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Abstract

Lithium-ion batteries (LIBs) repurposed from retired 
electric vehicles (EVs) for grid-scale energy storage 
systems (ESSs) have the potential to contribute to a 

sustainable, low-carbon-emissions energy future. The 
economic and technological value of these “second-life” LIB 
ESSs must be  evaluated based on their operation on the 
electric grid, which determines their aging trajectories. The 
battery research community needs experimental data to 
understand the operation of these batteries using laboratory 
experiments, yet there is a lack of work on experimental 

evaluation of second-life batteries. Previous studies in the 
literature use overly-simplistic duty cycling in order to age 
second-life batteries, which may not produce aging trajectories 
that are representative of grid-scale ESS operation. This 
mismatch may lead to inaccurate valuation of retired EV LIBs 
as a grid resource. This paper presents an end-to-end meth-
odology that uses real-world electric grid power system data 
to simulate the cost-optimal dispatch for grid-scale ESSs. The 
dispatch is then used as an input to an algorithm which 
produces laboratory-prone, power-based synthetic duty cycles 
for second-life LIB cell aging experiments.

Introduction

Electric vehicles (EVs) are a key component of a 
low-carbon-emissions and sustainable transportation 
future. EVs are a rapidly-growing presence in trans-

portation, from 120,000 vehicles in 2012 to over 6 million in 
2021 worldwide [1]. The predominant EV energy storage tech-
nology used today is the lithium-ion battery (LIB). EV LIBs 
will degrade over time and with usage, due to the loss of 
lithium inventory, loss of active material, and formation of 
the solid-electrolyte interphase during cycling, manifesting 
as loss of usable capacity, an increase in internal resistance, 
and ultimately a reduction in usable energy and power from 
the device [2]. LIBs are retired from service in EVs when they 
can no longer provide satisfactory performance in EV opera-
tion. Retired EV LIBs could be repurposed as “second-life” 
energy storage systems (ESSs) for applications on the electric 
grid [3], supporting intermittent renewable energy production 
sources, such as solar photovoltaic (PV) and wind turbines, 
to meet the electricity load consumption as part of a 
low-carbon-emissions electric grid. After second-life usage, 
the LIBs can be disassembled and recycled into fresh LIB cells 
[4], forming a circular, low-waste economy for LIBs [5]. Both 
the demand for grid-scale ESS and the supply of retired EV 
LIBs for second-life will grow in scale, especially with wide-
scale EV adoption and grid electrification. Second-life LIB 
supply is projected to be greater than 200MWh per year by 
2030, rising to meet a projected 183MWh per year demand 
for grid-scale ESSs [6].

Second-life ESSs will behave differently from grid-scale 
ESSs constructed with fresh (unused) LIB cells due to the 
LIB degradation from first-life EV usage. In order to under-
stand the degradation trajectory during second-life, labora-
tory experiments are used to age second-life LIB cells via 
duty cycles, which are current or power profiles representa-
tive of usage in a real application (in this paper, second-life 
ESS operation). For example, in [7], the capacity and power 
of second-life LIB cells were found to be much more sensitive 
to temperature changes than for first-life cells; furthermore, 
the distribution of cell capacities within a second-life pack 
showed a much greater spread than those in a fresh, first-life 
pack. In [8], second-life LIB cells with either lithium-iron 
phosphate (LFP) or blended nickel-manganese-cobalt/lith-
ium-manganese-oxide (NMC-LMO) cathode chemistries 
were aged via dispatch (i.e., charging and discharging) corre-
sponding to either either energ y arbitrage or 
frequency regulation.

Many such studies in the literature use overly-simplified 
or ad-hoc selections of duty cycles. In [8], the energy arbitrage 
dispatch was simulated with a simple constant-current charge 
and discharge pattern, and the frequency regulation dispatch 
was chosen as a single day of a frequency regulation signal 
representing an entire year of operation, without justification. 
Similarly, the cells in [7] and in other studies [9, 10] were aged 
using constant-current/constant-voltage (CC/CV) cycles to 
simulate second-life operation. Namely, these laboratory 
experiments all use duty cycles based on current setpoints; in 
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field applications, the grid relies on constant power/energy 
requests from the ESS [11], which instead require power 
setpoints for the battery.

