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Abstract

In this paper we address the anti-windup design problem for linear control systems with strictly proper controllers in the presence of input
magnitude and rate saturation. Using generalized sector condition, we provide an LMI-based procedure for the construction of a linear anti-
windup gain acting on the controller state equation such that regional closed-loop stability is guaranteed and suitable performance measures
are optimized. The approach is successfully illustrated on a simulation example.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Magnitude saturation of the control input is typically a
nonlinear phenomenon that the control system designer must
address since it may lead to instability or unacceptable perfor-
mance degradation. In many control applications, magnitude
saturation is coupled with rate saturation, characterizing a limit
on the control input variation, in addition to its magnitude. As
an example, catastrophic effects arising from the joint action
of magnitude and rate saturation have been long experienced
in flight control systems (see, e.g., [6,31]). Additional exam-
ples include jet engine compressors (see, e.g., [12,21,36]) and
general reaction processes with slow actuators [7].

Control of systems with rate and magnitude saturation has
been studied in several areas of nonlinear control. Much work
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has been done in the field relying on modern nonlinear con-
trol techniques (see, e.g., [9,20,22,23,34,30,32,28,25]). More
recently, several approaches relied more directly on the use
of convex computational methods (such as LMIs) [3,4,16,19].
Magnitude and rate saturation (MRS) has also been addressed
in the so-called anti-windup context (which is the approach
that we take here). Anti-windup design addresses the saturation
problem after a controller inducing desirable performance on
the plant without (rate and magnitude) saturation has been de-
signed. The anti-windup action is then aimed at (1) preserving
the prescribed closed-loop behavior before saturation is acti-
vated and (2) guaranteeing enlarged stability regions and grace-
ful performance degradation for larger signals that interest the
saturation effect in a deeper way. Although a broad literature
is available on anti-windup for magnitude saturated plants (we
avoid mentioning here the extensive list of references in the
field), very little has been done for systems with both magni-
tude and rate saturation. Some application oriented results are
reported in [1,26,33]. Non-constructive theoretical approaches
can be found in [2] where the proposed compensator is a plant-
order filter. A constructive LMI-based technique consisting of
a plant-order anti-windup compensator is also reported in [37]
whereas [35] propose a static compensator but with a differ-
ent rate saturation model from our approach. Finally, several
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magnitude saturation oriented anti-windup schemes based on
receding horizon techniques (see, e.g., [5,10,29]) can be easily
adapted to also address rate saturation by suitably adjusting the
underlying optimization constraints.

In this paper, we address the static anti-windup problem for
plants with magnitude and rate saturation. To this aim, we as-
sume that a linear controller has been specified, which con-
strains the desired small signal behavior of the closed-loop. We
further assume that this controller is strictly proper, so that we
can easily compute the derivative of its output. The main idea
that we apply for our design is to transform the closed-loop in
such a way that a modified version of the strictly proper con-
troller is interconnected to an augmented plant via the deriva-
tive of the original controller output. This equivalent scheme
allows to cast the anti-windup design for MRS in a similar
way to that used in the recent work [13,27], when dealing with
only magnitude saturation. Note that the idea of generating the
derivative of the control signal to characterize rate saturation
was already used in the work of [18–20] which addresses direct
design rather than anti-windup. The representation of rate satu-
ration that we use here resembles one of these papers, except for
a key feedback loop that we need to introduce to avoid unstable
cancellations. The design approach that we take here resembles
in some way what has been previously done in [35,37]. How-
ever, our approach relies on a different rate saturation model
and relies on a generalized sector condition, to obtain improved
closed-loop performance from the anti-windup design. The pa-
per is organized as follows. In Section 2 we propose a new
model to represent the magnitude and rate saturation. In Section
3 we give the problem statement. In Section 4 we introduce the
anti-windup scheme, a useful closed-loop transformation and
some key matrices. In Section 5 we give our main results and
in Section 6 we discuss a simulation example.

Notation. Given a vector w = [w1, . . . , wp], diag(w) is
the diagonal p × p matrix with the vector elements on the
diagonal.

The scalar saturation function of level a ∈ R>0 is defined as

sata(v) :=
{

a sign(v) if |v| > a;
v if |v|�a;

where sign(·) is the sign function; the (vector, decentralized)
saturation function of level w ∈ R

p
>0 is defined by saying that

its ith component is [satw(v)]i = satwi
(vi), i = 1, . . . , p where

wi and vi are the ith components of w and v, respectively. The
decentralized deadzone function of level w ∈ R

p
>0, is defined

as

dzw(v) := v − satw(v).

