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estimation in Lithium-ion batteries
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Accurate estimation of battery state of health is crucial for effective electric vehicle battery
management. Here, we propose five health indicators that can be extracted online from real-world
electric vehicle operation and develop amachine learning-basedmethod to estimate the battery state
of health. The proposed indicators provide physical insights into the energy and power fade of the
battery and enable accurate capacity estimation even with partially missing data. Moreover, they can
be computed for portions of the charging profile and real-world driving discharging conditions,
facilitating real-time battery degradation estimation. The indicators are computed using experimental
data from five cells aged under electric vehicle conditions, and a linear regression model is used to
estimate the state of health. The results show that models trained with power autocorrelation and
energy-based features achieve capacity estimation with maximum absolute percentage error within
1.5% to 2.5%.

The pressing concern of global warming is driving a global shift towards
electrified mobility. With the transportation sector contributing to
approximately 12% of all global emissions1, adjustments are required in
order to transition to a zero-emissions energy sector. Studies by the Inter-
governmental Panel on Climate Change1 and the International Energy
Agency2 emphasize the critical need for clean transportation solutions to
address theurgent issueof climate change. This has driven governments and
policymakers to innovate and collaborate in advancing electric vehicle (EV)
technologies.

Lithium-ion batteries (LIBs) are the preferred energy storage tech-
nology for EVs due to their superior power and energy density, which
enables longerdriving ranges compared toother battery technologies3. For a
compelling and sustainable EVmassmarket, accurate state of health (SOH)
estimation4 and remaining useful life (RUL)5 prediction of LIB systems are
essential. Existing methods for SOH estimation and RUL prediction can be
broadly divided into model-based and data-driven approaches. Model-
based estimation approaches rely on empirical or equivalent circuit models
(ECMs), or electrochemical models, and formulate estimation algorithms
around them. Various ECM-based filters for SOH estimation have been
proposed in the literature, includingExtendedKalmanFilter6, dual and joint
Extended Kalman Filter7, Unscented Kalman Filter8, Adaptive Extended
Kalman Filter9, Particle Filter10 and genetic algorithms11.

Other methods for SOH estimation and RUL prediction, utilizing
empirical degradation models, include Unscented Kalman Filters12 and
Particle Filters13. In a Bayesian Monte Carlo approach14, the parameters of
an empirical capacity model are updated to compute the posterior prob-
ability density function for capacity fade prediction.Despite their simplicity,
these methods lack explicit physical understanding and require significant
calibration effort. Also, electrochemical battery models15–17 which demand
increased computational power, have been employed, and adaptive obser-
vers based on the enhanced single particle model18,19 have been tested in a
battery-in-the-loop setup.

With the advancement in cloud computing technologies and Internet
of things, data-driven methods for battery SOH estimation, such as linear
regression, gaussian process regression, support vectormachine, or artificial
neural network, have gained traction in recent years20. For instance,multiple
linear regression models have been trained using descriptive features of the
voltage distribution21 or incremental capacity curves22 to predict capacity
fade and resistance increase. Among the more sophisticated prediction
models, Gaussian process regression models have been used for capacity
estimation23, taking as inputs different statistical features extracted from the
charging curves24. Furthermore, neural networks25 are used to establish
relationships between input features, such as equivalent circuit model
parameters and state of charge (SOC), and battery capacity fade. Regarding
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RULprediction, support vectormachines4 and random forests26 are utilized.
These methods are effective in forecasting the remaining operational life-
spanof batteries basedonhistorical data andoperational conditions. Battery
SOH estimation works can be classified into three primary categories based
on the dataset used for development. The first category includes datasets
acquired from field operations, which accurately reflect the aging phe-
nomena affecting batteries in real-world EVs driving27. However, a chal-
lenge with these datasets is the absence of a baseline for evaluating SOH. To
address this limitation, several studies28–30 utilize internal resistance as a
directmetric for assessingbattery SOH.Alternatively, some studies31 suggest
using the peak values derived from incremental capacity curves to overcome
this challenge. However, these metrics can be challenging to evaluate due to
their strong dependence on operating conditions, such as temperature.
Capacity fade is often measured using Coulomb counting32,33, which
involves integrating battery management system (BMS) current over a
limited SOC window. This method, however, may produce inaccurate
results due to high sensor noise and quantization in-vehicle sensors. Con-
versely, tests are conducted in a temperature-controlled environment34 to
ensure consistent capacity measurements that serve as ground truth. Here,
SOH is estimated using supervised learningmodels that directly utilize BMS
signals—such as voltage, current, SOC, and pack temperature—as inputs.
The second category of SOHestimationworks relies on datasets collected in
laboratory settings24,35–38. In these datasets, cells are cycled with current
profiles that do not accurately represent actual EV battery operation. As a
result, features computed using these datasets are not, in general, transfer-
able nor generalizable to real-world applications. The third category of
datasets utilizes data collected in laboratory settings aimed to mimic EV
real-use case scenarios. Examples include ARTEMIS39 and the Urban
Dynamometer Driving Schedule (UDDS)40. These datasets provide more
realistic conditions for testing and developing battery SOH estimation
algorithms, still providing ground truth capacity through periodic reference
performance tests (RPTs).

