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Abstract: The single particle model (SPM) is a reduced electrochemical model that holds
promise for applications in battery management systems due to its ability to accurately
capture battery dynamics; however, the numerical discretization of the SPM requires careful
consideration to ensure numerical stability and accuracy. In this paper, we present a comparative
study of two mass-preserving numerical schemes for the SPM: the finite volume method
and the control volume method. Using numerical simulations, we systematically evaluate the
performance of these schemes, after independently calibrating the SPM discretized with each
scheme to experimental data, and find a tradeoff between accuracy (quantified by voltage root-
mean-square error) and computational time. Our findings provide insights into the selection
of numerical schemes for the SPM, contributing to the advancement of battery modeling and
simulation techniques.
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1. INTRODUCTION

Lithium-ion batteries (LIBs) have revolutionized energy
storage technology, enabling the widespread adoption of
portable electronics, electric vehicles, and grid-scale energy
storage systems. As demand for higher energy density,
faster charging rates, and longer cycle life continue to grow,
accurate modeling of LIB behavior becomes imperative for
optimizing battery design and management (Rahn and
Wang, 2013). Specifically, in order to increase modern
battery management systems’ (BMS) ability to ensure
maximal battery performance, efficiency, and ensure safe
operation of battery systems, the BMS may benefit from
more accurate models of the internal battery dynamics
during operation. Among various electrochemical models
used for lithium-ion batteries, the single particle model
(SPM) offers a balance between computational efficiency
and accuracy, making this model a popular choice for
simulating LIB dynamics in low (≲ 1C) C-rate applica-
tions (Guo et al., 2011). The SPM, as well as its augmented
version the enhanced SPM (SPM with electrolyte dynam-
ics), are also being investigated for their effectiveness for
on-board state estimation (Allam et al., 2020).

To obtain a solution of the SPM, which describes the spa-
tiotemporal evolution of the lithium concentration within
each of the battery electrodes during operation, the gov-
erning partial differential equations (PDEs) must be dis-
cretized. The choice of numerical scheme for discretization
of a PDE can strongly influence the accuracy, stability,
and computational cost of the simulations (Iserles, 2009),
as well as the observability of the discretized model that
is important in estimation applications (Allam and Onori,

2021). Moreover, since the governing equation of lithium
mass transport corresponds to a continuity equation, the
total lithium mass must be conserved for all time 1 . As
such, numerical schemes that are used to numerically in-
tegrate the mass transport equation must also ensure that
the total amount of lithium within the battery remains
constant over time.

A commonly used method to discretize PDEs is known as
the finite difference method (FDM); however, a drawback
of this numerical scheme is that its structure results in a
lack of mass conservation when applied to mass transport
equations. This was demonstrated by Ford Versypt and
Braatz (2014) when they applied FDM to a spherical
diffusion equation. They examined different variations of
FDM discretization and found that some discretizations
results in numerically unstable schemes that do not pre-
serve mass. In the context of lithium-ion batteries, the
FDM has historically been used by many to discretize
the spherical diffusion equations of the SPM; however, the
paper by Urisanga et al. (2015) verifies the need to modify
the standard FDM to address the lack of mass conservation
in this case and proposes an alternative collocation-based
solution. More recently, systematic work by Xu et al.
(2023) shows that discretizing the SPM using FDM and
applying a periodic current input results in a violation
of mass conservation over multiple cycles. In contrast, a

1 In lithium-ion batteries there are aging mechanisms that will cause
the total (cyclable) lithium mass to decrease over time. We neglect
the modeling of such mechanisms in this work but we emphasize
that if the numerical scheme chosen does not inherently conserve
mass then it becomes difficult to attribute a changing total lithium
mass to aging mechanisms vs. numerical error.



different discretization scheme known as the “finite volume
method” (FVM) is demonstrated to conserve mass by
design and confirmed in simulation.

A complication of the FVM is that it does not give a direct
value of the lithium surface concentration (see Sec. 2.1.1),
which is needed to compute quantities such as the cell
voltage. To obtain this, the FVM method is addition-
ally furnished with an extrapolation method. Previous
codes (Sulzer et al., 2021) have used linear or quadratic
Lagrange extrapolation methods that use the concentra-
tion values of the finite volumes closest to the particle
surface to determine the surface concentration. In Xu et al.
(2023) however, it is shown that a Hermite polynomial-
based extrapolation method performs much better than
the Lagrange extrapolation method at providing a surface
concentration that is consistent with experimental voltage
across varying input currents.

