the duty cycle 
features versus the metric of interest (Fig. 3d–f).

The peak frequencies extracted from the Fourier transform 
of the discharge current signal are correlated with EoL metrics, in 

particular with the positive electrode capacity and the resistance 
growth (Supplementary Fig. 8). Figure 3c shows that the Ohmic 
resistance, charge-transfer resistance and polarization resistance 
are all dominated by a key peak frequency of the dynamic discharge 
current profile (referred to as f2, its distribution across all cells is 
illustrated in Supplementary Fig. 9), as well as the maximum instan-
taneous discharge current. These discharge current frequencies are 
all well below 1 Hz (ranging from 0.05 mHz to 64 mHz), correspond-
ing to lithium intercalation. We hypothesize that these correlations 
may be due to differences in electrode particle activation at higher 
frequencies57–59 and reduced local stresses and heterogeneities at 
low frequencies60,61.

In addition, the electrode-specific capacities, obtained using a 
half-cell differential voltage model (see Methods for details), display 
distinct correlations with dynamic discharge features. First, the nega-
tive electrode degradation is dictated by the maximum instantaneous 
discharge current (which can reach up to 1,800% of the average C-rate 
in synthetic and real driving protocols) and the current variance. Sec-
ond, the positive electrode degradation is highly convoluted, with 
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several features playing a similarly important role. Finally, the lithium 
inventory (QLi) also exhibits more complex dependencies on dynamic 
discharge features, although the dominant features for both Qpe and 
Qne, namely, the rest fraction at high state of charge (SOC) and the cur-
rent variance, appear to be important.

The variability in cycle life at 90% SOH (Fig. 3b and Fig. 4a) can thus 
be explained by the maximum instantaneous discharge currents and 
the rest fraction at high SOC. On the one hand, the role of current peaks 
can be explained by their importance on negative electrode capacity 
and resistance build-up (Fig. 3c). On the other hand, the rest fraction 
at high SOC is mostly detrimental to the positive electrode.

Moreover, the impact of the degradation modes evolves as 
the cells age. Figure 4a,b illustrates that the degradation is initially 
dominated by the loss of lithium inventory (QLi). This corresponds 
to side reactions beyond the intercalation reaction, happening at 
the beginning of battery life, such as solid electrolyte interphase 
growth. The QLi degradation trajectory is well described by the fitting 
equation 1 + a × EFC0.5 + b × EFC, with Fig. 4g,h showing a mean absolute 
percentage error (MAPE) of less than 0.5%.

However, as the batteries age, additional degradation mechanisms 
become important. On the one hand, the positive electrode capacity 
loss dominates and is impacted by the rest fraction at high SOC (Fig. 4f, 

Supplementary Fig. 10 and Supplementary Notes), consistent with the 
instability of positive electrodes at higher voltages62,63. Supplementary 
Figs. 11 and 12 confirm that for both constant current protocols and 
highway protocols with rests, the capacity degradation accelerates 
when the rest is at a higher SOC. On the other hand, the negative elec-
trode capacity loss (which is less than the positive electrode capacity 
loss) is impacted by the DoD (Fig. 4c–e). Large instantaneous discharge 
current and variance give rise to larger overpotentials, as already men-
tioned. Consequently, the lower cut-off voltage is reached earlier, 
decreasing the DoD and thus preventing cycling at very low SOC. In 
this low SOC region, silicon is electrochemically active and is known 
to degrade faster64. Figure 4d shows that, in particular at low average 
C-rates, when the DoD is beyond 85%, the negative electrode capacity 
degrades more rapidly, while cells avoiding deep discharge have more 
preserved negative electrode capacities, in agreement with Fig. 3e. In 
addition, the DoD has no impact on the positive electrode capacity 
(Fig. 4e). We emphasize that Qne degrades less than Qpe (Fig. 4d,e), con-
tributing to the battery lifetime being dominated by Qpe degradation, 
as emphasized in Fig. 4a. Although these results provide insights on 
degradation modes, future studies to evaluate the impact of dynamic 
cycling at the material level are needed to deepen our understanding 
of the degradation mechanisms.
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Conclusions
We have pinpointed strong correlations between dynamic discharge 
profiles and battery ageing under non-accelerated conditions. We 
found that constant current is not representative of ageing under real 
EV driving and dynamic cycling enhances battery lifetime. In addition, 
time-induced ageing becomes dominant over cycling ageing, even at 
EV-relevant C-rates (≤0.4C). Furthermore, leveraging the diversity 
of our dynamic discharge profiles, we evidenced that low-frequency 
pulses, discharge current peaks and time-induced ageing, all charac-
teristic of real EV usage behaviour, play a decisive role in degradation 
trajectories.

