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a b s t r a c t

A benchmark control problem was developed for a special session of the IFAC Workshop on Engine and
Powertrain Control, Simulation and Modeling (E-COSM 12), held in Rueil-Malmaison, France, in October
2012. The online energy management of a plug-in hybrid-electric vehicle was to be developed by the
benchmark participants. The simulator, provided by the benchmark organizers, implements a model of
the GM Voltec powertrain. Each solution was evaluated according to several metrics, comprising of
energy and fuel economy on two driving profiles unknown to the participants, acceleration and braking
performance, computational performance. The nine solutions received are analyzed in terms of the
control technique adopted (heuristic rule-based energy management vs. equivalent consumption
minimization strategies, ECMS), battery discharge strategy (charge depleting–charge sustaining vs.
blended mode), ECMS implementation (vector-based vs. map-based), ways to improve the implementa-
tion and improve the computational performance. The solution having achieved the best combined score
is compared with a global optimal solution calculated offline using the Pontryagin's minimum principle-
derived optimization tool HOT.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Energy management of hybrid electric vehicles (HEV) is nowadays
a more-than-ten-years-old field of research in control engineering
(Baumann, Rizzoni, & Washington, 1998; Brahma, Guezennec, &

Rizzoni, 2000; Hofman, Ebbesen, & Guzzella, 2012; Kleimaier &
Schroder, 2002; Koot et al., 2005; Lin, Kang, Grizzle, & Peng, 2001;
Paganelli et al., 2000; Salman, Schouten, & Kheir, 2000; Sciarretta,
Back, & Guzzella, 2004; Sciarretta & Guzzella, 2007). Indeed, energy
management is a control task since it consists in determining the
setpoints (mostly, torque) to the various power converters (internal
combustion engine, electric machines with their power electronics,
mechanical transmission devices, electrical power converters, etc.)
that constitute the HEV powertrain. These setpoints are chosen by
the energy management strategy (EMS) in order to fulfil the driver's
request and at the same time exploit the remaining degrees of
freedom to obtain the most suitable powertrain behaviour. “Optimal”
EMS that have been disclosed in these years are aimed at minimizing
an objective function that typically represents the overall fuel
consumption, but might include pollutant emissions, battery life
degradation, under several constraints concerning battery charge,
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drivability, etc. In particular, charge-sustaining or autonomous HEV
implies that the battery State Of Charge (SOC) at the end of a vehicle
mission is required to be as close as possible to its initial value.
A mathematical formulation of such a control problem has been
posed in terms of optimal control (Ambühl et al., 2007; Hofman,
Steinbuch, Serrarens, & van Druten, 2008; Kim, Cha, & Peng, 2011;
Serrao, Onori, & Rizzoni, 2009; van Berkel, Hofman, Vroemen, &
Steinbuch, 2012) and numerous practical implementations for
various architectures such as parallel (Lin et al., 2001; Musardo &
Rizzoni, 2005; Pisu & Rizzoni, 2007; Salman et al., 2000; Sciarretta
et al., 2004; Sivertsson, Sundström, & Eriksson, 2011), series
(Anatone, Cipollone, Donati, & Sciarretta, 2005; Pisu & Rizzoni,
2005), and combined HEV (Borhan & Vahidi, 2010; Cipollone &
Sciarretta, 2006; Hofman et al., 2008; Liu & Peng, 2006) have been
presented.

The class of plug-in HEV (PHEV), where the battery can be
recharged from an external source (grid) also, has attracted less
research than charge-sustaining HEV, although pioneering papers
have already treated this topic in terms of optimal control
and presented simulation or experimental results (Larsson,
Johannesson, & Egardt, 2010; O'Kneefe & Markel, 2006; Stockar,
Marano, & Canova, 2011; Serrao et al., 2013; Tulpule, Marano, &
Rizzoni, 2009). The specific difficulty in this class of EMS is to
generate an optimal discharge of the battery. Indeed it is known
that a simple CD–CS strategy, i.e., a fully electrical operation
(charge depleting, CD) followed by a Charge-Sustaining (CS)
operation from when the battery is discharged onwards, although
attractive as it allows presenting the HEV as an “electric vehicle”, is
far from being optimal from a fuel economy standpoint. Therefore,
progressive battery discharge (“blended-mode”) operation is
expected to be the output of an optimal EMS.

While several EMS have been generally presented in the
scientific literature, a way to compare them is obviously not
generally available, since studied systems and driving conditions
vary from case to case. Clearly, the ability to make direct compar-
isons between systems, employing these algorithms, would be
highly beneficial for the scientific community to verify common
claims concerning both performance (optimality) and implement-
ability (flexibility or reusability, easiness of calibration and imple-
mentation, etc.) of EMS and focus future efforts in the most
promising directions. Such comparison tools have been deployed
for other control applications (Spencer, Dyke, & Deoskar, 1998) and
consist of benchmark control problems that are typically solved
using simulation models replacing real systems. As a second step,
functional solutions might be benchmarked on physical systems as
well. Recently, the Japanese automotive societies JSAE and SICE
have jointly proposed a benchmark HEV control problem (Yasui,
2012) based on a simulator of a combined hybrid (Prius-like)
vehicle and driver and aimed at challenging academic researchers.