Using these datasets, different machine learning algorithms, such as
support vector machine4, Gaussian process regression, or neural network41,
have been used to estimate SOH for batteries undergoing EV driving cycles
using statistical features from current, voltage, and temperature signals as
input features. Other studies have proposed various physics-based health
indicators to estimate battery capacity fade, e.g., features derived from the
ECM42 or the time taken for voltage to rise from a low to a high level during
the charging process43. Another crucial physical quantity linked to battery
aging is internal resistance, with several nuanced indicators proposed in the
literature44,45. Most of these indicators are computed using ECMs and
algorithms suchas recursive least squares.However, thesemethods typically
come with increased computational requirements. Another approach27,46

involves evaluating the indicators during the vehicle acceleration (dis-
charge) and braking (charge), requiring less computational power and
facilitating its real-time implementation and integration within the vehicle
BMS.Another physics-based SOH indicator is charging impedance27, which
combines variations in electrolyte resistance, charge transfer resistance, and
polarization due to aging. This feature can be extracted from the initial
portion of the charging phase47. Additionally, the energy during charging
and discharging can offer valuable insights into battery degradation. Energy
metrics are typically calculated over extended portions of full charging
profiles to effectively estimate capacity fade48–50.

The health features used in previous studies are typically based on
idealized constant charging and discharging profiles. However, these pro-
files do not accurately reflect how electric vehicles are charged and dis-
charged in real-world conditions. Most research has focused on extracting
health indicators during complete, repetitive charging cycles, where the
battery is charged from a low SOC to a high SOC. In reality, charging
patterns are much more variable, and it’s uncommon for batteries to go
through full cycles or always follow the same charging profile. This dis-
crepancy makes it difficult to apply findings from controlled experiments
directly to real-world EV use.

The contributions of this work are the following. First, our work sys-
tematically formulates various SOH indicators based on domain knowledge
and proposes a framework for their integration into BMS. The proposed
SOH indicators include: power autocorrelation, resistance, charging
impedance, energyduring charging, and energyduringdischarging. Second,
unlike previous research51 that focused on voltage signal autocorrelation,
here, the power autocorrelation is used to quantify the battery’s power-
delivery capability over time.Additionally, the proposed SOH indicators are
derived from an experimental dataset40 that replicates real-world EVbattery
operation. Unlike most prior studies48–50 that rely on constant current dis-
charging profiles, in this work, energy consumption is evaluated during
discharging under realistic EV driving cycles. Moreover, a windowed
approach is proposed to assess energy consumption during charging,
thereby improving the effectiveness of the energy as an indicator of battery
health, especially in scenarios involving partial charging. Furthermore, we
modify the formulationof the charging impedance indicator27 by calculating
it over an optimized voltage window and averaging the values within this
range to improve accuracy and reliability in assessing battery health during
partial charging. Through correlation analysis, power autocorrelation,
energy during charging, and energy during discharging emerge as the most
effective indicators for capacity estimation. It is worth noting that the
proposed SOH indicators are agnostic to specific battery chemistries.
Moreover, theyoperate independently of cumulative data such as total aging
cycles or ampere-hour throughput. This design choice helps mitigate
inaccuracies that could arise from sensor errors or insufficient data. These
indicators can be easily evaluated during EV operation. This makes them
suitable for real-time deployment and integration into existing BMS
strategies.

The battery capacity is estimated through the machine learning pipe-
line shown in Supplementary Note 1 where 1) SOH indicators are first
extracted from the experimental dataset40, 2) the correlation between the
indicators andSOHis analyzed through a regression analysis, and3) a linear
regression model (LRM) is trained to estimate capacity fade. The results
show that models trained using power autocorrelation and energy-based
features obtain capacity estimation with absolute percentage errors (APE)
ranging between 1.5% and 2.5%.

Previous works that used linear regression models to estimate battery
SOH21,22, are based on features selected over simplistic charge/discharge
profile not representative of EV driving.

Results
The SOH indicators are extracted using data from five Nickel Manganese
Cobalt (NMC)/Graphite cells40 (reported in Table 1 and detailed in Sec. Cell
cycling and experimental dataset). In this section, a thorough analysis of
each indicator and regression analysis is carried out, and the estimation
results obtained by the linear regression model are shown.

SOH indicators analysis
Power autocorrelation function. The autocorrelation function of the
battery’s power signal, evaluated during discharge, has shown to offer
valuable insights into the battery SOH51. Assuming that discharging
occurs periodically with an identical current profile, the power

Table 1 | Battery cells

Cell identifier CC-a [1/h] RPTs [#] Cycles [#]

Cell V4 C/4 10 244

Cell W5 C/2 14 369

Cell W7 C/4 5 141

Cell W8 C/2 14 347

Cell W9 1C 14 341

Cells identifiers, charge C-rate, total number of RPTs and total number aging cycles of the battery
cells40 used in this work. Tests were conducted at a controlled temperature of 23 °C. See
Supplementary Note 2 for further information on the dataset.
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autocorrelation PAutocorr indicator varies as the battery ages, providing a
method to monitor battery health.

Of particular interest is the change in the central peak of the power
autocorrelation function (see Fig. 1a). The reduction in this peak, defined as
PAutocorr,loss = (PAutocorr,fresh − PAutocorr,i)/PAutocorr,fresh ⋅ 100) where
PAutocorr,fresh is the central peak value for the fresh cell and PAutocorr,i is the
central peak value during cycle i, correlates with a decrease in capacity. This
relationship is illustrated in Fig. 1b, where the power autocorrelation loss
shows a strong linear relation with capacity loss. Capacity loss is calculated
as Qcell,loss = (Qcell,fresh − Qcell,i)/Qcell,fresh, with Qcell,fresh and Qcell,i repre-
senting the fresh cell capacity and the cell capacity at cycle i, respectively.