A signal q(·) belongs to L2 (q(·) ∈ L2) if its L2 norm
is bounded, i.e., ‖q‖2

2 := limt→∞
∫ t

0 |q(�)|2 d� < ∞. Given a
matrix P = P T > 0, E(P ) := {x : xTPx�1} and �M(P ) and
�m(P ) indicate the maximum and minimum eigenvalues of P,
respectively. Given a square matrix X, HeX := X + XT.

2. Rate saturation representation

An approach used to model an MRS is to introduce the fol-
lowing dynamical system with discontinuous right-hand side:

�̇ = diag(r) sign(satm(umrs) − �),

ymrs = �, (1)

where umrs, �, ymrs, are, respectively, the input, the state and
the output, of the MRS, and

m := [m1, . . . , mp], r := [r1, . . . , rp] (2)

are vectors whose strictly positive components specify the mag-
nitude and rate limits, respectively.

The discontinuous model (1) (which exactly describes the
MRS effects) has been used in [2,33] and requires special care
due to its discontinuous right-hand side. However, the model
is often approximated by a high gain model where the sign(·)
function is replaced by a high gain followed by a saturation
(see, e.g., [4,16,37,35]). Other discrete-time and continuous-
time, possibly hybrid, models can be found in the literature
(see, e.g., [28]); also these alternative models turn out to be not
easy to handle from an analysis and synthesis point of view,
especially when their dynamics contain discontinuities.

The model for MRS that we propose in this paper is described
by the equations{

�̇ = satr (u̇mrs + K(umrs − �) + v2),

ymrs = satm(�),
(3)

where the diagonal matrix K > 0 is a free parameter and umrs is
a signal whose derivative, u̇mrs, is supposed to exist, and v2 is an
external signal. (As can be easily seen in Fig. 1, the parameter K
is introduced in order to avoid an unstable cancellation between
the ideal derivative operator s and the integrator during linear
operation.)

The rate saturation model in (3) is represented in Fig. 1,
where an ideal derivative operator is also included. Notice that
the additional input v2 is not required in order to model the
MRS, but will be instrumental in the design of our anti-windup
controller; for this reason, the properties of interest for (3) will
be given in the following Lemma 1 already considering (3) with
the additional input v2.

Remark 1. It is worth noting that a main difference between
working directly with (1) and introducing (3) is that in (1)
the magnitude of the input to the nonlinearity (i.e., umrs) is

Fig. 1. The proposed MRS block structure.
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limited before entering the rate limiter, whereas in Fig. 1, the
rate is limited first and the magnitude next. Indeed, in Fig. 1,
the rate of ymrs is limited by the first saturation block, whereas
its magnitude is limited by the second saturation block. As a
consequence of this difference, while the state � of (1) never
exceeds the magnitude bound m, the state of (3) can exceed
the bound m, although its output ymrs never does. Despite these
discrepancies, the model (3) can be effectively exploited to
solve an anti-windup problem for systems subject to MRS.

The following lemma guarantees some properties of (3) that
will be used in our main results. In particular,

• item 1 guarantees that the output of (3) always satisfies the
magnitude and rate limits;

• item 2 guarantees that if (3) is properly initialized and v2 is
identically 0, then the output ymrs of (3) coincides with its
input umrs as long as (umrs, u̇mrs) never exceed the magnitude
and rate limits;

• item 3 then complements item 2, by specifying that (ymrs −
umrs) will remain an L2 signal despite the occurence of
either a wrong initialization, and/or a non zero v2 ∈ L2,
and/or a choice of umrs which exceeds the magnitude or rate
limits (restricted by an arbitrarily small amount) in such a
way that the excess of saturation is an L2 signal.

Notice that, based on item 1, the cascade of (3), (1) and a
plant behaves exactly like the cascade of (3) and the plant, i.e.,
the actual MRS never activates. In Sections 4 and 5, this will
allow the anti-windup compensator to be designed based on the
cascade of (3) and the plant.