This paper presents a benchmark PHEV control problem and
analyzes a set of solutions. The benchmark was developed for a
special session of the IFAC Workshop on Engine and Powertrain
Control, Simulation and Modeling (E-COSM '12), held in Rueil-
Malmaison, France, in October 2012. The participation of nine
teams presenting their own solution demonstrated the interest in
such initiative. All teams were provided with a fully functional
simulator of a PHEV, and were to implement an EMS to optimize a
set of criteria. The simulator (see Section 2) is of the quasi-static
type and accounts for longitudinal vehicle dynamics and battery
SOC dynamics, while the engine and electric machines are
modeled using stationary maps. Solutions were to be submitted
in the form of a Simulink block with a specific format (inputs/
outputs/solver). The evaluation of the strategies was done on the
basis of the fuel and energy consumption for two realistic driving
cycles that were unknown to the participants, as well as accelera-
tion performance and controller runtime performance (details in

Section 3). In the cycle tests, the battery is completely charged at
the beginning of the cycle and can be depleted at the end of the
cycle. The participants were able to make use of some approxi-
mated information about the cycle, namely the total distance and
average speed, which could be easily retrieved from a GPS device.
Given the focus of the benchmark problem, this information was
included in the simulator as perfectly known, albeit in practice it is
affected by measurement uncertainties. A special jury, presided by
the holder of the IFP School – Fondation Tuck Chair on Hybrid
vehicle and energy management, defined the two test cycles and
guaranteed the correct evaluation of the solutions to be bench-
marked. The nine solutions evaluated are presented in Section 4,
while Section 5 discusses the results obtained. The software
developed for this benchmark will be made available on the web
site www.ecosm12.org.

2. Simulator

Although a detailed description of vehicle propulsion systems
would require the modeling of several dynamic phenomena, it has
long been recognized (Guzzella & Sciarretta, 2013, Chap. 2) that
for the purpose of fuel economy estimation, quasi-static models,
i.e., based on efficiency maps measured under stationary operation
of the various components, suffice to a large extent. For such a
reason, quasi-static models are largely used to design and pre-
assess energy management strategies of HEV, as per the literature
cited within the paper. Of course, the mutual relationship between
the EMS and typical transient maneuvers would not be repre-
sented by such models, but if the main focus is on the fuel
economy, they can still reasonably serve to compare the global
performance of different EMS. These are also the reasons why the
present benchmark PHEV control problem is based on a quasi-
static simulator.

The simulator provided implements a model of Chevrolet Volt,
validated with published GM data, which are well reflected in the
simulation results (Falières et al., 2011; Grebe & Nite, 2011; Miller,
Holmes, Conlon, & Savagian, 2011; Parrish, Elankumaran, Gandhi, &
Nance, 2011). The simulator implements three main blocks (Fig. 1):
(1) driving cycle, which computes the torque demand based on the
specified driving cycle, and also outputs the preview information
(nominal distance and average speed); (2) control strategy (EMS),
which was to be filled with the benchmark solutions respecting
given input and output ports; (3) vehicle and powertrain model,
which contains the quasi-static model of the powertrain and vehicle
dynamics.

The participants had access to the content of the driving cycle
and the vehicle model block, but they were not to be modified.
Only their respective outputs could be used for developing the
EMS, and only the controller block was to be submitted at the end.

2.1. Powertrain model: GM Voltec

The powertrain architecture powering the Chevrolet Volt con-
sists of a power-split, planetary-based system, named Voltec and
shown in Fig. 2. Three clutches (C1, C2, C3) allow connecting or
disconnecting the internal combustion engine (ICE), the generator
(GEN) and the main traction machine (MOT). Both electric machines
can actually work in both motoring and generating mode, and for
both of them the sign convention is that positive torque and
positive electric power indicate motoring operation.

The powertrain can operate in the following modes (Falières
et al., 2011; Grebe & Nite, 2011; Parrish et al., 2011):

1. One-motor EV (C1 locked, C2 open, C3 open, engine off): MOT alone
propels the vehicle, powered by the battery. The planetary gear
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set introduces a fixed reduction between the machine MOT and
rest of the driveline (final ratio and differential).

2. Two-motor EV (C1 open, C2 locked, C3 open, engine off). In this
case, the machine GEN acts on the planetary ring through C2 and
thus it changes the gear ratio between MOT and the powertrain
output. This mode is useful to reduce MOT speed at high vehicle
speed, thus increasing overall powertrain efficiency by combining
the use of both electric machines.

3. Range-extender mode (C1 locked, C2 open, C3 locked, engine on).
This is a traditional series-HEV mode: the engine and generator
are connected and produce electric power; MOT alone propels
the wheels.

4. Power-split mode (C1 open, C2 locked, C3 locked, engine on). In
this mode, the three machines are all connected together with
a variable speed ratio that depends on the generator speed. The
mode allows transmitting mechanical power directly from the

engine to the wheels, thus resulting in overall higher efficiency
than a pure series mode.

As a whole, the vehicle and powertrain model takes as inputs
the outputs of the EMS, i.e., engine torque setpoint Te (T_eng_sp
in Fig. 1), motor torque setpoint Tm (T_mot_sp), generator speed
setpoint ωg (w_gen_sp), brake torque Tbr (T_mechBrake_sp),
engine on/off signal (eng_on), and clutch commands C1 to C3
(c1,c2,c3). The outputs are vehicle speed v (V_veh), fuel con-
sumption m

n

f (FuelCons), and the battery SOC ξ (SOC), to be used
within the EMS.