Despite the promising potential of this indicator for estimating capa-
city loss, it is important to highlight that the periodicity of the current profile
may not hold true in real-driving conditions. Nevertheless, this study sug-
gests that this indicator can be engineered in an offline setting, for example,
as part of onboard diagnostics routines. In this work, the power auto-
correlation functionproves tobe aneffective SOHindicator given consistent
usage of the UDDS discharge profile.

Resistance. Abrupt charge and discharge events, related to braking and
acceleration maneuvers, respectively, offer the opportunity to evaluate
the battery’s internal resistance27. As the battery ages, various factors such
as electrode degradation, electrolyte breakdown, and formation of pas-
sivation layers contribute to an increase in its internal resistance, R. This
increase limits the flow of ions within the battery, reducing conductivity
and affecting the battery’s power output capability. As resistance
increases, less power can be delivered to the motors due to higher Joule
losses.

Demanding acceleration and braking events lead to changes in the
battery current, referred to as current peaks. The resistance is calculated at
each discharge current peak corresponding to an acceleration event over the
discharging phase of the aging cycle, as described in Sec. Definition of SOH
indicators. It is important to note that the battery’s internal resistance is
influenced by factors such as SOC (see Supplementary Note 3), C-rate, and
temperature. For accurate aging assessments in real-world scenarios,
resistance should be measured under consistent conditions throughout the
battery’s lifespan. In this work, temperature effects on this indicator are not
studied since the cells are maintained in a controlled temperature
environment.

A single resistance value is computed by averaging the resistances
calculated during each discharge phase, which consists of multiple con-
catenated UDDS cycles between two charging phases, as further detailed in
Sec. Cell cycling and experimental dataset, to minimize noise in the resis-
tance, as shown in Fig. 2. This method effectively minimizes noise and
variations in resistance measurements, offering a more consistent and
representative value to assess battery health. Figure 2(a) highlights the
importance of determining the average resistance. Despite the large stan-
dard deviation observed in the distribution of internal resistances for each
discharge event, the average values, represented by green points, clearly
exhibits an increasing trend as the battery ages.

Additionally, Fig. 2b shows the percentage increase in average internal
resistance for all five cells, correlated with their corresponding capacity
losses. This increase is calculated asRincrease = (Ri−Rfresh)/Rfresh ⋅ 100,where
Rfresh represents the average internal resistance measured during the first
discharging phase of the cell, and Ri denotes the average internal resistance
determined during the discharging at cycle i.

Charging impedance. The charging impedance27ZCHG represents the
battery’s resistance to the flow of electrons during charging. Variations in
ZCHG reflect how this resistance evolves as the battery ages. The ZCHG

Fig. 1 | Power autocorrelation. a Power auto-
correlation (PAutocorr) profiles calculated over dis-
charge profiles for cell W8 throughout its lifetime.
b Percentage decrease of the peak amplitude at null
delay (PAutocorr,loss) is plotted against the percentage
capacity loss (Qcell,loss).

(a) (b)

(a)

(b)

Fig. 2 | Resistance. a Internal resistance (R) is plotted as a function of the current
peak number during the discharge phases throughout the cell’s life span for cell W8.
Shades of gray represent different batches of aging cycles. Batch j is defined as the
period between the jth and the (j + 1)th reference performance test (RPT). Green
points indicate the average internal resistance. b Percentage increase in internal
resistance (Rincrease) relative to capacity loss (Qcell,loss) for all five cells.
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profiles for three cells (V4,W8, andW9), charged at differentC-rates, are
illustrated in Fig. 3 as a function of cell degradation and SOC.

The rising trend of ZCHG over cells’ lifetime aligns with the under-
standing that, as the battery ages, its overpotential increases due to factors
such as the growth of the Solid-Electrolyte Interface, increased of contact
resistance, and changes in reaction kinetics and transport dynamics6,52.
Additionally, it is important to note that the ZCHG profiles reach different
SOC values at the end of charge (at 4 V). This phenomenon can be attrib-
uted to the varying polarization losses resulting from the different C-rates
used during charging for cells V4, W8, andW953. The charging impedance
indicator is computed by averaging the impedance within the specific vol-
tage range [Vin = 3.8 V, Vfin = 3.9 V], which is selected through the analysis
reported in Supplementary Note 4. As shown in Fig. 4b, the increase in
charging impedance (ZCHG,increase = (ZCHG,i−ZCHG,fresh)/ZCHG,fresh ⋅100) is
highly correlatedwith capacity loss across all the battery cells. Therefore, the
charging impedanceZCHG can be used directly as a feature to correlate with
capacity loss.

Energy during charging. The energy during charging indicator, Ech,
quantifies the energy stored in the battery during charging. This is
computed by integrating the battery powerwithin a specific voltage range
[Vin,ch, Vfin,ch] (as detailed in Sec. Definition of SOH indicators). Fig-
ure 5a illustrates Ech in relation to the charging duration required to reach
Vfin,ch from Vin,ch. Figure 5b shows the energy during charging over the
voltage range [Vin,ch = 3.6 V,Vfin,ch = 3.9 V] as a function of capacity loss.
The y-axis of Fig. 5b quantifies the percentage energy loss during char-
ging for each cell. Energy loss during charging for each cell is computed as
Ech,loss = (Ech,fresh − Ech,i)/Ech,fresh ⋅ 100, where Ech,fresh is the energy for
the fresh cell and Ech,i is the amount of energy the battery is charged at
during aging cycle i of the same cell. These results show that capacity loss
is linearly correlated with energy loss during charging over the selected
voltage range.