An important unanswered question for the deployment 
of second-life ESSs is the evaluation of their remaining 
economic and technological value, especially as fresh LIB cells 
continue to drop in price and other emerging technologies 
become more cost-competitive [3]. In contrast to the experi-
mental second-life LIB aging literature, many studies using 
model-based simulations do use more realistic data to demon-
strate the value of second-life ESSs. In [5], field data of load 
consumption and PV generation were used as inputs to 
simulate various second-life applications of EV LIBs, showing 
economic savings of 24% to 77%, depending on the scenario. 
In [12], energy market pricing signals from the China Southern 
Power Grid were used to simulate second-life ESS dispatch 
and the resulting LIB degradation, in order to provide a cost-
benefit analysis and pricing plan for second-life LIB ESSs. In 
[13], the techno-economic benefits of second-life ESSs were 
evaluated using electricity pricing data from the California 
Independent System Operator and solar data obtained from 
the National Renewable Energy Laboratory, quantifying the 
economic value of second-life ESSs as <60% of their begin-
ning-of-first-life price.

There is therefore a gap in data used by the literature for 
experimentally-aged cell datasets and for modelling and simu-
lation of second-life LIB ESSs. In particular, by mitigating the 
mismatch between LIB aging datasets using simplistic duty 
cycles and second-life ESS economic valuation models, more 
accurate predictions/estimations of remaining economic value 
can be provided. In order to properly assess the value of 
second-life LIB ESSs, such models should be informed by 
application-dependent degradation data [14], especially as 
ill-informed synthetic duty cycles have been shown to produce 
degradation trajectories that are not representative of real-
world operation [15, 16]. In turn, laboratory studies on LIB 
degradation in second-life grid-scale ESSs require duty cycles 
that are representative of grid-scale ESS usage. To this end, 
this paper provides a methodology for obtaining power-based 
synthetic duty cycles representing grid-scale ESS operation 
for usage in LIB cell laboratory cycling experiments, from 
readily-available and measurable electric grid power system 
operational data.

Notation
The following notation is used in this paper:

 1. mod is the modulus operator, where a mod n returns 
the remainder of a divided by n. For example, 33 mod 
24 = 9.

 2. ⌈⋅⌉ is the ceiling operator, which rounds its argument 
up to the nearest integer. For example, 

900

3 2
281 25 282

.
.

�
��

�
��
� � � � .

 3. max {·} is the maximum function. For example, for 
discrete set q(t), t = 1, 2, …, T, max {q(t)} ≥ q(t), ∀t ∈ 
[1, T]. If the set q(t) is non-negative, max {q(t)} is 
equivalent to the L∞ norm.

System Descriptions
This paper focuses on two systems: the first represents a resi-
dential power f low system, and the second represents a 
commercial power flow system. Both systems share the same 
general structure shown in Figure 1, comprising of an ESS of 
rated maximum power PESS and rated energy EESS, an optional 
solar PV array, a building or facility load, and the distribution 
grid. The purpose of each system is to use power supplied by 
the ESS, solar PV, and distribution grid to satisfy the load 
power demand at all times.

Figure 1 shows the flow of positive power in the direction 
of the arrows between different system components. These 
power flows are denoted by the origin and destination of the 
power, with the convention that the variable name is the origin 
of the power, with the subscript the destination of the power. 
For example, gl(t) is the power flowing from the distribution 
grid to the load, and pvESS is the power flowing from the solar 
PV array to the ESS.