2.1.1. Vehicle model
The vehicle submodel takes the wheel torque Twh from the

powertrain and the brake torque Tbr command as inputs and yields

Axle differential

Traction motor
Battery pack

2.16 
ratio 

Planetary sun gear

C3C1

Planetary ring gear

Planetary carrier

Final drive gearing
C2
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Generator

Fig. 2. Kinematic architecture of GM's Voltec (Grebe & Nite, 2011).
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Fig. 1. Benchmark simulator layout.
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the vehicle speed v and the wheel speed ωwh as output. The
submodel implements vehicle's longitudinal dynamics

_v ¼ rwh

Jv
½TwhþTbr�mvrwhg sin α�rwhðc0þc1vþc2v2Þ� ð1Þ

where α is the road slope and Jv is the vehicle moment of inertia.
The relevant vehicle parameters have been extracted from

Grebe and Nite (2011) or estimated from similar vehicles and are
listed in Table 1. All simulations are carried out by considering
97 kg in addition to the vehicle mass (75 kg driver and 35 l, i.e.,
22 kg full tank of fuel).

2.1.2. Transmission model
The transmission consists of a differential gear (Rd¼2.16), a

planetary gear set (PGS), and a node (unit ratio). The generator is
connected to the ring (r), the motor is connected to the sun (s) and
the transmission output is the satellite carrier (c) of the PGS. The
node connects the engine and the generator.

The forward transmission submodel takes the generator and
wheel speeds, ωg and ωwh, as well as the engine and motor torques,
Te and Tm as inputs, and yields the engine and motor speeds,ωe and
ωm, as well as the generator and wheel torques, Tg and Twh, as
outputs.

The kinematic relation between the speeds of three elements of
the planetargy gear set is

ρ �ωrþωs ¼ωc � ðρþ1Þ; ð2Þ
where ρ is the ratio between the number of teeth of the ring
and the sun gear: ρ¼Nr=Ns ¼ 83=37¼ 2:24. The torque relations
imposed by the planetary gear set are

Tr

ρ
¼ Tc

ρþ1
¼ Ts ð3Þ

The connection between PGS elements and power converters
depends on the mode in which the powertrain is operated. See
Table 2 for mode-dependent correspondences.

The simulator is implemented using these relations, including
the gear efficiencies but neglecting the dynamics of the machines
and the inertia of the gears.

2.1.3. Engine model
The engine submodel takes ωe and Te as inputs and yields the

fuel consumption m
n

f . Since a quasi-static modelling approach is
used, the engine is represented by its fuel maps, shown in Fig. 3.
Torque and speed limits are enforced. Special treatments are used
to represent cranking and idle phases. When the engine is
switched on, the model generates a predefined negative torque
(�25 Nm) for a short period (1 s), after which the torque gener-
ated matches the setpoint.

2.1.4. Motor and generator model
The motor submodel takes the motor torque Tm and speed ωm

as inputs and yields the electric power Pm as output. Similarly
for the generator submodel Tg and ωg are the inputs and Pg is the
output. The electric machines are represented by their efficiency
maps, which are shown in Fig. 4. Torque and power limits are
enforced. The generator model also enforces a maximum rate of
change of ωg (200 rad/s2) to represent machine inertia.

2.1.5. Battery model
The battery submodel takes the overall electrical power Pb ¼

PgþPm and the current SOC as input and yields the SOC at next
time step as well as the inner or electrochemical battery power
Pech. The model is based on a simple equivalent circuit composed
of a voltage source Voc and a resistance Rb in series, both functions
of the SOC (Ib is the battery current),

Pech ¼ VocIb; Ib ¼
Voc

2Rb
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

oc�4RbPb

4R2
b

s
ð4Þ

_ξ ¼ � Ib
Qb

ð5Þ

where Qb is the charge capacity. Power, current, and voltage limits
are enforced. Moreover, SOC operation within a prescribed win-
dow is enforced.

In the case of the Volt, only the basic battery parameters,
collected in Table 3, are published. For the lack of specific data, the
internal resistance and the open circuit voltage characteristic of a
single Li-ion cell are assumed to be the same as the experimental
data in Do (2010).

Table 1
Vehicle parameters.

Curb weight mv 1812 kg
Road law coefficient c0 105.95 N
Road law coefficient c1 0.01 N s m�1

Road law coefficient c2 0.4340 N s2 m�2

Wheel radius rwh 33 cm
Vehicle inertia Jv 207 kg m2

Wheelbase 2685 mm
Center of gravity height 550 mm
Front/rear static weight distribution 49%/51%

Table 2

Mode 1 ωr ¼ 0; ωe ¼ 0
Tg¼0

Mode 2 ωr ¼ωg ; ωe ¼ 0
Tg ¼ ρ � Tm

Mode 3 ωr ¼ 0; ωe ¼ωg

Tg ¼ �Te

Mode 4 ωr ¼ωg ; ωe ¼ωg

Tg ¼ ρ � Tm�Te

All modes ωm ¼ωs; ωc ¼ Rd � ωwh

Tm ¼ Ts; Twh ¼ Rd � Tc
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Fig. 3. Engine fuel map (Grebe & Nite, 2011).
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2.2. Driver model

The driver model is responsible for yielding the powertrain
torque request Td (T_wh_des in Fig. 1) to the EMS as a function
of the vehicle speed v (V_veh) measured from the vehicle model
output. For the two cycle tests, the model is a cascade of (i) a
feedforward calculation of the torque request as a function of
the desired speed v, and (ii) a PI regulator as a function of the
difference between cycle speed and v. The term (i) is calculated as

Td ¼
Td;tot ; Td;totZ0;

ð1�sÞTd;tot� Td;totHCG

mvgrwhBw
; Td;toto0

8<
: ð6Þ

Td;tot ¼
_vJv
rwh

þrwhðc0þc1vþc2v2þmvg sin αÞ ð7Þ

where the wheel torque request Td;tot is obtained from the
inversion of (1), HCG is the height of the center of gravity, Bw the
wheelbase, and s the static weight distribution (see Table 1).
The proportional and integral gains of the term (ii) are tuned as
KP¼500 N s, KI¼1 N.