Alternatively, a different method to address the drawback
of a direct (i.e. without extrapolation) estimate of the sur-
face concentration is to discretize the SPM using the “con-
trol volume method” (CVM), initially proposed by Zeng
et al. (2013). This numerical discretization method seeks to
provide the surface concentration directly without extrap-
olation while ensuring that the mass conservation property
of the numerical scheme is preserved.

In this paper, we focus on comparing these two mass-
preserving numerical schemes: the FVM and the CVM.
While comparisons of these two schemes has been per-
formed previously, these studies focused on cases of
models with non-calibrated parameters and for constant
(dis)charge. Our primary contribution is the systematic
comparison of these discretization schemes when applied
to the SPM model, discretized with each scheme, and in-
dependently calibrated to experimental data. We find that
each scheme requires substantially different parameters in
order to recapitulate the experimental observations. We
thus aim to re-assess the performance of the FVM and
CVM schemes in accurately capturing the transient behav-
ior of lithium-ion batteries (voltage and state-of-charge)
under dynamic input current profiles and the associated
tradeoffs. By comparing the numerical results obtained
from these schemes against experimental data, we seek to
provide insights into their suitability for different battery
applications and simulation scenarios.

2. SINGLE PARTICLE MODEL

The SPM provides a simplified yet effective framework
for understanding the electrochemical processes occurring
within the LIB during operation. Specifically, the SPM as-
sumes that each electrode within the battery is comprised
of particles that all have the same shape and properties.
For simplicity, the traditional SPM takes the particles to
be spherical. Given this assumption, we can ascertain the
behavior of lithium within all of the electrode particles by
tracking the lithium concentration dynamics in just one
of the particles. Therefore, the negative and positive elec-
trodes i = {n,p} can be represented by a single spherical
particle with radius Rs,i.

The lithium concentration cs,i(r, t) within the bulk of a
given electrode particle is assumed to be radially sym-

metric and evolves via Fick’s law of diffusion (1), char-
acterized by a diffusion constant Ds,i. At the surface of
the electrode particle, the intercalation/de-intercalation
reactions are assumed to be governed by the Butler-Volmer
equation (4), from which we obtain the electrode overpo-
tential ηi, given the surface concentration of the electrode
particle csurfs,i (t) = cs,i(r = Rs,i, t), the applied current
Iapp, and the thermal voltage Vth = RT/F where R is the
universal gas constant, T is the battery temperature and F
is Faraday’s constant. The state-of-charge (SoC) of each of
the electrodes is determined by the bulk concentration of
lithium in that electrode. All other lithium concentration
dynamics, particularly those that would occur in the elec-
trolyte, are considered neglible: The lithium concentration
in the electrolyte is assumed to be fixed at its average
value cavge = 1000. The SPM model governing equations
are summarized in Table 1.

Table 1. Governing equations of the SPM

Variable Equation

Fick’s Law of Diffusion Ni(r, t) = −Ds,i
∂cs,i
∂r

, i = {n, p} (1)

Mass transport in solid phase
∂cs,i
∂t

= −∇ ·Ni (2)

Boundary conditions

Ni(r = 0, t) = 0; Ni(r = Rs,i, t) =
Iappgi

as,iAcellLiF

as,i =
3

Rs,i

εi, gi =

{
−1, i = p

1, i = n

(3)

Electrode overpotential ηi = 2 · Vth · sinh−1

(
Iappgi

2as,iALiFj0,i

)
, (4)

Exchange flux density j0,i = k0,i

√√√√cavge

(
csurfs,i

cmax
s,i

)(
1−

csurfs,i

cmax
s,i

)
(5)

Cell voltage Vcell = Up

(
csurfs,p

cmax
s,p

)
−Un

(
csurfs,n

cmax
s,n

)
+ ηp− ηn−Rℓ · Iapp (6)