These power flows can be aggregated into c(t) and d(t), 
representing ESS charge and discharge, respectively; solar PV 
generation pv(t); load consumption l(t); and grid power supply 
to the system g(t), as labelled in Figure 1. The aggregated power 
flows are described as follows. First, the ESS is restricted only 
to discharge to supply the load

 d t ESS tl� � � � � (1)

The ESS can charge from either the solar PV array or from 
the distribution grid

 c t pv t g tESS ESS� � � � � � � � (2)

In the real system, the ESS cannot simultaneously charge 
and discharge. To prevent this behavior in the optimization 
problem, a binary variable dbin(t) ∈ {0, 1} is introduced, which 
is 1 when the ESS is discharging (and therefore not charging), 
and 0 when the ESS is charging. This is used in combination 

 FIGURE 1  System architecture as modelled in this paper for 
both the residential and commercial power flow systems. 
Arrows denote the flow of positive power. The colors denote 
the origin of the power: orange depicts power originating from 
the solar PV array, green depicts power originating from the 
ESS, and gray depicts power originating from the grid. Finally, 
the aggregated power flows c(t), d(t), pv(t), l(t), and g(t) are 
labelled in white boxes.
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with PESS to constrain the dispatch within the physical oper-
ating limits of the ESS

 d t d t Pbin ESS� � � � �  (3)

 c t d t Pbin ESS� � � � � �� �1  (4)

Next, the solar PV array can supply power to the ESS, the 
load, or back to the grid

 pv t pv t pv t pv tESS l g� � � � � � � � � � � (5)

Next, the grid supply is the net power supplied to the ESS 
and the load, minus the power backfed from the solar PV to 
the grid

 g t g t g t pv tESS l g� � � � � � � � � � � (6)

Finally, the load consumption is the sum of the power 
supplied from the grid, solar PV array, and the ESS

 l t g t pv t ESS tl l l� � � � � � � � � � � (7)

pv(t) and l(t) are obtained from existing datasets as non-
negative quantities (as described in the following subsections). 
This sets the sign convention of all other power flows: Power 
flowing from the solar PV array to other system components 
is non-negative, and power flowing from other system compo-
nents to the load is also non-negative. For example, Equation 
1 sets d(t) as non-negative, as ESSl(t) is also a non-negative 
component of the load consumption as in Equation 7. 
Following this, all power flows as defined in the preceding 
equations (Equations 1-7) are non-negative

 

c t d t pv t l t ESS t

pv t pv t pv t g t

l

ESS l g ESS

� � � � � � � � � �

� � � � � � �

, , , , ,

, , , �� � � �, ,g tl 0 (8)

Residential System
The residential ESS is modelled after a Tesla Powerwall, with 
PESS = 7kW and EESS = 13.5kWh [17], of which the minimum 
and maximum state of energy (SOE) is 20% and 80%, respec-
tively. The load and PV data are obtained for a home in San 
Diego, California, USA from Pecan Street Inc. Dataport, 
which includes residential power flow data from several loca-
tions in the United States [18]. The load and PV data span one 
calendar year (January 1, 2015 to December 31, 2015). The 
tariff data are obtained from the San Diego Gas and Electric 
tariff for Schedule DR-SES, a time-of-use (TOU) rate without 
peak demand charges, used for residential customers with 
distributed energy resources such as solar PV and on-site ESS 
[19]. The residential power flow system dataset is shown in 
Figure 2 in the left-most column.

Commercial System
The commercial ESS is modelled after a Tesla Powerwall, with 
a maximum power of PESS = 200kW and rated usable energy 
of EESS = 800kWh [20]. As with the residential ESS, the 
commercial ESS minimum and maximum state of energy 

(SOE) is 20% and 80%, respectively. The load data are obtained 
for the Lawrence Berkeley National Laboratory Building 59 in 
Berkeley, California, USA, available on the United  States 
Department of Energy’s Benchmark Buildings Database [21]. 
This building does not report solar PV data, so the PV data 
for this system are set to 0 at all times (i.e. pv(t) = 0, ∀t). The 
load data span two calendar years (January 1, 2018 to 
December 31, 2019). The tariff data are obtained from the 
Pacific Gas and Electric tariff for Schedule B-10, a TOU rate 
with peak demand charges for commercial consumers without 
solar PV in the San Francisco Bay Area [22]. The specific tariff 
was selected based on the peak load demand (max{l(t)}) of the 
facility. The commercial power flow system dataset is shown 
in Figure 3 in the left-most column.