For acceleration tests, only the PI regulator is used, with a
reference speed set to a very high value in order to enforce full
torque demand. The test end is detected as a function of the speed
or the distance covered, according to the particular test. Conver-
sely, the braking test is split into two parts, with a first part to
reach 100 km/h through a PI regulator, then a second part with
constant negative torque request.

2.3. EMS

The EMS block to be filled by benchmark participants takes as
inputs the driver torque demand Td output by the driver's model

(T_wh in Fig. 1) and the vehicle speed v (V_veh) and the SOC ξ
(SOC) yielded by the vehicle and powertrain model. The expected
outputs of the EMS model are the engine and motor torque
setpoints, the generator speed setpoint, the clutch commands,
the engine on/off state, and the mechanical brake torque, all sent
to the vehicle and powertrain model.

3. Benchmarking

3.1. Scoring metrics

Each solution has been evaluated according to several metrics,
listed in Table 4. The overall score is obtained by weighting each
metric by the factor shown in the table. The weights are intended
to be a compromise between energy efficiency (50%) and expecta-
tions of manufacturers (20%) and end users (30%). Since they
intervene only in the final evaluation stage of the benchmark,
they can be easily modified in future versions of the benchmark
to reflect a different focus. Although a correlation is expected
between energy efficiency sub-metrics, they are accounted sepa-
rately in order to emphasize the effects of residual battery energy
and the CO2 factor. The actual scoring is obtained by normalizing
the result obtained in each metric with respect to the average
value for that metric calculated over all valid solutions. Note that
all scores are best when minimized.

3.1.1. Performance
Four performance tests are enforced in the driver's model, see

Section 2.2. Elapsed simulation time or distance covered until the
simulation stop are monitored and used as metrics.
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Fig. 4. Combined motor-transmission efficiency map (top) (Miller et al., 2011) and generator efficiency map (bottom) (Grebe & Nite, 2011).

Table 3
Battery parameters.

Parameter Value Source

Total energy capacity 16 kWh Grebe and Nite (2011)
Total nominal voltage 360 V Grebe and Nite (2011)
SOC range 65% Grebe and Nite (2011)
Number of cells in series 96 Parrish et al. (2011)
Number of strings in parallel 3 Parrish et al. (2011)
Peak current 400 A Parrish et al. (2011)
Peak power (charge) 110 kW
Peak power (discharge) �60 kW

Table 4
Scoring metrics.

Metric Weight (%)

Performance (30%) Acceleration 0–100 km/h (s) 7.5
Acceleration 70–120 km/h (s) 7.5
Acceleration 0–1000 m on 4% slope (s) 7.5
Braking distance from 1000 km/h (m) 7.5

Energy Total energy use (fuelþelectricity) (MJ) 15
and economy (50%) Fuel consumption (MJ) 20

Tailpipe emissions (not modeled) 0
Well-to-wheel CO2 emissions (kg) 15

Computational Processor use (s) 10
performance (20%) Memory use (kB) 10
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3.1.2. Energy and economy
These metrics are the sum of the results in two different driving

cycles, based on real-world data, whose length (see Section 3.2)
exceeds the all-electric range of the vehicle. In each cycle, the
initial SOC must match the value given in the data file provided
with the simulator, while the final SOC must be at least equal to a
target final value. CO2 emissions were calculated from energy use
results as the total emissions from fuel combustion, fuel produc-
tion (well-to-tank), and electricity production. For electricity,
Europe average emissions were to be taken into account (data
for France, US, and China were also provided for information). The
coefficients in Table 5 were used to compute the CO2 emissions.
Tailpipe emissions were not considered for simplicity (unavailable
reliable modeling) and due to their weak dependency on the EMS
for warm engine conditions.

3.1.3. Computational performance
Processor use and memory use were monitored on the com-

puter running the simulation. The former was evaluated using
MATLAB functions tic and toc before and after each test, the
latter using MATLAB function sldiagnostics. Only for fuel
economy tests, the actual results are averaged over four runs, in
order to reduce the effects of other possible instances running on
the test computer. Counting of floating point operations could
be used to make these metrics less dependent on the particular
machine. However, albeit an option for future versions of the
benchmark, this solution has not implemented due to the lack of
a simple flop counting function in the most recent versions of
MATLAB.

3.1.4. Solution validity
At all times, all component limitations detailed in the data

file (max/min power, torque, state of charge, speed etc.) were to be

respected in all components; failure to do so during any simula-
tion invalidated the corresponding results.

3.2. Driving cycles

Driving cycles were defined by the benchmark jury as “sur-
prise” cycles, not communicated in advance to the participants.
The two real-life cycles selected are shown in Figs. 5 and 6. The
first cycle is actually the combination of two trips recorded in the
German city of Aachen, namely, an urban trip spanning 16.2 km
and a mixed-drive trip spanning 28.4 km. Elevation has been set to
zero for the whole cycle. In order to allow full battery depletion if
the HEV would be operated in EV modes, the combined Aachen
cycle is repeated three times.

Table 5
Data for CO2 emissions.

Gasoline well-to-tank emissions (TNO Report, 2006) 12.5 gCO2/MJ of fuel
Gasoline combustion (TNO Report, 2006) 73.4 g CO2/MJ of fuel

Electricity production Europe average: 94.7 g CO2/MJ
(emissions for electricity and heat France: 24.7 g CO2/MJ
production (International Energy Agency report, 2011), average 2007–2009) US: 147.5 g CO2/MJ

China: 207.8 g CO2/MJ
World average: 140 g CO2/MJ

Fig. 5. Aachen cycle.