State-of-Charge

θbulks,p =
1

4
3
πR3

s,p

∫
V sphere
n

(
cs,p
cmax
s,p

)
dV

θbulks,n =
1

4
3
πR3

s,n

∫
V sphere
p

(
cs,n
cmax
s,n

)
dV

SoCp =
θ0%s,p − θbulks,p

θ0%s,p − θ100%s,p

, SoCn =
θbulks,n − θ0%s,n
θ100%s,n − θ0%s,n

(7)

2.1 Numerical methods

To solve the dynamics of the SPM model, we must dis-
cretize the mass transport equation (2). For each electrode
particle i, we define a set of Nr nodes for which we
discretize the radial coordinate r,

ri,j = (j − 1)∆ri , j ∈ [1, 2, . . . , Nr] . (8)

These nodes are spaced by a distance,

∆ri =
Rs,i

Nr − 1
. (9)

In this work, although the radius Rs,i may be different for
each electrode, we assume that the number of nodes Nr is
the same for both electrodes. Half-distances between nodes
will also be commonly referred to throughout this work.
For notational convenience, we define

ri,j +
∆ri

2
= (j − 1)∆ri +

∆ri

2
(10a)

=

(
j −

1

2

)
∆ri (10b)

≡ ri,j+1/2 . (10c)

Finite Volume Method To discretize the mass transport
equation (2) using the finite volume method we define the
jth “finite volume” for each electrode i to be the spherical



shell with r ∈ [ri,j , ri,j+1] centered on the point ri,j+1/2,
having a volume of

FVj+1/2 =
4π

3

(
r3i,j+1 − r3i,j

)
. (11)

As the edges of the finite volumes are the nodes defined
in (8), there are a total of Nr − 1 finite volumes. For
each of these small volumes, integrating (2), applying the
divergence theorem, and using (1), we obtain∫

FVj+1/2

∂cs,i

∂t
dV (12)

=

∫
A

sphere
j+1

Ds,i

(
∂cs,i

∂r

)
dA−

∫
A

sphere
j

Ds,i

(
∂cs,i

∂r

)
dA ,

where the surface area Asphere
j = 4πr2j . Equation (12) can

be discretized into a system of Nr −1 ordinary differential
equations (ODEs) with a state vector c̄FVM

s,i whose ele-
ments represents the average concentration within the jth
finite volume,

c̄FVM
s,i =

[
c̄s,i,3/2 c̄s,i,5/2 · · · c̄s,i,Nr−3/2 c̄s,i,Nr−1/2

]T
, (13)

and obeys the following state-space equation,

dcFVM
s,i

dt
= AFVMcFVM

s,i +BFVMIapp . (14)

Here,
(
AFVM

)
Nr−1×Nr−1

is a tridiagonal matrix and(
BFVM

)
Nr−1×1

is a vector. For the specific forms of these

matrices and vectors and their derivation, we direct the
reader to reference (Xu et al., 2023, Eqs. 38-41). We
emphasize that, by its structure, this method is mass
conserving.

To compute the cell voltage (6) the surface concentration
csurfs,i is needed. As the finite volume method does not yield
the surface concentration directly, it is common to use
linear extrapolation to obtain the surface concentration
given the concentrations of the two finite volumes closest
to the particle surface. However, recently Xu et al. (2023)
also showed that using a Hermite polynomial-based ex-
trapolation scheme for the surface concentration results in
greater accuracy in predicting the output voltage of the
battery cell. As such, we will be using this method in this
work.

Control Volume Method To discretize the mass transport
equation (2) using the control volume method, we define
the jth “control volume” to be the spherical shell with
r ∈ [ri,j−1/2, ri,j+1/2] centered on the (non-boundary) grid
point ri,j , with volume

CVj =
4π

3

(
r3j+1/2 − r3j−1/2

)
. (15)

Similar to the FVM method derivation, we integrate both
sides of (2) over each of these small volumes. Applying the
divergence theorem on the right-hand side we obtain,∫

CVj

∂cs,i

∂t
dV = −

∫
A

sphere

j+1/2

Ni(r, t) dA+

∫
A

sphere

j−1/2

Nr(r, t) dA .