Cost-Optimal ESS 
Dispatch
An optimization problem is formulated to simulate the cost-
optimal ESS dispatch for each power flow system. The cost is 
the monthly utility bill, which is charged to the building owner 
based on the consumption of power from the grid g(t) and 
determined by the utility tariff rate. The tariff rate comprises 
of two components: the TOU cost of energy at each time t, 
CE(t), in $/kWh, and the demand charge for each month m, 
CP (m), in $/kW. Altogether, the monthly utility bill Jm is

J h C t g t C m g t t Tm E P m h� � � � � � � � � � � �� �
�
�
t

Tm,h

0

max ,, , , ,1 2
 (9)

where Tm,h is the number of periods of length h hours in 
month m (e.g. in a month with 30 days, Tm,h = 30 ∗ 24 ∗ 1/h). 
In this paper, load and PV data are obtained at 15 minute 
intervals (h = 0.25).

The first term in the summation in Equation 9 represents 
the total cost of energy CE(t) consumed from the grid according 
to the TOU cost, and the second term represents the demand 
charge CP (m) applied to the maximum (peak) power 
consumed from the grid within the month.

The goal is to find the optimal charging c∗(t) and 
discharging d∗(t) profile of the ESS pack that minimizes the 
objective function J over the length of the entire load and 
PV dataset

 J Jm�
� �
��
y

Y

m1 1

12

 (10)

� � � � � � � � � � � �� �
� � �
�� �
y

Y

m t

Tm,h

1 1

12

0

h C t g t C m g t t TE P m hmax ,, , , ,1 2
��

�
�
�

�

�
�
� 

(11)

where the total number of years Y is 1 for the residential 
system, and 2 for the commercial system. Next, the optimiza-
tion constraints are formulated in terms of the ESS pack 
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operational constraints and the power flows. The ESS pack is 
modelled as an energy reservoir where the control is the 
dispatch of the pack, while the state is the the stored energy 
E(t) = SOE(t) ∗ EESS, governed by the following equation

 E t E t h c t d t� � � �� � � �� � � �� ��� ��1 1 1  (12)

The stored energy is constrained so that it remains within 
the operational SOE limits of 20% and 80%

 0 2 0 8. .E E t EESS ESS� � � �  (13)

Additionally, the ESS pack is assumed to start and end 
each day at the same stored energy Einit, corresponding to SOE 
of 50% (Einit = 0.5EESS)

 E t ht Einit: mod�� � �� � �1 24 0  (14)

This constraint is introduced to facilitate the application 
of the synthetic duty cycle algorithm described in the next 
section. The ESS pack is also constrained to start and end each 
month at the same stored energy, also Einit

 E E T Em h init0� � � � � �,  (15)

The ESS pack is also prohibited from charging or 
discharging at the end of the month

 c T d Tm h m h, ,� � � � � � 0 (16)

Equations 15 and 16 allow the monthly optimal dispatch 
to be solved separately, as the ESS starts and ends each month 
at the same state. Lastly, the system power flows are constrained 
by Equations 1-8 as defined in the “System Descriptions” section.

The optimal dispatch is the charge c∗(t) and discharge 
d∗(t) that satisfy the following

 Subject to Equations and1 8 12 16− −
c d

J
,

min

 (17)

As constructed, this optimization problem forms a 
mixed-integer linear problem (MILP), consistent with other 
cost-optimal ESS dispatch in the literature [23, 24, 25]. The 
MILP is solved in Python using Gurobi, a solver for mathe-
matical programming [26]. Along with c∗(t) and d∗(t), the 
resulting ESS state of energy SOE∗(t) is returned as part of the 
solution to the MILP, and the cost-optimal dispatch w∗(t) is 
computed as

 w t d t c t� � �� � � � � � � � (18)

Following this sign convention, positive dispatch power 
corresponds to discharging, and negative dispatch power 
corresponds to charging.