Fig. 6. Arco to Merano cycle: (a) speed profile and (b) altitude profile.
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The second cycle is a trip recorded between Arco and Merano,
Italy (in the Alps), spanning 157.7 km and including severe altitude
variations that are visible in Fig. 6.

A summary of cycle statistics is listed in Table 6.

4. Proposed solutions

4.1. Introduction

The benchmark control problem can be summarized as to find
a control policy u(t) for t¼0,…,T where T is any test duration, in
such a way to minimize the score defined in Section 3. For each
single metrics, this is equivalent to minimize a cost function J(u),
where the control vector u9fTe; Tm;ωg ;C1;C2;C3;Be; Tbrg defines
the powertrain mode and the operating point of each component.
In the example of the total energy use metrics

J ¼ LHV �
Z T

0
m
n

f ðu;wÞ dtþ
Z T

0
Pechðu;wÞ dt ð8Þ

where the disturbance vector wðtÞ9fvðtÞ; TdðtÞg comprises the
exogenous inputs (not known in advance) and LHV is the lower
heating value of the fuel. The minimization (8) is subject to the
SOC constraint, ξðTÞZξmin, and other constraints. Formulated as
such, the benchmark control problem is formally equivalent to a
constrained optimal control problem.

Data published by GM (Grebe & Nite, 2011) show that, in the
Volt embodied strategy, mode selection depends primarily on SOC
status. For charge-depleting (CD) operation (high SOC), modes 1 or
2 are selected according to the vehicle speed and the required
torque, see Fig. 7. When the SOC becomes low, charge-sustaining
operation (CS) is activated, which consists of three modes 1, 3, and
4, again selected as a function of vehicles speed and desired
torque. This SOC-regulating policy depends on the fact that the
Volt is classified as a range-extended electric vehicle. In the
benchmark control problem, participants were allowed to activate
a “blended-mode” (BM) strategy to regulate the SOC, i.e., to start
the engine before the SOC reaches a lower-end value. Of course,
battery-recharge (BR) operation aimed at restoring the battery
charge to a certain value was possible as well.

Nine control solutions were submitted to the benchmark problem.
Table 7 summarizes the approaches implemented in the proposed
solutions. The column “EMS technique” classifies the entries accord-
ing to the type of control design. Two approaches are represented,
namely, based on rules (heuristic) or based on optimal control theory
and particularly on the Pontryagin Minimum Principle (PMP). Addi-
tionally, the table classifies the nine solution according to the
discharge strategy, the mode selection strategy, and the operating
point selection strategy.

All the used techniques are further illustrated below. More
details on two solutions are provided in the ECOSM'12 papers
(Marcos & Bordons, 2012; Sivertsson, 2012).

4.2. Heuristic controllers

Heuristic EMS are based on intuitive rules and correlations
involving various vehicular variables. One guiding principle is to
use the engine when its efficiency can be relatively high, while in
less favorable conditions the electric modes should be given
preference and the engine should be turned off. Moreover, when
the engine is on, it should be operated in the highest possible
efficiency regions (i.e., at high loads). Two common approaches
to implement these intuitive principles are the map-based and the
rule-based approach. In the map-based approach, the output
setpoints are stored in multi-dimensional maps whose entries
are measured quantities describing the state of the powertrain.
In the rule-based approach, the EMS is either coded as a set of
logic rules or implemented as a finite state machine (FSM).

In most solutions (S2, S4, S6, and S9), a two-level architecture is
implemented. A high-level supervisor (see Fig. 8a) first selects the
powertrain mode and the engine power setpoint Pe. The former
output is either mapped (S2) as a function of v, Tt, and ξ and
enhanced with exception rules, or calculated by a finite-state
machine (S4, S9) with transition rules as a function of the same
vehicular quantities. Engine power is calculated from rules as
a function of the same variables and of the distance Dt, either
in order to implement a CD–CS SOC-regulation strategy (S2) or
a blended-mode strategy (S4) by minimizing a performance
criterion.

The cascaded low-level controller evaluates the engine, motor,
and generator setpoints, as well as the clutch commands, accord-
ing to the mode selected and the engine power. While for mode 1
there is no degree of freedom, other modes require additional
choices. Optimal operating point map of the engine is used to
calculate Te and ωe as a function of Pe, while the other setpoints
are used as such to fulfill transmission kinematics/dynamics. In S9
(a mixed-approach strategy) this task is performed using ECMS
(see Section 4.3) for mode 4.

An alternative control architecture (used in S6, Fig. 8b) is such
that the high-level supervisor selects CD operation or BR operation
as a function of ξ, Tt, v and the information on the distance-to-go.
In the case of CD operation, the low-level controller selects mode 1
or mode 2 by minimizing the electric consumption and deter-
mines electric setpoints. In the case of BR operation, the low-level
controller operates the engine either to maximize the recharge
efficiency or the recharge power and selects accordingly the
setpoints using predefined maps.

A simpler approach (used in S5) switches between electric
modes and engine-on modes as a function of the difference
between ξ and a reference SOC profile based on the distance-to-
go. If on, the engine is operated at its best-efficiency point and
mode 4 is actuated, with exceptions possibly shifting the engine
operating point or enforcing mode 3.

4.3. ECMS

The second approach used in the proposed solution is that based
on optimal control. Since early 2000s it has been shown that the
control problem of minimizing the fuel consumption of a HEV over
a driving mission, while letting its SOC tend to a target value ξref can
be formulated as an optimal control problem similar to (8). Offline
solutions to such a problem, that is, solutions that make use of the
prior knowledge of the driving profile can be calculated using
dynamic programming or directly solving the Euler–Lagrange for-
mulation of optimal control. In the latter case, the optimal control

Table 6
Cycle statistics.