(16)

where the surface area Asphere
j+1/2 = 4πr2j+1/2. Similar to

the finite volume method, (16) can be discretized into a
system of Nr ODEs for the average concentration within
the control volume c̄CVM

s,i where each element represents
the average concentration of the jth control volume,

c̄CVM
s,i =

[
c̄s,i,1 c̄s,i,2 · · · c̄s,i,Nr−1 cs,i,Nr

]T
, (17)

and is governed by the state-space representation,

MCVM
dc̄CVM

s,i

dt
= ACVMNi , (18)

where
(
MCVM

)
Nr×Nr

and
(
ACVM

)
Nr×Nr

are both tridi-

agonal matrices and the vector of fluxes is

Ni =

[
Ni,3/2 Ni,5/2 · · · Ni,Nr−1/2

Iappgi
as,iAcellLiF

]T
1×Nr

, (19)

with

Ni,j+1/2 = Ds,i
c̄s,i,j+1 − c̄s,i,j

∆r
. (20)

Importantly, in this scheme, the surface concentration is
part of the state vector. For explicit forms of the matrices
MCVM and ACVM we direct the reader to (Zeng et al.,
2013, Eqs. 18-20). By construction, as detailed in the
original publication, this method is mass conserving.

2.2 Choice of integrator

To integrate the state-space equations (14) and (18), we
use the built-in MATLAB ODE integrator ode15s. This
is a variable-step variable-order integration method in
MATLAB that can handle stiff systems of ODEs and state-
space equations involving mass matrices such as in (18).
We set the integrator absolute tolerance abstol to be
10−11 and the relative tolerance reltol to be 10−8.

3. RESULTS

To test the effectiveness of both of these discretization
methods when applied to the SPM, we compare their
ability to describe the behavior of an LG INR21700-
M50T NMC/Gr cell where the data was initially collected
by Pozzato et al. (2022). This particular cell was also
experimentally characterized earlier by Chen et al. (2020).
From these two studies, the values of model parameters
that are intrinsic to the M50T cell are borrowed and listed
in Table 2. The rest of the SPM model parameters are

Table 2. Borrowed parameters for both dis-
cretization methods.

Borrowed Parameter Value

θ100%s,n (−) 0.9343

θ100%s,p (−) 0.2711

θ0%s,n (−) 0.0204

θ0%s,p (−) 0.8536

cmax
s,n (mol/m3) 29583

cmax
s,p (mol/m3) 51765

cavge (−) 1000

Ln (µm) 85.2

Lp (µm) 75.6

Acell (cm
2) 1126.7

Rℓ (mΩ) 29

calibrated to the collected experimental data as explained
in the next section.

3.1 Model Calibration – Procedure

We first re-calibrate both methods independently to ex-
perimental data. Specifically, for each method, we seek



the vector of model parameters that are related to the
geometry and dynamics assumed by the SPM model,

λiden =
[
Rs,n Rs,p εn εp Ds,n Ds,p k0,n k0,p

]T
, (21)

that minimizes the objective function J ,

λ∗
iden = argmin

λmin
iden

≤λiden≤λmax
iden

=J︷ ︸︸ ︷[
JV + JSoCp + JSoCn

]
, (22)

that is the sum of the following three terms,

JV =

√√√√ 1

M

M∑
k=1

(
1−

V sim
cell

(λiden, tk, Iapp)

V exp
cell

(tk)

)2

(23a)

JSoCp =

√√√√ 1

M

M∑
k=1

(
1−

SoCsim
p (λiden, tk, Iapp)

SoCexp(tk)

)2

(23b)

JSoCn =

√√√√ 1

M

M∑
k=1

(
1−

SoCsim
n (λiden, tk, Iapp)

SoCexp(tk)

)2

. (23c)

The objective function J measures the sum of the root-
mean-square error between the experimental and model
voltage, as well as positive and negative electrode SoC’s,
respectively. Here, M denotes the total number of time
points for which we have experimental data. The vectors
λmin
iden, λ

max
iden denote the lower and upper bounds for the

parameter vector with elements (in SI units)

λmin
iden =

[
10−6 10−6 0.6 0.6 10−17 10−17 10−7 10−7

]T
(24a)

λmax
iden =

[
1.2 · 10−5 1.2 · 10−5 0.8 0.8 10−10 10−10 10−2 10−2

]T
.