 FIGURE 2  Overview of all residential system data used and generated in this study. The first column contains the load, solar PV, 
and tariff rate data used to generate the cost-optimal ESS dispatch. The second column contains the cost-optimal dispatch and 
SOE. The third column contains the resulting residential synthetic duty cycle. The gray solid arrows depict the inputs and 
corresponding outputs of the optimization problem. The black dash-dot arrows depict the inputs and corresponding outputs of the 
synthetic duty cycle algorithm. In all plots, positive power corresponds to discharging.
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Synthetic Duty Cycle 
Formation
The synthetic duty cycle algorithm, previously published by 
the authors in [27] and summarized in Appendix B, is 
employed to create the grid storage synthetic duty cycles. The 
synthetic duty cycle algorithm is constructed and run in 
MATLAB. The algorithm takes the ESS state of energy SOE∗(t) 
and power dispatch w∗(t), along with time-of-use energy cost 
CE(t), as its input data. The algorithm then segments the inputs 
into “dispatch intervals”; as in [27], the dispatch intervals 
represent each 24-hour day of dispatch in the input data, 
starting at midnight. Therefore, the dispatch intervals are 
vectors of length 24 ∗ 1/h. A matrix is formed by computing 
metrics corresponding to different features of the dispatch 
(e.g., maximum discharge power) for each dispatch interval. 
Principal component analysis and k-means clustering are used 
to reduce the dimensionality of this matrix and select char-
acteristic dispatch intervals, which are then concatenated to 
return the synthetic duty cycle S(t) in terms of ESS power 
dispatch. In particular, Equation 14 ensures that each dispatch 
interval starts and ends with the ESS at the same state (SOE). 
This allows any dispatch intervals in the dataset to be concat-
enated together to form the synthetic duty cycle, without any 
discontinuity in the state of the ESS.

The LIB cells in the ESS are assumed to be identical NMC 
cells of nominal capacity Qcell = 4.85 Ah and nominal voltage 
Vcell = 3.63V, with characteristics taken from [28]. As the cells 
are identical, the ESS power is divided by equally among its 
cells to produce the LIB cell power. In order to implement the 
synthetic duty cycles in LIB cell laboratory experiments, S(t) 
must then be scaled down to the cell level. For this, the number 
of cells in series and in parallel are needed. The number of 
cells in series s are estimated as

 s
V

V
ESS

cell

� �
��

�
��
 (19)

Where VESS is the nominal voltage of the ESS. Similarly, 
the number of cells in parallel p are estimated as

 p
E

V Q
ESS

cell cell

� �
��

�
��

 (20)

Then, given S(t), the LIB cell synthetic duty cycle Scell(t) is

 

S t
S t

sp

S t

V

V

E

V Q

cell

ESS

cell

ESS

cell cell

� � � � �

�
� �

�
��

�
��
�
��

�
��  

(21)

 FIGURE 3  Overview of all commercial system data used and generated in this study. The first column contains the load, solar 
PV, and tariff rate data used to generate the cost-optimal ESS dispatch. The second column contains the cost-optimal dispatch and 
SOE. The third column contains the resulting residential synthetic duty cycle. The gray solid arrows depict the inputs and 
corresponding outputs of the optimization problem. The black dash-dot arrows depict the inputs and corresponding outputs of the 
synthetic duty cycle algorithm. In all plots, positive power corresponds to discharging.
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For VESS of the residential and commercial ESSs, the Tesla 
Powerwall and Powerpack nominal voltages are used (VESS = 
50V and VESS = 900V, respectively [17, 20]). From Equations 
19 and 20, sp = 784 for the Tesla Powerwall, and for the Tesla 
Powerpack, sp = 47616. Therefore, for the residential and 
commercial synthetic duty cycles Sr(t) and Sc(t), Sr,cell(t) = 
Sr(t)/784 and Sc,cell(t) = Sc(t)/47616.