Energy during discharging. The energy during discharging indicator,
Edis,quantifies the energy delivered by the battery during its discharge

phase. This is computed by integrating the battery power over a specific
voltage range [Vin,dis, Vfin,dis], as detailed in Sec. Definition of SOH
indicators. Figure 5c illustrates Edis in relation to the discharging duration
needed to reach Vfin,dis from Vin,dis. Figure 5d displays the energy during
discharging over the voltage range [Vin,dis = 3.85 V, Vfin,dis = 3.4 V] as a
function of capacity loss. The y-axis of Fig. 5d quantifies the percentage
energy loss during discharging for each cell. Energy loss during dis-
charging for each cell is computed using Edis,loss = (Edis,fresh − Edis,i)/
Edis,fresh ⋅ 100, whereEdis,fresh represents the energy of a fresh cell, andEdis,i
is the energy charged during aging cycle i of the same cell. The results
indicate a linear relationship between capacity loss and energy loss during
discharging within the selected voltage range. In real EV scenarios, the
variability in discharging rates complicates the consistent computation
and monitoring of Edis. A practical approach is to compare Edis across
driving scenarios with similar driving styles to account for this variability.

SOH indicators regression analysis. The health indicators are pre-
processed according to the pipeline outlined in Supplementary Note 1.
This process involves calculating incremental values for each feature:
ΔPAutocorr (power autocorrelation), ΔRch (resistance), ΔZNORM

CHG (nor-
malized charging impedance), ΔEch (energy during charging), and ΔEdis
(energy during discharging). These incremental values are derived by
subtracting the initial feature value, measured during the first aging cycle,
from the value at each subsequent aging cycle i throughout the cell’s life
cycle. Additional details are provided in Sec. Methods. In this work, we
use features’ incremental values to simplify the detection of aging trends.
For each cell, we assess the correlation between its capacity loss and
feature variations using Pearson’s correlation coefficient r, defined as:

r ¼
PN

i¼1ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðXi � XÞ2 PN

i¼1 ðYi � YÞ2
q ; ð1Þ

where Xi represents the value of a specific incremental feature for a given
cell at the i-th aging cycle, Yi is the corresponding capacity loss value for

Fig. 3 | Charging impedance (ZCHG) as function of
state of charge (SOC) and cycle number for cells
V4 (a), W8 (b), and W9 (c). The yellow curve
represents fresh cell conditions, while the dark blue
curve denotes aged cell conditions.

(a) (b) (c)

Fig. 4 | Charging impedance. a Charging Impe-
dance (ZCHG) as a function of voltage for cell W8.
Charging impedance is averaged over the voltage
range [Vin = 3.8 V, Vfin = 3.9 V]. b Percentage var-
iation of averageZCHG (ZCHG,increase) as a function of
capacity fade (Qcell,loss).

(a) (b)

https://doi.org/10.1038/s44172-024-00304-2 Article

Communications Engineering |           (2024) 3:168 4

www.nature.com/commseng


the same cell at that cycle, X is the mean of the incremental feature
values, Y is the mean of the capacity loss values across all cycles, and N is
the total number of data points (aging cycles analyzed). The results are
shown in the heatmap of Fig. 6a. Each cell shows a high Pearson’s
correlation coefficient between capacity loss and each feature, underlying
that the variations in these features are consistent indicators of aging
across all the cells. However, since feature trends can vary across different
cells, an additional analysis was conducted to identify features with more
generalizable trends. We performed a correlation analysis between the
extracted incremental features and capacity fade across all cells. This
approach helps identify features that consistently reflect cell aging,
regardless of individual cell differences. Figure 6b shows that some
indicators generalize better across different cells.

We select features to train an estimation model according to two dif-
ferent cases. In the first case, Power autocorrelation (PAutocorr) is selected, as
the sole feature, due to its superior overall performance. In the second case,
we choose the best-performing feature for charging (energy during char-
ging, Ech) and the best-performing feature for discharging (energy during
discharging, Edis), excluding power autocorrelation.

The strong correlation between the extracted features and capacity fade
can be attributed to the physical phenomena driving battery degradation.
The linear relationship observed between charging impedance, resistance,
and energy features with respect to charge throughput aligns with the linear
trend of the capacity fade curve54. Given that the cells are cycled within a
linear SOC window of 80% to 20% at ambient temperature, Solid-
Electrolyte Interface layer growth is considered the dominant aging
mechanism, leading to a linear capacity decrease trajectory. However, to
thoroughly assess the aging modes present in the cells, a post-mortem
analysis would be necessary.

SOH estimation
In this paper,weuse capacity calculated atC/20duringRPTs as SOHmetric.
Additionally, for the purpose of training the machine learning models, the
experimental C/20 capacity points are augmented using a linear data aug-
mentation method as discussed in Sec. Data augmentation approach.

The features selected through the regression analysis are utilized to
estimate capacity loss using a data-driven model. The performance of var-
ious models, namely, LRM, feed-forward neural networks, autoregressive

Fig. 6 | Correlation analysis. a Heatmap showing
the Pearson’s correlation coefficients between
incremental power autocorrelation (ΔPAutocorr),
incremental energy during charging (ΔEch), incre-
mental energy during discharging (ΔEdis), normal-
ized incremental charging impedance (ΔZNORM

CHG ),
and incremental resistance (ΔR) with capacity loss
for each individual cell. bHistogram illustrating the
Pearson’s correlation coefficients between incre-
mental features and capacity loss across all cell data.
Note that the correlation between the capacity of cell
W7 and ΔR is not reported due to some computed
resistances being deemed unreliable because of data
acquisition issues (Sec. Cell cycling and experi-
mental dataset and SupplementaryNote 5), and thus
interpreted as outliers during the pre-
processing phase.