(24b)

The parameter value bounds are chosen to ensure that
the parameters are within reasonable physical ranges that
are roughly consistent with previous measurements out-
lined in Chen et al. (2020). For this process, we collect
experimental output voltage data V exp

cell from a cell placed
galvanostatically under a hybrid pulse power characteriza-
tion (HPPC) input as discussed in Pozzato et al. (2022).
The experimental state-of-charge SoCexp is obtained by
Coulomb Counting method given the current input Iapp.

To perform the minimization (22), we use the Parti-
cle Swarm Optimization (PSO) algorithm which is part
of MATLAB’s Global Optimization Toolbox. Specifi-
cally, we set the algorithm with a SwarmSize = 80, a
SelfAdjustmentWeight = 2, a SocialAdjustmentWeight
= 1, and MinNeighborsFraction = 1. Each method dis-
cretizes the radial dimension of each electrode particle with
Nr = 101 node points to ensure maximal resolution.

3.2 Model Calibration – Results

We perform the calibration and the resulting calibration
errors are quantitatively summarized in Table 3. In gen-

Table 3. Objective function values obtained for
different input profiles for each method

Method Input JV (%) JSoCp (%) JSoCn (%) J(%)

FVM
HPPC 0.55 0.02 0.02 0.60

UDDS 0.45 0.01 0.01 0.48

CVM
HPPC 0.55 0.02 0.02 0.60

UDDS 0.46 0.01 0.01 0.49

eral, we observe a good fit of the model to experimental
HPPC data using with both numerical methods, with an
objective function value of J < 1% for both methods which
corresponds to a voltage root-mean-square error (RMSE),

RMSE =

√√√√ 1

M

M∑
k=1

(
V sim
cell

(λiden, tk, Iapp)− V exp
cell

(tk)
)2

, (25)

of 19.71 mV for the FVM method and 19.70 mV for the
CVM method. Thus, we conclude that the performance of
the FVM and the CVM on calibration is nearly equivalent.

The model parameters obtained from the calibration pro-
cess for each method are summarized in Table 4. Inter-
estingly, the discretization method has a significant effect
on the inferred parameter values. As such, it is impor-
tant to independently calibrate both methods to ensure
maximal accuracy and a fair comparison in their ability
to reproduce the experimental observations. In particular,
the diffusion coefficient Ds,n and the kinetic constant for
the negative electrode k0,n are seen to be between 1 to 3
orders of magnitude different between the two methods.

Table 4. Obtained parameters for both dis-
cretization methods.

Parameter FVM value CVM value

Rs,n (µm) 10.70 2.87

Rs,p (µm) 12 6.31

εn (−) 0.76 0.76

εp (−) 0.77 0.77

Ds,n (µm2/s) 0.17 8.19× 10−3

Ds,p (µm2/s) 8.19× 10−3 2.13× 10−3

k0,n (mmol/(m2 · s)) 6.95× 10−6 3.06× 10−3

k0,p (mmol/(m2 · s)) 2.11 3.39

3.3 Model Validation

After calibrating both methods to HPPC experimental
data, we now seek to validate our models using a dynamic
drive cycle. We collect experimental voltage data from
a cell where an Urban Dynamometer Driving Schedule
(UDDS) input current profile has been applied. Figures 1
and 2 compares the model outputs to the experimen-
tal data for the FVM and CVM schemes under this in-
put, respectively. We find that the model discretized by
FVM yields a validation RMSE of 16.83 mV while the
model discretized using CVM yields a validation RMSE of
17.25 mV. We therefore again see that the performance of
the two methods are nearly equivalent.

3.4 Volume number variation

As the SPM is a simple electrochemical physics-based
model of the lithium-ion battery, it is particularly suited
for BMS applications; however, in order for this model to
be able to run in real-time the number of node points for
each electrode must be kept small. Thus, having validated
the performance of both models on a dynamic drive cycle
profile, we now investigate how the performance of the two
methods varies as we decrease the number of node points
Nr. We emphasize that we do not perform any further
calibrations here: The parameters for each method are
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Fig. 1. Validation of FVM method with Hermite poly-
nomial extrapolation using UDDS data. (a) Voltage
comparison. (b) SoC comparison. Solid lines denote
experimental data. Dashed lines denote model out-
puts. Top plots show the error (difference) between
model output and experimental data..
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Fig. 2. Validation of CVM method using UDDS data.
Similar visualization as Fig. 1.

fixed according to Tables 2 and 4 for all the analysis that
follows.