Lemma 1. Given any signal umrs(·) such that u̇mrs is well
defined for almost all t, for any diagonal K > 0, the MRS model
(3) satisfies the following:

(i) for any measurable v2(·), satm(ymrs(t)) = ymrs(t) and
satr (ẏmrs(t)) = ẏmrs(t), for almost all t �0;

(ii) if �(0) = umrs(0), satm(umrs(t)) = umrs(t), satr (u̇mrs(t)) =
u̇mrs(t) and v2(t)=0, ∀t �0, then ymrs(t)=umrs(t), ∀t �0;

(iii) for any �(0) if ‖v2‖2 < ∞ and ∃� > 0 such that ‖umrs −
satm(1−�)(umrs)‖2 < ∞ and ‖u̇mrs −satr(1−�)(u̇mrs)‖2 < ∞,
then ‖ymrs − umrs‖2 < ∞.

Proof. For conciseness and clarity of presentation we will carry
out the proof assuming only scalar signals and unit levels for
both magnitude and rate saturation; due to the decentralized
nature of the vector saturation considered in this paper, the
extension to the vector case with nonunit saturation levels is
trivial.

Item 1: Being the output of a unit saturation function,
|ymrs(t)|�1, ∀t �0, for any signal v2(·). As far as ẏmrs is con-
cerned, since |�̇(t)|�1 for all t �0, then trivially |ẏmrs(·)|�1
whenever ẏmrs(t) is defined.

Item 2: If �(0) = umrs(0), v2(·) = 0, and also the saturation
limits are never exceeded by umrs(·) and u̇mrs(·), then it is easy
to verify that ymrs(t) = umrs(t) = �(t), e(t) = 0, ∀t �0 is a

solution of (3); moreover, such a solution is unique because the
right-hand side of (3) is Lipschitz.

Item 3: As a preliminary step, by the global Lipschitz prop-
erty of the saturation function, and since ymrs = sat1(�), we
have for all t (for brevity the dependence of t will be omitted).

|umrs − ymrs|� |umrs − sat1−�(umrs)|
+ |sat1(umrs) − sat1(�)|
+ |sat1(sat1−�(umrs)) − sat1(umrs))|

�2 · |umrs − sat1−�(umrs)| + |umrs − �|,
therefore it is only necessary to prove that ‖umrs − �‖2 < ∞,
because ‖umrs − sat1−�(umrs)‖2 < ∞ by hypothesis.

Consider the positive definite and radially unbounded
Lyapunov function V (e)= ∫ e

0 sat�(Ks) ds, where e =umrs − �,
for which it is possible to find functions �1, �2 ∈ K∞ such
that �1(|e|)�V (e)��2(|e|), ∀e ∈ R.3

Defining the signal d as

d := u̇mrs − sat1−�(u̇mrs + v2) − sat1(u̇mrs + Ke + v2)

+ sat1(sat1−�(u̇mrs + v2) + Ke)

the derivative of V (e) along the trajectories of (3) is

V̇ (e) = sat�(Ke)ė

= sat�(Ke)(u̇mrs − sat1(u̇mrs + Ke + v2))

= sat�(Ke)(sat1−�(u̇mrs + v2)

− sat1(sat1−�(u̇mrs + v2) + Ke) + d)

� − sat2
� (Ke) + |sat�(Ke)||d|, (4)

where the signal d can be shown to be L2-bounded by using
the globally Lipschitz property of saturation as follows:

|d|� |u̇mrs − sat1−�(u̇mrs)|
+ |sat1−�(u̇mrs) − sat1−�(u̇mrs + v2)|
+ |u̇mrs + v2 − sat1−�(u̇mrs + v2)|

� |u̇mrs − sat1−�(u̇mrs + v2)| + |v2| + |v2|
+ |u̇mrs − sat1−�(u̇mrs) − sat1−�(u̇mrs + v2)|

�2|u̇mrs − sat1−�(u̇mrs)| + 3|v2|.
Completing the square in (4) yields

V̇ (e)� − 0.5 sat2
� (Ke) + 0.5d2. (5)

In order to show that e ∈ L∞, ignore the term −0.5 sat2
� (Ke)

in (5) and integrate to get

V (e(t))�V (e(0)) +
∫ t

0
0.5d2(s) ds�V (e(0)) + 0.5‖d‖2

2

��2(|e(0)|) + 0.5‖d‖2
2, ∀t �0

so that, ∀t �0,

|e(t)|��−1
1 (V (e(t)))��−1

1 (�2(|e(0)|) + 0.5‖d‖2
2)

3 For example, a possible choice is �1(|e|) = �2(|e|) = V (|e|).
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and then e ∈ L∞. Furthermore, since e ∈ L∞, the following
holds ∀t �0:

−0.5 sat2
� (Ke(t))� − 0.5e2(t)�(|e(0)|, ‖d‖2) (6)

for a suitable function � : R2
�0 → R>0, such that �(u, v) → 0

if either u → +∞ or v → +∞. Finally, from (5) and (6)

V̇ (e)� − 0.5�(|e(0)|, ‖d‖2)e
2 + 0.5d2

and then integrating again

V (e(t)) + 0.5�(|e(0)|, ‖d‖2)

∫ t

0
e2(s) ds

�V (e(0)) + 0.5
∫ t

0
d2(s) ds��2(|e(0)|) + 0.5‖d‖2

2

∀t �0 so that ‖e‖2
2 �2/(�2(|e(0)|)+0.5‖d‖2

2)/(�(|e(0)|, ‖d‖2)),
i.e., e = umrs − � ∈ L2 as to be proven. �

3. Problem statement

Consider a linear plant given by

P

{
ẋp = Apxp + Bp,uup + Bp,ww,

yp = Cp,yxp + Dp,yuup + Dp,yww,

zp = Cp,zxp + Dp,zuup + Dp,zww,

(7)

where xp ∈ Rnp is the plant state, up ∈ Rnu is the control
input, w ∈ Rnw is the exogenous input (possibly containing
disturbance, reference and measurement noise), y ∈ Rny is the
measurement output and z ∈ Rnz is the performance output.

Assume that an unconstrained strictly proper controller has
been designed to induce desirable performance when intercon-
nected to the plant without saturation:

C

{
ẋc = Acxc + Bc,yyp + Bc,ww + v1,

yc = Ccxc,
(8)

where xc ∈ Rnc is the controller state and yc ∈ Rnu is the
controller output and the external signal v1 will be used for the
anti-windup augmentation. Being the controller strictly proper,
it is possible to calculate the derivative of the output ẏc =yc,dot
in a closed form, as

yc,dot = Cc(Acxc + Bc,yyp + Bc,ww). (9)

In the case without MRS, we call unconstrained closed-loop
system the direct feedback interconnection between the con-
troller (8) and the plant (7) via the equations

up = yc, v1 = 0. (10)

We will assume that the unconstrained closed-loop system, (7),
(8), (10), satisfies the following assumption:

Assumption 1. The unconstrained closed-loop system is well
posed and internally stable.

The so-called saturated closed-loop system corresponds
to the interconnection between (7), (8) through the MRS

Fig. 2. The structure of the modified controller for anti-windup.

nonlinearity (1) and (9). In the proposed anti-windup architec-
ture, an MRS model (3) will be put in front of the constrained
plant (1)–(7). In this overall cascade (1) always behaves as an
identity and then will be neglected in the sequel.

Based on the model (3) and on the controller structure in
(8) we have two signals v1 and v2 available to choose for anti-
windup purposes. Therefore, the scheme that we propose in-
corporates the selection of a static anti-windup gain L which
determines the selection of these signals, based on the excess
of saturation on both the saturators present in the MRS model
(3) (also shown in Fig. 2) as follows:[

v1
v2

]
= L

[
� − satm(�)

	 − satr (	)

]
, (11)

where 	 = ẏc + K(yc − �) + v2.
The arising modified controller which will be shown to solve

the following Problems 1 and 2 under appropriate selections of
the gain L in (11), is represented in Fig. 2 and corresponds to
the combination of Eqs. (8), (9), (3), (11). The closed-loop of
this modified controller with the saturated plant (7), (1) will be
called anti-windup closed-loop system henceforth.

The aim of this paper is to solve the following two problems:

Problem 1. Given the plant (7), the controller (8) and MRS
limits m and r, design a modified control system such that

(i) given initial conditions for (7), (8) and external inputs w,
if for the unconstrained closed-loop the controller output
satisfies satm(yc(t))= yc(t) and satm(ẏc(t))= ẏc(t) for all
t, then the performance output zp of the modified control
system (starting from suitable initial conditions) coincides
with the performance output of the unconstrained closed-
loop (namely, if the saturation limits are not exceeded, the
unconstrained closed-loop response is preserved);

(ii) for a fixed input size s, find the minimum � > 0 such that
starting from zero initial conditions, the modified control
system satisfies

‖zp‖2 ��‖w‖2, ∀w s.t. ‖w‖2 �s.