(a) (b)

Fig. 5 | Energy during charging and discharging.
a Energy during charging (Ech) as a function of
charging time within the voltage range
[Vin,ch = 3.6 V,Vfin,ch = 3.9 V] for cell W8 through-
out its cycle life. b Energy loss during charging
(Ech,loss) across all 5 cells shows a linear correlation
with capacity loss (Qcell,loss). c Energy during dis-
charging (Edis) as a function of discharging time
within the voltage range [Vin,dis = 3.85 V,
Vfin,dis = 3.4 V] for cell W8 throughout its cycle life.
d Energy loss during discharging (Edis,loss) for all five
cells demonstrates a linear correlation with capacity
loss (Qcell,loss). (b)

(c) (d)

(a)
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moving average with extra input, and recurrent neural networks, is com-
pared using the same training and testing datasets, as detailed in Supple-
mentary Note 6. Despite its simplicity, the LRM achieves estimation
performance comparable to that of more complex models, owing to the
strong linear correlation between the SOH indicators and capacity degra-
dation. Therefore, the LRM is chosen for capacity loss estimation due to its
lower computational time. Additionally, the LRM has the advantage of
requiring fewer parameters to tune and fewer training samples compared to
neural network-based models55. The LRM is trained using distinct sets of
incremental SOH features: first with power autocorrelation, and then with
energy during charging and energy during discharging (see Sec. SOH
indicators regression analysis). Additionally, the estimation capabilities of
the selected features are evaluated in twoScenarios. In Scenario 1 the LRM is
trained exclusively on the data from cellW8 and tested on the other cells. In
Scenario 2 the LRM is trained using data from all cells except the test cell. In
the second Scenario, for cross-validation, the data is split into two subsets:
one for the target cell and another for the remaining cells. The model is
trained on the data from the remaining cells and tested on the data from the
target cell.

Since the autocorrelation function of the power signal ΔPAutocorr
exhibits the highest correlation with capacity fade, the data-driven model is
initially trainedusingusingΔPAutocorr as input. Figure 7displays the capacity
estimation results for both ΔPAutocorr and the energy-based features. In
Scenario 1, the training dataset consists solely of data from cellW8, while in
Scenario 2, it includes data from all cells except the test cell. The absolute
percentage error (as defined in Sec. Methods) remains consistently below
1.5%, underscoring the relevant information provided by this individual
feature.Moreover, using amore extensive set of training data frommultiple
cells (Scenario 2) does not improve estimation accuracy, leading to conclude
that ΔPAutocorr is effective even with limited data. However, this feature has
limitations in real-world scenarios and is better suited for offline diagnostics
rather than online applications. It is also important to note that gaps in the
observed capacity curves are due to voltagemeasurements anomalies, which
resulted in unreliable feature values. This irregularity is attributed to uni-
dentified equipment issues, as discussed in Sec. Cell cycling and experi-
mental dataset and detailed further in Supplementary Note 5.

The LRM is subsequently trained using features that can be calculated
during vehicle operation, specifically during driving and charging. The
features selected for their high linear correlation with capacity during
charging and discharging are energy during charging (ΔEch) and energy
during discharging (ΔEdis), respectively. As illustrated in Fig. 7, accurate
capacity fade estimation is achieved with these features. Notably, when the
LRM is trained using data from only cell W8 (Scenario 1), it achieves an
absolute percentage error below 2.5% when tested on data from the other
four cells. This result highlights the strong estimation capability of these
features evenwith a limited dataset. For amore comprehensive analysis, the
same estimation model is trained using data frommultiple cells, leading to
improved performance with the larger dataset. When using data from four
cells for training (Scenario 2) and testing on the remaining cell, the absolute
percentage error is below1.6%.Notably, the estimationmodels performwell
even for cells likeW7 andW5,where somedata ismissing. This adaptability
of the features and estimation models to partially available data is particu-
larly advantageous in real-world scenarios, where acquiring complete EV
battery datamaynot alwaysbe feasible.Moreover, to evaluate if adding extra
features alongside the energy-based indicators could enhance model esti-
mation capabilities, the LRM was also trained with incremental resistance
and charging impedance included as additional inputs. However, the per-
formance of the model with these additional features was worse than when
using only energy during charging and discharging, as shown in Fig. 8. This
indicates that the inclusion of resistance and charging impedance may
introducemore noise than valuable information. It should be noted that for
cell W7, only charging impedance is used as an additional feature, as the
resistance data was compromised due to acquisition issues discussed in Sec.
Methods. The superior performance of energy during charging and dis-
charging as SOH indicators, compared to the increase in resistance or

charging impedance, can be attributed to several factors. Energy loss reflects
not only resistance increases but also other factors such as heat generation,
electrode degradation, and Solid-Electrolyte Interface formation, which
impact overall energy efficiency. Additionally, the integration of the power
signal offers a comprehensive measure of battery energy dynamics
throughout an entire cycle, whereas resistance and charging impedance are
computed over shorter time periods, making themmore sensitive to short-
term fluctuations.