To measure the performance of these two methods, we
use as reference the results for each discretization method
with Nr = 101 node points presented in the previous
sections. We quantify the difference between the solution
generated by a given method using Nr = 101 node points
and the solution generated using a smaller number of
node points. Specifically, we scan across values of Nr =
{6, 11, 21, 41, 81}, where Nr = 6 is a number of node points
that is consistent with use in BMS-type applications. This
comparison of the different outputs from the different
methods, measured in terms of RMSE, is shown in Fig. 3
for both HPPC and UDDS inputs. In general, we see that
the voltage RMSE error between the model output and the
experimental data grows monotonically as Nr decreases.
Interestingly, the FVM method using Hermite polynomial
extrapolation diverges from the reference solution in terms
of voltage faster than the CVM method. A similar trend
holds for the state-of-charge; however, we note that the
initial scale of the error for SoC is already quite small, on
the order of 0.01%.
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3.5 Perspective

The CVM method produces an implicit equation (18) that
requires solving a linear system at every time step to
obtain the time derivatives dcs,i/dt. In contrast, the FVM
method results in an explicit equation (14) that requires
only a matrix-vector product and a vector addition to
evaluate the time derivative. As such, we reason that the
CVM method should be expected to be more computa-
tionally expensive relative to the FVM. Furthermore, a
fixed number Nr of node points is used to discretize the
radial coordinate for both methods. This corresponds to
integrating forward in time Nr − 1 coupled equations for
the FVM but Nr coupled equations for the FVM. Thus,
since CVM integrates one more equation than the SPM,
it stands to reason that this would also contribute to a
higher computational time for the CVM.

To verify this, we picked a set of node point numbers Nr =
{6, 11, 21, 41, 81, 101} and for each of these node point
numbers, we solved the SPM model using a particular
discretization scheme, under a particular input profile, five
times. We measure (using MATLAB’s built in timer) the
time for the numerical solver to return a solution and
obtain an average run time by averaging over the five
replicates. The ratio of CVM computation times to FVM
computation time as a function of Nr is shown in Fig. 4
which confirms our expectation that the CVM method
requires more computational effort compared to the FVM
with the ratio attaining the largest value of 1.9 for Nr = 81
node points when applying the UDDS profile but generally
remaining near one.

As the CVM achieves superior demonstrated performance
compared to the FVM in terms of accuracy for the SPM,
its less widespread adoption presents a unique opportunity
for advancement in battery modeling. In contrast, FVM is
increasingly being used in battery models and the addition
of the Hermite polynomial extrapolation method increases
the FVM’s utility and performance over a traditional
method such as FDM. Nonetheless, as CVM is able to pro-
vide higher accuracy while maintaining mass conservation,
it signifies the potential for this method to significantly
elevate the fidelity of battery simulations, particularly
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mean and are present but are as small as the points.

those used in BMS; however, there are also challenges with
this method’s usage. In particular, the need for specialized
knowledge in order to implement this method as well as
the computational overhead are noteworthy tradeoffs.

4. CONCLUSION

In this comparative study, we have explored the perfor-
mance of two mass-preserving numerical schemes, namely
the finite volume method (FVM) and the control volume
method (CVM), in the context of the single particle model
(SPM) for lithium-ion batteries. By comparing the numeri-
cal outputs of the SPM discretized using both methods, we
demonstrate that both methods attain essentially equiv-
alent performance in predicting the voltage and state-of-
charge dynamics of an LG INR21700-M50T NMC/Gr cell
during dynamic operation; however, the identified model
parameters for each scheme are substantially different.
Investigating how the solution accuracy provided by each
method changes as the number of node points is decreased,
or equivalently the degree of discretization is increased,
shows that CVM is more robust than FVM to the level
of discretization. This makes it an attractive choice for
applications where accuracy at large discretizations is im-
portant, such as in battery management systems.