Problem 2. Given the plant (7), the controller (8) and MRS
limits m and r, design a modified control system such that

(i) item i of Problem 1 is satisfied;
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(ii) for w=0 find the minimum 
 < 0 such that there is a region
� of the initial conditions where the origin of the modified
closed-loop is regionally exponentially stable with decay
rate 
.

The solutions to Problems 1 and 2 reported next will rely on
a suitable transformation of the unconstrained interconnection
(7), (8), (10) that will lead to the same framework used in [15]
for the regional analysis and design of control system involving
magnitude saturation. As a byproduct of the regional nature
of the approaches proposed therein we will be able to give
a quantitative estimate of the domain of attraction (with zero
input) and of the reachability set from bounded inputs of the
closed-loop.

4. Anti-windup scheme and an equivalent closed-loop
representation

To suitably cast the anti-windup design problem that we ad-
dress here, we will introduce a new controller and a new plant
whose interconnection is equivalent to that of the anti-windup
closed-loop system (7), (8), (9), (3), (11) with the intercon-
nection equations (umrs, u̇mrs) = (yc, yc,dot) but for which it is
possible to easily isolate the saturation elements. First note that
by item (i) in Lemma 1, the discontinuous dynamics (1) can be
disregarded because (1) will always act like an identity. Then,
we incorporate the states � of (3) into an augmented linear plant
that we call P̄, so that the closed-loop between the plant P in
(7) and the controller C in (8) via the extra dynamics (9), (3)
can be represented in a compact way as in Fig. 3, where the
augmented plant equations are

˙̄xp = Āpx̄p + B̄p,uūp + B̄p,ww,

ȳp = C̄p,y x̄p + D̄p,yuūp + D̄p,yww,

zp = C̄p,zx̄p + D̄p,zuūp + D̄p,zww, (12)

where the matrices in (12) are reported in (14) and ȳp =
[

yp

�

]
and x̄p =

[
xp

�

]
.

Moreover, based on the controller C in (8) we design a new
controller C̄ (also represented in Fig. 3) which has a larger
output also including the derivative of yc as in (9):

˙̄xc = Ācx̄c + B̄c,y ȳp + B̄c,ww + v1,

ȳc = C̄cx̄c + D̄c,y ȳp + D̄c,ww + D̄c,v2v2 (13)

Fig. 3. Equivalent closed-loop representation for the closed-loop with MRS.

with the matrix selections in (15) and ȳc =
[

�
	

]
.

(14)

(15)

Then, the anti-windup gain (11) will act on the equivalent
closed-loop representation similarly to the classical static anti-
windup compensation schemes for control systems with mag-
nitude saturation (see, Fig. 3), namely

v = L(ȳc − satb(ȳc)), (16)

where v = [vT
1 vT

2 ]T. Therefore, by relying on known
anti-windup design techniques, the anti-windup gain L will be
selected using convex optimization tools (LMIs). In this frame-
work, given the vector b that incorporates the MRS bounds as
follows:

b := [b̄1, . . . , b̄2nu ]
= [m1, . . . , mnu, r1, . . . , rnu ]. (17)

The anti-windup interconnection is given by

ūp = satb(ȳc). (18)

The resulting nonlinear closed-loop, represented in Fig. 3, will
be characterized by the state x =[x̄T

p x̄T
c ]T. By doing the afore-

mentioned rearrangement, the problem of dealing with the MRS
for the closed-loop (7), (8), has been recast as a magnitude only
saturation problem for (12), (13). This allows us to deal with
the simpler problem of input magnitude saturation for (non-
exponentially stable because of the � dynamics) linear systems,
for which the results developed in [15] are available. We will
only use the corresponding static anti-windup construction for
simplicity (and we will avoid applying the projection lemma),
but we emphasize that the same approach can be used for the
convex design of the augmented plant-order anti-windup.

5. LMI-based design

Similar to the approach taken in [15] (which, in turns, ex-
ploits the generalized sector condition first used in [13,8]) the
anti-windup closed-loop system of Fig. 3 can be represented in
the following compact form:

H

⎧⎪⎨
⎪⎩

ẋ = Ax + Bqq + Bww + BLLq,

ȳc = Cyx + Dyqq + Dyww + DyLLq,

zp = Czx + Dzqq + Dzww + DzLLq,

(19)

q = dzb(ȳc), (20)
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where x =[x̄T
p x̄T

c ]T is the overall state, and, by Assumption 1,
the matrices appearing in (19) are uniquely defined based on
the plant P, the controller C, the anti-windup matrix L, and
the MRS model, as reported in Eq. (21), where �̄u := (I −
D̄c,yD̄p,yu)

−1 and �̄y := (I − D̄p,yuD̄c,y)
−1.