Conclusions
This work extracts and evaluates five knowledge based SOH indicators,
demonstrating their effectiveness as inputs to ML models for estimating
capacity fade. The formulation of these indicators is guided by battery
domain knowledge, allowing for the quantification of internal state varia-
bility due to battery degradation. Since none of the indicators rely on
cumulative information (such as cycle number or Ah-throughput), they are
suitable for real-world applications even with partial battery history. The
high correlation between the indicators and capacity indicates that battery
aging mechanisms leading to capacity fade are directly related to energy
decrease and impedance rise. Two subsets of the engineered indicators,
i.e.,power autocorrelation, energy during charging, and energy during dis-
charging, were utilized to train the estimation model for accurate cell
capacity estimation. Due to their high correlation with capacity fade,
combining energy during charging and energy during discharging as inputs
results in accurate SOH estimation, with an absolute percentage error
consistently below 2.5%. Conversely, power autocorrelation is the most
informative feature, enabling precise capacity fade estimation with an
absolute percentage error below 1.5%, even with limited training data.
However, its effectiveness is influenced by the periodicity of discharging
events. Consequently, power autocorrelation cannot be directly used as an
SOH indicator in real-world driving scenarios but could be incorporated
into a diagnostic tool by applying a periodic current signal to the battery
when it is not in use. These findings suggest that domain knowledge-based
features have the potential to be used as online tools for real-time capacity
estimation. However, the model’s effectiveness may be limited in practical
applications. The dataset used in this study does not account for tempera-
ture variations or practical discharge events typical in real-world battery
usage. Additionally, the current and voltage signals used to extract features
have a high signal-to-noise ratio, which may not always be present in EV
batteries.Having demonstrated the potential of these features on the studied
dataset40, further investigations will be conducted using field data as future
work. While this study primarily focuses on capacity estimation, utilizing a
larger dataset could allow for the application of these indicators in RUL
prediction. Extending the method proposed in this paper, these indicators
could be integrated into forecastingmodels, enabling the BMS to anticipate
and effectively manage battery capacity degradation.

Methods
Cell cycling and experimental dataset
The experimental dataset40 used in this work involves INR21700-M50T
battery cellswith graphite/silicon anode andnickelmanganese cobalt oxides
(NMC) cathode tested over a period of 30 months. For each cell, periodic
RPTs, including C/20 capacity tests, Hybrid Pulse Power Characterization,
and Electrochemical Impedance Spectroscopy, were conducted to assess the
battery aging from fresh conditions. The cells underwent aging cycles as
described in Supplementary Note 2. Each cycle includes a Constant
Current-Constant Voltage (CC-CV) charge phase followed by a discharge
phase. Specifically, there are two charge phases. Once the batteries reach
20% SOC (from the discharge phase), they are charged through the CC-a
phase (at differentC-rates) until reaching 4 V. They then continue charging
at C/4 until 4.2 V, followed by the CV phase until the current drops below
50mA. The discharge phase, using concatenated UDDS driving profiles,
simulates EV battery discharging, reducing the cell’s SOC from80% to 20%.
Aging cycles conducted between the jth and (j+1)th RPTs for each cell are
grouped into the jth batch of aging cycles. Supplementary Note 2 details the
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(b)(a)

(d)(c)

Fig. 7 | SOH estimation results from the linear regression model (LRM) using
power autocorrelation (LRMPAutocorr

), and energy during charging and dischar-
ging (LRMEch ;Edis

) as input features versus the aging cycle number (Cycle). Pro-
files of capacity loss and estimation error for cells V4 (a), W5 (b), W7 (c), and W9
(d). Augmented capacity points (obtained as discussed in Sec. Data augmentation
approach) are shown in red. SOH estimation using power autocorrelation as input is
shown in brown (with training data from cell W8) and yellow (with training data

from all cells except the test cell). The dark blue and light blue lines show SOH
estimation using energy features as input, with training data from cell W8 (dark
blue) and from all available cells except the test cell (light blue). Gaps in the capacity
curves for cells W5 (b) and W7 (c) are due to voltage measurements anomalies
affecting the reliability of feature values (see Sec. Cell cycling and experimental
dataset and Supplementary Note 5). The capacity drop for cell W8 (d) results from
issues with the aging protocol implementation.
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(b)(a)

(d)(c)

Fig. 8 | SOH estimation results from the linear regression model (LRM) using
charge and discharge energies, charging impedance, and resistance as features
versus the aging cycle number (Cycle). The capacity loss and estimation error
profiles for cells V4 (a),W5 (b),W7 (c), andW9 (d) are shown. AugmentedCapacity
points (obtained as discussed in Sec. Data augmentation approach) are shown in red.
Three scenarios are displayed: blue represents the LRM output trained solely with

energy during charging and energy during discharging (LRMEch ;Edis
); the light purple

represents the LRM output trained with energy during charging, energy during
discharging along with charging impedance (LRMEch ;Edis ;ZCHG

); the dark purple
represents the LRM output trained with energy during charging, energy during
discharging, charging impedance, and resistance (LRMEch ;Edis ;ZCHG ;R

). All models are
trained exclusively using data from cell W8.
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number of aging cycles in each batch for all cells used in this study. Among
the ten cells (G1, V4, V5, W3, W4, W5, W7, W8, W9, W10) in the dataset,
five (V4,W5,W7,W8,W9) are used in this study, as detailed inTable 1. The
remaining cellswere excluded for the following reasons.CellsW3,W10, and
G1 were charged using a fast-charging 3C current profile during the CC-a
phase, resulting in a very short charging duration interval that hindered
feature extraction. Cell V5 was excluded due to insufficient aging, having
undergone only 59 cycles with less than a 3% capacity decrease from the
beginning of life. Cells W4, W5, and W7 were reported to have voltage
measurements anomalies due to experimental issues, as noted in the
“README” file of the dataset40 and detailed in Supplementary Note 5.
Specifically, cell W4 was affected for 310 cycles out of the total 760.