Aachen urbana Aachen mixeda Arco–Merano

Length (km) 16.2 28.4 157.7
Max speed (km/h) 71.6 132.6 115.4
Average speed (km/h) 30.3 53.8 49.2
Duration (s) 1926 1871 11549
Max acceleration (m/s2) 3.9 4.7 5.7
Max deceleration (m/s2) 3.0 4.6 7.4
No. of vehicle stops 14 11 15
Total stop time (s) 430 185.5 671.5
Total stop time (%) 22 10 6
Altitude variation (m) 0 0 1579

a The actual test cycle consists of three repetitions of Aachen urban cascaded by
Aachen mixed.
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policy is found as

uoðtÞ ¼ arg min
u

Hðu;wðtÞ; ξðtÞÞ ¼ arg min
u

LHV �mn f ðu;wðtÞÞ

þλðtÞdξðtÞ
dt

ð9Þ

under the state and costate dynamics

dξðtÞ
dt

¼ � Ibðu;w; ξÞ
Qb

;
dλðtÞ
dt

¼ �∂Hðu;w; ξÞ
∂ξ

: ð10Þ

Under the approximation ∂Voc=∂ξ� 0, ∂Rb=∂ξ� 0, λ is a constant
and the strategy (9) reduces to offline technique commonly known
as Equivalent Consumption Minimization Startegy (ECMS)

uoðtÞ ¼ arg min
u

LHV �mn f ðu;wðtÞÞþsoPechðu;wðtÞÞ ð11Þ

with the equivalence factor defined as so ¼ �λ=ðVocQbÞ. The value so

fulfills the global constraint on SOC, i.e., ξðTÞ ¼ ξref .

4.3.1. Costate adaptation
While in offline ECMS so can be calculated using iterative root-

finding algorithms, in online application it has to be continuously
adapted and thus a variable s(t) replaces so in (11). The most
common approach for such adaptation, which proves to be directly
related to Hamilton–Jacobi–Bellman optimal feedback control
(Ambühl et al., 2007), is a feedback on current SOC:

sðtÞ ¼ s0�kpðξðtÞ�ξref Þ�…; ð12Þ
where the ellipsis indicates possible integral or nonlinear terms.

All solutions (S1, S3, S7, S8, and S9 when ECMS is used) include
in the right-hand side of (12) a term proportional to the integral of
the error ξðtÞ�ξref . However, S8 uses a modified coding where s is

initialized to a value s0, updated according to a space-depending
version of (12) when a prefixed sampling distance is covered, and
reset to s0 at each time the reference SOC is tracked back (Onori,
Serrao, & Rizzoni, 2010). A nonlinear term in the form of a tangent-
like function of the error is added to the proportional-integral
terms in S1 (Sivertsson, 2012). The feedforward term s0 is variously
calculated as a function of the average speed and the distance
(S1, S8), the average speed only (S3), or it is constant (S7).

While ξref clearly equals the initial value of SOC, ξð0Þ, for CS
operation, plug-in hybrids allow for discharging the battery and
thus a different definition for ξref must be used. Recent literature
has addressed this problem and the most common strategy is to
use a varying, i.e., decreasing ξref ðtÞ aimed at implementing a BM
operation. The decrease of ξref should represent the advance in the
mission and toward its end, ξref ðTÞ should tend to ξmin. All five
solutions (S1, S3, S7, S8, and S9) adopt a linear variation of ξref with
the distance covered D(t), namely,

ξref ðtÞ ¼ ξð0Þ�kξ
DðtÞ
Dtot

; kξ ¼ ξð0Þ�ξmin: ð13Þ

This approach clearly require the prior estimation of the distance
to be covered Dtot.

4.3.2. ECMS implementation
The vectorial implementation of strategy (11), used in S3, S6,

and S8, requires discretizing the field of admissible values uðtÞA
fuqðtÞg, q¼1,…,N at any time step. Thus,

uoðtÞ ¼ uqoðtÞðtÞ; where
qoðtÞ ¼ arg min

q
HqðtÞ; and

HqðtÞ ¼ LHV �mn f ðuqðtÞ;wðtÞÞþsðtÞ � PechðuqðtÞ;wðtÞÞ: ð14Þ

The vector size N and the nature of u vary from solution to
solution. For each q, uq is obtained by imposing a set of predefined
values to independent components of u (degrees of freedom, DoF)
and calculating the dependent components through kinematic and
other physical constraints. The powertrain mode is clearly a DoF
itself, thus N¼∑4

i ¼ 1Ni. In mode 1 there is no additional degree of
freedom and thus N1 ¼ 1. In mode 2 there is one speed DoF (either
ωm or ωg). In mode 3 the DoF is engine power Pe since engine
speed and torque are obtained by maximizing the engine–
generator efficiency for a given power. In mode 4 there are one
speed and one torque independent DoFs. As an example, S8 uses
Nf2;3;4g ¼ 21.

From (14), it is clear that qoðtÞ and thus uoðtÞ depend only on
w(t) and s(t). Since w(t) is a two-dimensional vector (speed and
torque at the wheels), the energy management output is comple-
tely determined by three variables. While the dependency of the
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Fig. 7. Operating modes of GM's Voltec as a function of vehicle speed and desired torque (Grebe & Nite, 2011).

Table 7
List of solutions to the PHEV control benchmark.