.

(21)

To deal with the deadzone function, the proofs of both the
following theorems are carried out by using the approach
proposed in [14], exploiting the following generalized sector
property:

dzT
b (ȳc)M(dzb(ȳc) − ȳc + Hx)�0, ∀x ∈ L(H), (22)

where

L(H) := {x : satb(Hx) = Hx},
the matrix H is a free parameter and the matrix M > 0 is a
diagonal scaling matrix.

Theorem 1. Consider a plant–controller pair (7), (8) and MRS
limits m and r. Consider the equivalent closed-loop (12), (13),
(16), (18). Given any diagonal K > 0, any s > 0 and any solu-
tion to the following LMI optimization problem:

min
Q,U,Y,X,�2

�2 subject to

Q = QT > 0, U > 0 diagonal, (23)

He

⎡
⎢⎢⎢⎢⎢⎣

AQ BqU + BLX Bw 0
CyQ − Y DyqU − U + DyLX Dyw 0

0 0 −I

2
0

CzQ DzqU + DzLX Dzw −�2

2
I

⎤
⎥⎥⎥⎥⎥⎦ < 0,

⎡
⎣ b̄2

i

s2 Yi

Y T
i Q

⎤
⎦ �0, i = 1, . . . , 2nu (24)

then a solution to Problem 1 is given by the modified control
system (8), (9), (3), (11) with L = XU−1, and � is the optimal
L2 gain from w to zp at item (ii).

Proof. It is immediate to see that, with the proposed model
for the MRS, the saturated closed-loop system (7), (8), (9) and
(3), rearranged according to the augmented plant (12) and the

augmented controller (13) is equivalent to the classical anti-
windup scheme shown in Fig. 3. The solution of this equivalent
problem has been exhaustively carried out in [15,13], where the
proof of the Theorem 2 in [15] can be applied for the augmented

system (12), (15), with the shrewdness to replace the term BqU

in Theorem 2 of [15], in which a dynamical anti-windup filter
is found, by the term BqU + BLX, in the first row of the
LMI (24). �

Theorem 2. Consider a plant–controller pair (7), (8) and MRS
limits given by m and r. Consider the equivalent closed-loop
(12), (13), (16), (18). Given any diagonal K > 0, and any so-
lution to the following generalized eigenvalue problem:4

min
Q,U,Y,X,



 subject to

Q = QT, Q > 0, U > 0 diagonal, (25)

He

[
AQ BqU + BLX

CyQ − Y DyqU − U + DyLX

]
<

[

Q 0
0 0

]
, (26)

[
b̄2
i Yi

Y T
i Q

]
�0, i = 1, . . . , 2nu (27)

then a solution to Problem 2 is given by the modified control
system (8), (9), (3), (11) with L = XU−1, and for all x(0) ∈
E(Q−1) = �, and the closed-loop response satisfies

|x(t)|�ce(
/2)t |x(0)| (28)

with c = √
�M(Q)/�m(Q).

Proof. Eq. (28) comes from considering a quadratic Lyapunov
function V (x) = xTPx with P = P T > 0, and imposing the
inequality V̇ (x) < 
V (x). We want to minimize the scalar 
,
such that

V̇ (x) − 
V (x) = 2xTP ẋ − 
xTPx

= 2xTP(Ax + Bqq + BLLq − 


2
x) < 0, ∀x ∈ �, (29)

4 The constraints in (25) do not actually describe a gevp, but can be
easily transformed into one by using an extra variable Z = ZT satisfying
Z < 
Q.
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Fig. 4. Solution to Problem 1: unconstrained response (thin solid), saturated response (dash–dotted), and anti-windup response (bold).

where � is a suitable region and with q = dzb(ȳc). By (22) if
� ⊂ L(H), a sufficient condition for (29) is

2xTP

(
Ax + Bqq + BLLq − 


2
x

)