This work shows that cycling experiments need to be carried out 
with realistic loads to capture degradation trends. The present dataset 
can be used to develop models to map degradation induced by constant 
current to degradation induced by dynamic cycling. There is a need to 
systematically adopt realistic cycling protocols when developing new 
battery materials and cell designs, not only in terms of optimization but 
also in terms of mechanistic understanding. Beyond battery research, 
this work illustrates the opportunities to use realistic testing to deepen 
our understanding of material and device ageing in physical sciences.

Methods
Ageing experiments
Ninety-two commercial EV energy lithium-ion cells (silicon oxide–
graphite/nickel cobalt aluminium) were cycled using a Maccor Series 
4000 battery cycler with four-point contact cylindrical cell fixtures 
(Korea Thermo-Tech and SpectraPower). The batteries were held at 
a constant temperature of 35 °C inside a CSZ temperature chamber 
(model ZPS-16-2-H/AC; Supplementary Fig. 13). The experiments were 
conducted in the SLAC-Stanford Battery Center for over 2 years. The 
data acquisition and management set-up is described in Supplemen-
tary Method 2. We encountered two cell failures, but each of the 47 
protocols described hereafter was duplicated (Supplementary Table 4). 
These protocols were designed on the basis of continuous-use EV 
applications (autonomous and non-autonomous) such as buses, taxis, 
commercial or industrial vehicles. Depending on battery pack sizing 
and applications, daily usage of 10 h or longer could be expected. As 
a result, the cells were continuously discharged until reaching the 
cut-off limit. Most of the discharge profiles did not include important 
rest periods, commonly found in consumer-driven EV profiles65. Of the 
four protocol types (Fig. 1), real driving cycles were the most realistic 
of EV driving, followed by the synthetic, periodic and constant current 
protocols in this order. We charged all the cells using the same constant 
current–constant voltage protocol (C/2 to 4.2 V, 0.05C cut-off).

Constant current protocols
To provide a baseline reference for the dynamic profiles, we incorpo-
rated constant current protocols into the experiment design. Within the 
constant current protocols, we tested four different discharge profiles, 
one consisting of a simple discharge and three others that included a 
storage period (rest) of 6 h at 5%, 50% or 100% SOC before completing 
the discharge (Fig. 1). The 6 h duration was a design choice to capture 
rest periods before, during or after discharge. These intermediate SOC 
values are defined by voltages, extracted from an open-circuit voltage 
curve obtained using a galvanostatic intermittent titration technique.

The aim was to concretely identify the effect of the SOC at rest on 
ageing when combined with cycling (rests at higher SOC are known to 
accelerate degradation in the context of calendar ageing8,66). This also 
emulates three different driving behaviours, depending on when users 
charge their vehicle. The current profiles of these protocols are shown 
in Supplementary Fig. 14 for a C/10 discharge current.

Periodic protocols
We define the first type of dynamic discharge protocols as ‘periodic 
protocols’. These consisted of a discharge pulse followed by a short 

charge pulse, intended to simulate a driving discharge segment, fol-
lowed by a regenerative braking charging segment, followed by a rest. 
The periodic protocols were designed to represent a specific aspect 
of a driving trip, for which we varied different parameters, such as the 
charge/discharge ratio, frequency and relative braking magnitude, and 
included a superposition of two signals.