Solution EMS technique Discharge Mode Operating point
strategy selection selection

S1 ECMS BMa,c Map based Map based
S2 Heuristic CD–CS Map basedb Map based
S3 ECMS BMc Vector based Vector based
S4 Heuristic BM Rule based Rule based
S5 Heuristic BM Rule based Rule based
S6 Heuristic BM Rule based Map based
S7 ECMS BMc Vector based Vector based
S8 ECMS BMc Vector based Vector based
S9 Mixed ? Rule based Rule based

a With 10% driving distance underestimation.
b Enhanced with exception rules.
c Adaptive ECMS with varying SOC reference.
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Hamiltonians Hq(t) on SOC is neglected in the ECMS, s(t) does
depend on ξðtÞ, as well as on the distance D(t). This fact suggests
decoupling the evaluation of the energy management output in
a two-step process, where first s(t) is evaluated using (12) and
subsequently uoðtÞ is evaluated as

uoðtÞ ¼ FU ðwðtÞ; sðtÞÞ ð15Þ
where FU ðw; sÞ is a look-up table where the offline-calculated
results of (14) are stored. The advantage of this map-based
implementation, used in S1, in terms of computing time with
respect to the vectorial implementation, i.e., the online solution of
(14) is evident. Moreover, the map-based implementation can be
generated offline using a much finer discretization (i.e., a much
higher N) than its vectorial counterpart. S1 uses a total of 7 maps
(Sivertsson, 2012).

4.4. Implementation issues

Since CPU use and memory use are among the scoring metrics,
all solutions pay a particular attention in trying to reduce them.

Concerning the heuristic solutions, implementation of rules
reduces memory use, while the use of maps reduces CPU time
consumption. Other techniques adopted include:

� simplification of look-up tables (S2),
� disabling of inactive Simulink subsystems, triggered subfunc-

tions (S1, S2, S6),
� only native Simulink blocks without maps (S5),
� reduction of complexity for modes 2 and 3 (S9).

Concerning ECMS-based solutions, vector-based implementation
reduces memory use while map-based implementation reduces CPU
time consumption. Other techniques adopted include:

� iterative sparsification of maps (S1),
� use of Matlab S-functions (S3),
� setpoint candidate reduction (S3),
� use of vector merging instead of multi-dimensional matrices

for setpoint candidates (S7).

Enforcing component limits is a delicate issue that has a strong
impact on the solution validity (see Section 3.1). Two main
approaches have been followed in the proposed solutions:

1. A priori limitation (S3, S6, S7), where map inputs or ECMS
degrees of freedom are preliminarily saturated to corresponding
limits: in this approach actual limits might take into account also
limits induced by the concurrent operation of other compo-
nents; for example, the engine torque could be constrained by

the generator limits at the corresponding speed and such a
method often introduces iterations, algebraic loops that deserve
a special treatment (S7).

2. A posteriori limitation (S2, S5), where map outputs or ECMS
candidates are checked and possibly saturated to their respec-
tive limits.

A combined approach, with a priori and a posteriori check, is used
in S1, S8, and S9.

5. Results

5.1. Proposed solutions

Table 8 summarizes the main scores obtained by running the
proposed solutions.

A comparison between all valid solutions in terms of SOC
trajectory for cycle “Arco–Merano” is shown in Fig. 9. The figure
clearly shows that best performing strategies, i.e., S1 and S7
(see respective scores in Table 8), are able to drive the SOC toward
the minimum value before the last downhill in a smooth fashion.
In contrast, solutions S3 and S5 suffer from SOC oscillations
around the best-performing trajectory, solutions S2 and S4 tend
to discharge the battery too fast, while S6 and S8 are characterized
by heavy SOC deviations with respect to the best-performing
trajectory. In the following section, the best-performing strategy
S1 is detailed and compared with the optimal solution of Problem
8 calculated using an offline PMP algorithm.

Two among the three best performing solutions (S1 and S3)
have adopted ECMS, alongside with two other solutions (S7, which
is among the best performing strategies in the fuel economy tests,
and S8). It is apparent that the performance of ECMS strongly
depends on the implementation of (12). All four solutions have
adopted (13) with possible SOC margins. As a consequence, the
ξref ðtÞ signal is decreasing almost linearly with the increase of time
and distance covered, as shown in Fig. 10.

Table 8 shows a weak correlation between fuel economy results
and memory use, processing time results. Discrepancies are parti-
cularly visible for solutions S7 and S5. The latter is the simplest
solution, so it performs rather well both in terms of CPU time and
memory use. On the other hand, S7 has the second-best aggregate
score in the fuel economy tests but it is penalized in terms of CPU
time by the use of long ECMS-candidate vectors and in memory use
by the use of large maps. Generally speaking, ECMS-based strategies
require Hamiltonian minimization and thus need a larger CPU time
than heuristic strategies; however S1 that is map-based rather than
vector-based performs better than S3, S7, and S8 in terms of CPU
time. As for memory use, there is no clear trend among ECMS and

Fig. 8. General heuristic strategy flowchart (a) and variant (b).

A. Sciarretta et al. / Control Engineering Practice 29 (2014) 287–298 295



heuristic strategies, since both require maps and look-up tables
either to represent the various components' efficiency, or to store
the pre-calculated setpoints or rules.

The final scores shown in Table 8 were calculated using the
European CO2 emission factor, as explained in Section 3.1. If other
CO2 factors were used, the scores would change only slightly and
the ranking of the proposed solutions would remain the same.

A different focus in weighting the scoring metrics would obviously
lead to a different ranking. For instance, an enhanced focus on
computational performance (raised from 20% to 40%) would let
S2 have a better overall score than S1. On the other hand, an
enhanced focus on energy efficiency (raised from 50% to 75%)
would confirm S1 as the best solution. Since performance metrics
are similar for all solutions, enhancing their weight (e.g., rasing it
from 30% to 65%) would not change the ranking at all. However,
setting different weights would have probably led to differently
focused solutions, so that the previous discussion must be taken
very cautiously.