+ 2qTM(Cyx + (Dyq + DyLL)q − q − Hx)�0

that, introducing the variable  = [xT qT]T and defining

� := He

⎡
⎣ PA − 


2
P PBq + PBLL

MCy − MH MDyq − M + MDyL

⎤
⎦ �0 (30)

can be rewritten as ′��0. Pre- and post-multiplying (30)
by diag(P −1, M−1) and letting U = M−1, Q = P −1, HQ = Y

and L = XU−1, (30) becomes the LMI (26). To guarantee that
� = E(P ) ⊂ L(H), it is sufficient to impose that[

b̄2
i Hi

HT
i P

]
�0, i = 1, . . . , 2nu,

which corresponds to (27) pre- and post-multiplied by
diag(1, Q) and with HQ = Y and Q = P −1. �

Remark 2. Note that by the results of [15], both the approaches
in Theorems 1 and 2 guarantee regional closed-loop stability,
regional L2 gain for all L2 norm bounded inputs ‖w‖2 < s

and can provide an estimate of the exponential stability domain
(E(Q−1/s2) and E(Q−1), respectively), and of the reachable
set under L2 norm bounded inputs (E(Q−1/s2)). The differ-
ence between the two approaches stands in the optimization

goal. Although it is not clear which of the two performance
measures leads to the best performance, we show on a simula-
tion example in Section 6 that each of the two approaches may
be desirable in certain problem settings.

Remark 3 (Well-posedness). Although well-posedness of
the nonlinear closed-loop arising from the constructions of
Theorems 1 and 2 is guaranteed, sometimes the solutions aris-
ing from the LMI-based numerical optimization solvers may
lead to degenerate cases wherein the algebraic loop induced
by the anti-windup block is very close to being ill-posed. This
may correspond to weak closed-loop robustness and heavy
computational load (even just for closed-loop simulation). Aug-
menting the optimization problems with the extra condition
proposed in [11, Eq. (5)] typically solves possible numerical
problems. That condition, for our closed-loop system (19), is
expressed by the following LMI:

He

⎡
⎣ (� − 1)U − �(UDyq + XDyL) �DyLX

�UDyq

� − �

4
U

⎤
⎦ < 0,

where the positive scalars � and � are suitably selected as a
trade-off between making the Lipschitz constant of the right-
hand side of the anti-windup closed-loop system small and pre-
serving the feasibility of the LMI constraints.

6. Simulation example

In this section, we apply our construction to the longitudi-
nal dynamics of an F8 Aircraft: a fourth-order linear model
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Fig. 5. Solution to Problem 2: unconstrained response (thin solid), saturated response (dash–dotted) and anti-windup response (bold).

for which an eighth-order linear unconstrained controller was
introduced in [17] (see also [24]). The two plant inputs are the
elevator and the flaperon angles. We assume that they are both
subject to MRS. The magnitude limits are selected as ±25◦
(as in [17]). As for the rate limits, reasonable limits (based
on the parameters of other aircrafts) are ±70◦/s. The outputs
are the pitch angle and the flight path angle. The controller
input is the difference between the plant output and the ref-
erence input, while the performance output is defined via the

matrices (see [17]) Cp,z =
[

0 0 0 3/4
−0.8 −0.0006 −12 0

]
,

Dp,zw =
[−3/4

0
0
0

]
and Dp,zu = 02×2.

The static anti-windup compensator, built using the
conditions in Theorem 1 (i.e., solving Problem 1) with
K = diag{1000, 500} and s = 1.1, guarantees an optimal re-
gional performance level of � = 60.64. Simulation results are
in Fig. 4, from where we can see that the transient behavior
of the linear control system is quite well recovered. Note that
the control signal is almost permanently saturated in rate, thus
indicating that the available control effort is fully exploited by
the controller.

For the same plant, the anti-windup construction proposed in
Theorem 2 (therefore, the one solving Problem 2) assures very
satisfying performance as it is shown in Fig. 5. In this case we
selected K = diag{1000, 1000} and obtained the optimal decay
rate 
 = −0.0147.

Note that the arising response is slightly more oscillatory but
appears to be faster. Indeed (also based on the experience on
other examples), in general the approach of Problem 2 showed
more satisfactory responses than that of Problem 1. However,

it should be emphasized that the latter approach may in some
cases be more desirable when wanting to only optimize the
performance seen at a specific output, while the optimality of
the former one applies generally to the overall closed-loop state
response.

7. Conclusions

In this paper, a static anti-windup control design has been
proposed for systems subject to magnitude and rate saturation
under the only assumption that the a priori given unconstrained
controller is strictly proper and stabilizing. The proposed LMI-
based approach exploits a new model of the magnitude and
rate saturation. Future studies concern a dynamic anti-windup
controller design and the investigation of the robust properties
of the proposed compensator.
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