A schematic representation of the structure of the periodic pro-
files for a single sequence is shown in Supplementary Fig. 15. For all 
periodic profiles, this sequence was repeated until the battery went 
from fully charged to the lower cut-off voltage (3.1 V). Five different 
periodic profiles were generated by varying the parametrization of the 
periodic sequence. See Supplementary Method 3 and Supplementary 
Tables 5 and 6 for more details. A single periodic sequence and a full 
discharge are shown in Supplementary Fig. 16 for all of the periodic 
profiles (plotted at an average C-rate of C/10).

Drive protocols
Real driving protocols were also tested. These contained driving data 
from two different cities (referred to as City 1 and City 2). They were 
also used to generate the synthetic profiles (see below). The two driv-
ing profiles were cycled at average C-rates of C/10 and C/16, which was 
achieved by properly scaling the current to the desired average C-rate. 
The driving profiles cycled at C/10 reached the lower cut-off voltage 
(3.1 V), while the two C/16 driving profiles (four cells) did not; these 
latter profiles were excluded from subsequent analyses but kept in 
the dataset for completeness. The profiles for the C/10 average C-rate 
case are plotted in Supplementary Fig. 17.

Synthetic protocols
Synthetic discharge protocols were designed to emulate trips between 
a start and end location. We tested several different synthetic profiles 
that captured highway driving, urban driving and a combination of 
the two, based on driving data from two cities. Synthetic profile 1a 
contained a single highway trip from City 1 followed by a rest. Synthetic 
profile 1b contained four consecutive highway trips from City 1 fol-
lowed by a longer rest. Profiles 2a and 2b contained characteristic urban 
driving trips from City 1 and City 2, respectively. Synthetic profile 2c 
contained a characteristic urban driving trip from the driving profiles 
of City 1 and City 2 combined. Finally, synthetic profile 3 captured 
mixed urban and highway driving obtained by concatenating profiles 
2a, 2b, 2c and 1a. These synthetic profiles were generated from the real 
city driving data from City 1 and City 2 using an algorithm previously 
developed by Moy et al.67 (for details, see ref. 41).

Highway-based duty cycles 1a and 1b (C/2 average) were excluded 
because the instantaneous current exceeded hardware limits and were 
replaced by a C/16 average protocol. Synthetic duty cycle 3 (C/2 aver-
age) was also excluded for the same reason.

As for the periodic profiles, all of the synthetic profiles were 
repeated until the batteries went from fully charged to the discharge 
cut-off voltage (3.1 V). A single sequence and a full discharge are shown 
in Supplementary Fig. 18 for each of the synthetic profiles (plotted at 
C/10 average C-rate).

Diagnostic cycles
To assess the extent of degradation induced by the ageing cycles, we 
applied standardized diagnostic cycles conducted periodically during 
the cycling experiments to probe the state of the batteries, as com-
monly reported in the literature8,68–70. Diagnostic cycles were run at 
cycle 0 (before any ageing cycles), then after 25, 50, 75 and 100 ageing 
cycles to provide higher granularity in diagnostic metric trajectories 
in the early degradation cycles and then after every 100 cycles.

The full diagnostic cycle applied to the batteries is shown in Sup-
plementary Fig. 19. A C/3 reset cycle removed the effects from the 
previous ageing cycle. A voltage-based pulse routine (Supplementary 
Fig. 20) and an HPPC routine (Supplementary Fig. 21), separated by 

http://www.nature.com/natureenergy


Nature Energy

Article https://doi.org/10.1038/s41560-024-01675-8

another C/3 reset cycle, were then carried out to extract discharge 
resistance metrics (Ohmic resistance (R0.03s), charge-transfer resist-
ance (R3s) and polarization resistance (R10s) were calculated using 
equation (1), as illustrated in Supplementary Fig. 22, where OCV is the 
open-circuit voltage before the pulse is applied, and I2 is the applied 
pulse current). Note that, due to data acquisition limitations, the Ohmic 
resistance was calculated 0.03 s after the start of the pulse, hence the 
term R0.03s. Finally, a C/40 and C/2 RPT were performed71. The protocols 
included in the diagnostic cycle (such as the RPTs) used a voltage range 
of 2.8–4.2 V. Further details on each diagnostic sequence are included 
in Supplementary Method 4.