On the other hand, the increased robustness of CVM
comes at increased computational cost. Specifically, our
analysis reveals that the computational time required to
numerically solve the mass transport equations of the SPM
model using CVM is generally higher compared to that
of FVM. The structure associated with the state-space
equation of the CVM, requiring a linear solve at every time
step, contributes to this increased computational burden.
Moreover, we also acknowledge that implementation of
the FVM and CVM is not as straightforward as a direct
discretization of the mass transport equations using finite-
difference methods. The formulation of both FVM and
CVM methods requires a deeper understanding of numer-
ical techniques and may pose challenges for researchers
and practitioners unfamiliar with the intricacies of PDE
discretization. Future research efforts may focus on de-
veloping efficient algorithms and computational strategies
to mitigate the computational overhead associated with

the CVM, thereby further enhancing its usability and
applicability in real-time battery monitoring.

ACKNOWLEDGEMENTS

The authors thank Dr. Yizhao Gao and Sung Yeon Sara
Ha (Stanford Energy Science & Engineering) for helpful
discussions.

REFERENCES

Allam, A., Catenaro, E., and Onori, S. (2020). Pushing the
Envelope in Battery Estimation Algorithms. iScience,
23(12), 101847. doi:10.1016/j.isci.2020.101847.

Allam, A. and Onori, S. (2021). Linearized Versus Non-
linear Observability Analysis for Lithium-Ion Battery
Dynamics: Why Respecting the Nonlinearities Is Key
for Proper Observer Design. IEEE Access, 9, 163431–
163440. doi:10.1109/ACCESS.2021.3130631.

Chen, C.H., Brosa Planella, F., O’Regan, K., Gastol,
D., Widanage, W.D., and Kendrick, E. (2020). De-
velopment of Experimental Techniques for Parameter-
ization of Multi-scale Lithium-ion Battery Models. J.
Electrochem. Soc., 167(8), 080534. doi:10.1149/1945-
7111/ab9050.

Ford Versypt, A.N. and Braatz, R.D. (2014). Analy-
sis of finite difference discretization schemes for dif-
fusion in spheres with variable diffusivity. Com-
puters & Chemical Engineering, 71, 241–252. doi:
10.1016/j.compchemeng.2014.05.022.

Guo, M., Sikha, G., and White, R.E. (2011). Single-
Particle Model for a Lithium-Ion Cell: Thermal Be-
havior. J. Electrochem. Soc., 158(2), A122. doi:
10.1149/1.3521314.

Iserles, A. (2009). A First Course in the Numerical
Analysis of Differential Equations. A First Course
in the Numerical Analysis of Differential Equations.
Cambridge University Press.

Pozzato, G., Allam, A., and Onori, S. (2022). Lithium-
ion battery aging dataset based on electric vehicle
real-driving profiles. Data in Brief, 41, 107995. doi:
10.1016/j.dib.2022.107995.

Rahn, C. and Wang, C. (2013). Battery Systems Engineer-
ing. Wiley.

Sulzer, V., Marquis, S.G., Timms, R., Robinson, M.,
and Chapman, S.J. (2021). Python Battery Mathe-
matical Modelling (PyBaMM). JORS, 9(1), 14. doi:
10.5334/jors.309.

Urisanga, P.C., Rife, D., De, S., and Subramanian, V.R.
(2015). Efficient Conservative Reformulation Schemes
for Lithium Intercalation. J. Electrochem. Soc., 162(6),
A852–A857. doi:10.1149/2.0061506jes.

Xu, L., Cooper, J., Allam, A., and Onori, S. (2023). Com-
parative Analysis of Numerical Methods for Lithium-
Ion Battery Electrochemical Modeling. J. Electrochem.
Soc., 170(12), 120525. doi:10.1149/1945-7111/ad1293.

Zeng, Y., Albertus, P., Klein, R., Chaturvedi, N., Kojic,
A., Bazant, M.Z., and Christensen, J. (2013). Effi-
cient Conservative Numerical Schemes for 1D Nonlin-
ear Spherical Diffusion Equations with Applications in
Battery Modeling. J. Electrochem. Soc., 160(9), A1565–
A1571. doi:10.1149/2.102309jes.