Data augmentation approach
This work uses capacity to describe battery SOH. Given the limited number
of RPTs, we have adopted an approach that uses data augmentation with
linear interpolation for training purposes. For each cell, to assign a capacity
value at every aging cycle i contained in batch j, we use the capacity values
measured at the j-th and (j+1)-thRPTsandestimate the capacity for cycle i,
Qi as follows:

Qi ¼
i� cycleRPTj

cycleRPTjþ1 � cycleRPTj

× QRPT
jþ1 � QRPT

j

� �
þ QRPT

j ð2Þ

where cycleRPTj and cycleRPTjþ1 denote the numbers of the aging cycle pre-
ceeding the j-th and (j + 1)-th RPTs, respectively, while QRPT

j and QRPT
jþ1

represent the capacity valuesmeasured during these tests for the considered
cell. Index i ranges from1 to the number of aging cycles a cell has undergone
(Table 1, fourth column),while index j ranges from1 to the number of times
the cell has been tested (Table 1, third column).

For example, capacity for cell V4 at aging cycle #30, namely QV4
30 , is

defined as:

QV4
30 ¼ 30� cycleRPT;V42

cycleRPT;V43 � cycleRPT;V42

× QRPT;V4
3 � QRPT;V4

2

� �
þ QRPT;V4

2

ð3Þ

where cycleRPT2 ¼ 20 and cycleRPT3 ¼ 45, since cell V4 has undergone 20
aging cycles before RPT #2 and 45 aging cycles before RPT #3.

Definition of SOH indicators
Vch andVdis represent the voltage profiles during charging and discharging,
respectively. Ich and Idis, are the current profiles during charging and dis-
charging, respectively. Voltage variations due to acceleration peaks during
discharging are indicated with ΔVacc, and the corresponding current var-
iations with ΔIacc. The autocorrelation function measures the linear rela-
tionship between a signal x(t) and its time-delayed version x(t+ τ), where τ
is the time delay. In this work, power autocorrelation during the discharge
phase is quantified by correlating the power signal with its delayed copies.
First, cell power is calculated from the voltage and current signals as follows:

PðtÞ ¼ VdisðtÞ � IdisðtÞ ð4Þ

The autocorrelation function of the power signal ρ̂τ is computedwith delays
τ limited to a range [− τmax, τmax]. Inour study, τmax is set to3000 s. For each
value within this range, ρ̂τ is computed as follows:

ρ̂τ ¼
XT
t¼τþ1

ðPðtÞ � �PÞðPðt � τÞ � �PÞ ð5Þ

whereT is the durationof thedischargingphase,P(t) is thepower at time t, �P
is the average of thepower over the timewindowT, andP(t− τ) is the power

at instant t− τ. The power autocorrelation indicator PAutocorr is defined as
the autocorrelation with null delay: PAutocorr ¼ ρ̂τ¼0.

The resistance R indicator is extracted for each aging cycle during the
discharging phase using the following procedure. First, acceleration peaks
are identified during the discharge27 as explained in Supplementary Note 7.
Then, the resistanceRpeak corresponding to the l

th current peakwithin the ith

aging cycle is computed as follows:

Ri
peak;l ¼

ΔVi
acc;l

ΔIiacc;l
ð6Þ

where ΔVi
j and ΔIij are the voltage and current variations at the peak

occurrence, respectively, as shown in Supplementary Note 7. Thus, P
resistances Ri

peak;1;R
i
peak;2; . . . ;R

i
peak;P are computed for each ith aging cycle,

with i = 1,…,N, whereN represents the number of aging cycles during the
cell’s life and P is the total number of acceleration peaks within each cycle.
Note that the number of total accelatrion peaks, P, varies with the aging
cycle. Subsequently, a single resistance value for each aging cycle is obtained
by averaging the P resistances extracted from all acceleration peaks within
that cycle:

Ri ¼
PP

l¼1 R
i
peak;l

P
i ¼ 1; 2; . . . ;N ð7Þ

The instantaneous battery charging impedance ZCHGist
is computed

over the CC-a phase27 as follows:

ZCHGist
ðtkÞ ¼ �VchðtkÞ � Vchðtk�1Þ

Ich
ð8Þ

where Vch(tk) − Vch(tk−1) is the voltage difference over the interval
Δt = tk − tk−1, and Ich is the constant charging current during the CC-
a phase.

The choice of the time window Δt is crucial. Increasing Δt helps filter
out noise from the voltage difference in the numerator of Equation (9) and
reduces current quantization effects. However, too large a window can
excessively filter and result in information loss. Therefore, Δt is tuned to
balance noise reductionwhile preserving the information content ofZCHGist

.
The time intervals Δt are selected based on the C-rate: Δt = 60 s for C/4,
Δt = 30 s for C/2, and Δt = 1 s for 1C charging events.

After extracting the instantaneous battery impedance for all the time
intervals of the charging phase, the ZCHG indicator is computed for each
charging phase by averaging the ZCHGist

within a specific voltage range
[Vin, Vfin]:

ZCHG ¼ 1
M

Xtfin
tk¼tin

ZCHGist
ðtkÞ ð9Þ

where M is the number of ZCHGist
measurements within the considered

voltage range, and tin and tfin are the initial and final time instants such that
V(tin) =Vin andV(tfin) =Vfin, respectively. The voltagesVin andVfinwere set
to 3.8Vand3.9V, respectively, basedon the sensitivity analysis presented in
Supplementary Note 4.

An alternative formulation would be to compute the average of ZCHGist

within a SOC range instead of a voltage range. However, we opted for the
voltage-based formulation to avoid estimation errors affecting the SOC,
which is a non-measurable quantity generally estimated by the BMS.
Additionally, a different definition of charging impedance, discussed in
Supplementary Note 8, has been excluded in the present work due to its
lower correlation with capacity fade.