Rx seconds =
Vx seconds after pulse −OCV

Io
(1)

EoL was defined as 85% SOH, using the discharge capacity data 
from the C/2 RPT to capture degradation due to both thermodynamic 
and kinetic effects. Non-monotonically decreasing capacity data points 
were ignored to ensure reliable EoL criteria. EFCs were obtained using 
equation (2).

EFC =
Total capacity throughput (including diagnostic cycles)

2 × Nominal capacity (2)

Fitting the SOH degradation curves with a simple linear model was 
insufficient and adding the X 0.5 dependence was critical to obtain good 
results, as discussed in Supplementary Method 5 and Supplementary 
Figs. 23 and 24.

We used the diagnostic cycle C/40 RPT to estimate the capacities 
of the positive electrode (Qpe), negative electrode (Qne) and lithium 
inventory (QLi) using a mechanistic fitting method based on the work 
of Dubarry and co-workers52–54. This approach has also been applied by 
Birkl et al.72, who experimentally confirmed the validity of this approach 
(for further details, see Supplementary Method 6 and Supplementary 
Figs. 25–28).

ML architecture
To understand why these different ageing profiles induce different 
degradation behaviours, we deployed an interpretable ML pipeline 
that included featurizing the ageing cycles, training XGBoost models 
and running SHAP analyses.

First, we parametrized the discharge profiles. We processed data 
from a single ageing cycle representative of the long-term cycling 
experiments using time-series current data only. We extracted a total 
of 12 parameters that could be related to real vehicle operation, such 
as the average C-rate, the current variance (normalized) or the charge/
discharge ratio. In addition, the current signal was Fourier transformed 
to recover the key peak frequencies in each discharge protocol. Sup-
plementary Method 7 provides more details about this featurization 
procedure and Supplementary Table 3 lists all features generated. For 
robustness and repeatability of our ML pipeline, we removed correlated 
features, as discussed in Supplementary Method 7 and Supplementary 
Fig. 29.

Due to the high dimensionality of the operating conditions space 
(input), relationships with EoL metrics (outputs) were not obvious. 
To deconvolute the impacts of individual protocol parameters, we 
applied explainable ML models. We used the discharge profile param-
eters as input features in an XGBoost ML model73 (using XGBRegressor 
in XGBoost with a wrapper from the scikit-learn library74) to predict 
selected target outputs. The XGBoost model was chosen for its high 
performance and flexibility. Its parameters are detailed in Supplemen-
tary Table 7. The outputs calculated for this analysis were EFCs, Qpe, 
Qne, QLi, R0.03s, R3s and R10s at EoL (degradation modes). The resistances 
were extracted from the HPPCs at 50% SOC during the discharge pulse. 
Predictions are shown in Supplementary Figs. 30 and 31.

We used SHAP analysis to calculate feature importance70,75. Compar-
ing SHAP values gives a statistical quantification of the importance of 
each discharge profile feature. Despite removing highly correlated fea-
tures, SHAP results still exhibited some dependence on the random seed. 
To address this issue, the average of 25 random seed runs is reported. The 
results were consistent across repeats (Supplementary Fig. 32) and dif-
ferent train–test splits (Supplementary Fig. 33). The variability in the EoL 
metrics is dependent on both the variability induced by the average C-rate 
(as illustrated in Fig. 2d) and the variability induced by protocol-specific 
characteristics. In this work, we were interested in explaining the vari-
ability not induced by the average C-rate. As a result, Fig. 3 represents the 
SHAP values for all features except the average C-rate. The same strategy 
was used in Fig. 4a,b to remove C-rate dependencies.

Data availability
The battery dataset is available via Stanford Digital Repository at 
https://purl.stanford.edu/td676xr4322. The data needed to replicate 
the analyses and figures are available on Github at https://github.com/
geslina. Source data are provided with this paper.

Code availability
The code needed to replicate the analyses and figures is available on 
Github at https://github.com/geslina.
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