5.2. Globally optimal solution

To assess the optimality of the best-performing strategy S1, it
has been compared with the outcome of an offline optimization
tool (HOT, Chasse & Sciarretta, 2011) that has prior knowledge of
the driving cycle. HOT is based on PMP and finds iteratively the
initial values of the costates. Model parameters are the same as in
the Voltec simulator. The optimization criterion set is fuel con-
sumption. Although having the capability of running cold-start
cycles and performing two- or three-state optimization with
engine and aftertreatment temperatures as additional state vari-
ables (Merz, Sciarretta, Dabadie, & Serrao, 2012), for this test the
standard functionality with SOC as the single state has been used.
The constant value of the equivalence factor s0 is found with a
root-finding algorithm based on the SOC at the end of the test
cycle, ξðTÞ. The target value for the SOC is set to ξt ¼ 30%: positive
deviations ξðTÞ�ξt make s0 decrease in the next iteration, while
negative deviations make s0 increase.

Fig. 11 compares the optimal profiles of SOC and fuel consump-
tion calculated by HOT for test cycle “Aachen” with the outcome of
S1. The two profiles are very close to each other. Wider differences
are visible in Fig. 12 that refers to the test cycle “Arco–Merano”.
However, in this case too, S1 is able to make the SOC approach the
minimum value (30%) before the final downhill, at the end of
which both S1 and HOT predict a SOC of about 50%. Consequently,
the fuel consumption predicted by S1 is very close to the minimum
value calculated by HOT (2.76 l/h km for test cycle “Arco–Merano”,
1.77 l/h km for test cycle “Aachen”), see Table 8.

Figs. 13 and 14 show the distribution of engine operating points
during the two test cycles. Both S1 and HOT tend to operate the
engine around the best efficiency region, although S1, being an
online strategy, is characterized by many more distinct operating
points (transient maneuvers, SOC regulation, etc.) than HOT.
Figs. 15 and 16 compare the two distributions of powertrain

Fig. 10. Cycle Arco–Merano, reference SOC for all four ECMS strategies.

Fig. 11. Aachen cycle, SOC and fuel consumption.

Table 8
Benchmark results. Fuel A: cycle Arco–Merano; Fuel B: cycle Aachen.

Solution Fuel A Fuel B Memory Proc. time Score
L/h km L/h km kB 100¼Avg.

S1 2.86 1.83 153 16 0.836
S2 3.18 2.27 81 14 0.850
S3 3.56 1.86 24 84 0.877
S4 3.39 2.57 159 18 0.934
S5 3.66a,c 4.60a,c 36 13 0.993
S6 3.66 4.60 186 18 1.086
S7 3.05 1.88 298 197 1.119
S8 6.06a,c 4.99a,c 353 442 1.873
S9c NAb 8.93 95 361 NA

a Test disqualified due to constraints not met, results set to maximum valid
if lower.

b Test invalid, cycle not entirely driven.
c Entry or test not considered for average calculation.

Fig. 9. Cycle Arco–Merano, SOC for all valid strategies.
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modes as a function of vehicle speed and torque. In both strategies,
mode 1 is selected at low speeds, mode 2 for medium speeds and
low torques, mode 3 at high torques, and mode 4 for medium to
high speeds. The S1 use of the mode 3 is wider than in HOT,
certainly in the attempt of perform a blended-mode strategy as a
function of SOC. The behavior in the two cycles is similar for both
strategies, except for the different speed and torque range.

6. Conclusions

The development of benchmark control problems is an engi-
neering practice that can help assessing different methods
and techniques under the same circumstances (same system,
same operating conditions, same exogenous inputs, etc.). The
benchmark control problem illustrated in the paper, concerning
the energy management of a plug-in hybrid-electric car, has
fulfilled this goal since it has allowed:

1. a comparison in terms of various performance criteria: while
the dispersion among different solutions in terms of vehicle
performance is rather low, fuel economy is more sensitive to
the energy management strategy adopted, particularly for real-
life driving profiles with severe altitude variations; even larger
differences can arise in terms CPU time and memory use;

2. a comparison between heuristic and optimal control-based
techniques: generally speaking the latter outperform the rule-
based approach under the same unprevisible circumstances,
particularly in terms of fuel economy; however, heuristic
algorithms can also achieve good performance, yet they require
a higher amount of tuning and they are less robust to system
variations;

3. a comparison between different implementations of optimal-
control-based techniques (ECMS): map-based ECMS induce

Fig. 12. Arco–Merano cycle, SOC and fuel consumption.

Fig. 13. Aachen cycle, engine operating points.

Fig. 14. Arco–Merano cycle, engine operating points.

Fig. 15. Aachen cycle, powertrain modes, HOT (top) and S1.

Fig. 16. Arco–Merano cycle, powertrain modes, HOT (top) and S1.
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lower computing efforts but higher memory use, while the
opposite is true for vector-based ECMS;

4. a comparison between online solutions and a globally optimal
solution calculated offline with a prior knowledge of the
driving profile: if properly designed, online energy managers
can be very close to global optimum in terms of fuel economy.

The software developed for this benchmark will be made
available on the web site www.ecosm12.org for further use by
control engineering students and professionals that desire to
test their own energy management solutions. A parametric
PMP algorithm, HOT, will be also accessible to calculate a global
optimum reference. Such platform could be enriched in the future
with generators of random but realistic driving profiles and the
possibility of modifying the structure and the components of the
powertrain in the online-running model representing the actual
system.
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