Finally, the energyduring charging anddischarging is computedon the
CC-a charging segment (see Supplementary Note 2) and driving UDDS
profile, respectively, by integrating the electrical powerwithin afixedvoltage
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window, specifically [Vin,ch, Vfin,ch] and [Vin,dis, Vfin,dis]:

Ech ¼
Z tfin

tin

VchðtÞ � IchðtÞ dt ð10Þ

Edis ¼
Z tfin

tin

VdisðtÞ � IdisðtÞ dt ð11Þ

where Vch is the cell voltage during charging, Ich is the cell current during
charging and tin and tfin are the initial and final time instants such that
Vch(tin) =Vin,ch andVch(tfin) =Vfin,ch. Similarly,Vdis is the cell voltage during
discharging, Idis is the cell current during discharging and tin and tfin are the
initial and final time instants such that Vdis(tin) = Vin,dis and
Vdis(tfin) = Vfin,dis. Thus, energy is not only a function of the C-rate but also
depends on the voltage window over which it is calculated.

We selected the fixed voltage windows [Vin,ch = 3.6 V, Vfin,ch = 3.9 V]
and [Vin,dis = 3.85 V, Vfin,dis = 3.4 V] for computing Ech and Edis, respec-
tively, to bypass the initial and final stages of charging and discharging,
which are potentially prone to noise.

Sensitivity of charging energy to voltage window
To assess the feasibility of using energy during charging for partial charging
profiles, the correlation between Ech and capacity loss was quantified across
different voltage ranges. First, the interval [Vin,ch,Vf,ch]wasdivided into sub-
intervals of 0.25 V amplitude, and the energy was computed for each sub-
interval.

As shown in Fig. 9, there is a strong correlation between energy during
charging and capacity loss across all voltage sub-intervals. These results
show that energy can be effectively used to estimate the SOH for partial and
narrow charging periods. The analysis indicates that the voltage interval
with the highest correlation also depends on the charging rate. This insight
facilitates straightforward integration into the BMS.

Pre-processing and incremental indicators
Data pre-processing is essential for effectively using SOH indicators in data-
driven algorithms. A critical step is removing outliers—data points that
deviate from the majority. Outliers can affect feature extraction and
machine learningmodel performance. Therefore, a careful approach is used
to removeoutlier-containingdata, ensuringmore robust and reliable feature
representation. A second step of the pre-processing phase is the computa-
tion of the incremental features, denoted byΔ. This subsection explains how
to obtain these features, using incremental resistances as an example.

For each cell in the dataset, the vector of incremental resistances ΔR is
calculated as follows:
1. For each aging cycle ith, i = 1,…,N, the resistance during the discharge

phase over acceleration peaks is calculated as a function of SOC. R1

represents the average resistance over the SOC range of 80% and 20%
during discharge. The resulting resistance vector is:

R ¼ ½R1;R2; . . . ;RN � ð12Þ

whereR1 is the average fresh cell resistance andRN is the average resistance at
the last cycle.

(b)(a)

(c)

Fig. 9 | Impact of voltage range, C-rate and charging cycle number on energy
during charging. The amount of energy during charging (Ech) depends on the
voltage range and the charging rate. As the charging rate increases (from C/4 for cell

V4 (a), to C/2 for cell W8 (b), to 1C for W9 (c)), the peak in charging energy shifts
towards higher voltage ranges, i.e., [3.675 V - 3.7 V] at C/4, [3.7 V - 3.725 V] at C/2
and [3.825 V - 3.85 V] at 1C.

https://doi.org/10.1038/s44172-024-00304-2 Article

Communications Engineering |           (2024) 3:168 10

www.nature.com/commseng


2. Obtain the incremental resistance vector by subtracting R1 from each
value in R.

ΔR ¼ R� R1 ð13Þ

This approach ensures that the first element of the incremental vector
for each feature is zero, facilitating the comparison of aging trends across
cells. Additionally, the charging impedance vector ZCHG requires further
pre-processing due to its dependency on the C-rate (see, Fig. 3. this feature
strongly depends on the C-rate at which it is computed. To standardize
across different C-rates, the incremental vector ΔZCHG is normalized using
the fresh cell impedance value:

ΔZNORM
CHG ¼ ΔZCHG

Z1
CHG

ð14Þ

where Z1
CHG is the charging impedance calculated over the first aging

cycle in Batch #1 in the voltage range [3.8 V - 3.9 V] as described in Sec.
Definition of SOH indicators. Normalization reduces variations from
different charging rates, providing a consistent feature representation.
This pre-processing step is crucial for evaluating the ML model across
cells cycled at various rates, effectively excluding C-rate as a training
feature. It ensures a more refined data representation for machine
learning algorithms.

Estimation model
In this work, the LRM estimates capacity fade due to its strong linear
correlationwith SOH indicators. The LRM relates the response variable y to
the input vector u as follows56:

yðtÞ ¼ β0 þ βuðtÞ þ ϵðtÞ ð15Þ

where ϵ represents model error, capturing deviations between the model
and observed data. Coefficients β are determined using the least-squares
method, which minimizes the model error on the training dataset. To
evaluate the accuracy of the estimation models, the root mean square error
(RMSE) is calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 e
2
i

N

s
ð16Þ

ei ¼
Qcell;i � Qest;i

Qcell;i
ð17Þ

where ei is the relative error, withQcell,i andQest,i representing the actual and
estimated capacities at the cycle i, respectively. Additionally, the absolute
percentage error is given by APE(%) = ∣ei∣ ⋅ 100.

Data availability
All experimental data40 are available online at the following Open Science
Framework repository: OSF.

Code availability
The code supporting the findings of this study is available at the following
Open Science Framework repository: OSF.
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