Results and Discussion
The residential and commercial synthetic duty cycles Sr,cell(t) 
and Sc,cell(t) are shown in the right-most column of Figures 2 
and 3, respectively. The synthetic duty cycle algorithm selects 
representative intervals from the dispatch to form the synthetic 
duty cycles. Therefore, the corresponding SOE, tariff rate, and 
system power flows can also be obtained from the data for 
these synthetic duty cycles, representing the characteristics 
of ESS operation within each residential and commercial 
power flow system. These quantities are presented with the 
corresponding synthetic duty cycles in Figure 4 and 5, and 
provide a means to interpret the cost-optimal dispatch in 
each operation.

For example, in Figure 4, the commercial ESS charges 
from the grid in a fashion that limits the peak power demand 
from the grid, in order to reduce the demand charges. The 
ESS discharges predominantly when the tariff rate is higher 
in order to minimize the TOU cost, sometimes even matching 
the load consumption entirely so that grid supply is zero.

In contrast, in Figure 5, the residential ESS predomi-
nantly charges from PV generation, regardless of the tariff 
rate (as there is no cost to charge off of PV). In fact, the 
majority of the load consumption is either directly supplied 
by PV, or is supplied by ESS power stored from excess PV, 
resulting in a near net-zero flow of energy from the grid. 
During periods when the tariff rate is low and solar generation 
is low, the ESS is able to charge from the grid without any 
demand charges, as indicated by the spikes in grid power 
between hours 30 and 40. Finally, the stored energy constraints 
defined in Equations 13 and 14 are respected in both synthetic 
duty cycles: each cycle begins and ends at 50% SOE, and 
remains within the upper and lower bounds of 80% and 
20% respectively.

Each synthetic duty cycle is also quantitatively compared 
to its originating cost-optimal dispatch via the synthetic duty 
cycle algorithm metrics in Table 1, shown in Figure 6. The 
synthetic duty cycles represent the cost-optimal dispatch 
along the majority of the metrics, but differ along others. In 
particular, the number of charge and discharge periods are 
much lower for the synthetic duty cycles compared to the 
entire dispatch, as expected given their highly-reduced length. 
The peak frequencies in charge and discharge also do not 
match between duty cycles and dispatch for the same reason; 
some of the transient components of the dispatch signals are 
lost when selecting a subset to form the synthetic duty cycles.

Finally, while the peak charging power matches well 
between the synthetic duty cycles and the entire dispatch, the 
synthetic duty cycle peak discharging power is lower than that 
of the entire dispatch.

 FIGURE 4  Clockwise from top-left: Commercial synthetic 
duty cycle (orange), with corresponding SOE (purple); demand 
charge (dark gray) and TOU cost (dark red); and system power 
flows: load consumption (blue solid line) and grid supply (gray 
dotted line). Note PV generated power is not plotted, as it os 
zero at all times for this dataset.

 FIGURE 5  Clockwise from top-left: Residential synthetic 
duty cycle (orange), with corresponding SOE (purple); demand 
charge (dark gray) and TOU cost (dark red); and system power 
flows: load consumption (blue solid line), grid supply (gray 
dotted line), and PV generation (green dash-dot line).
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Summary/Conclusions
This paper presented an end-to-end methodology to produce 
laboratory-prone, power-based synthetic duty cycles for grid-
scale ESS LIB cell experiments. These duty cycles were 
obtained from real-world power flow system data via a cost-
optimal simulated ESS dispatch and an algorithm for synthe-
sizing duty cycles. As the synthetic duty cycles are formed 
directly from characteristic intervals of the cost-optimal 
dispatch, this algorithm also enables the interpretation of the 
operational characteristics of ESSs in each grid application. 
The algorithm also provides a quantitative list of metrics to 
compare how well the synthetic duty cycles represent different 
characteristics of the dispatch. As more ESS operational field 
data are made available to the academic community, the 
synthetic duty cycle algorithm can be used to characterize 

real-world operation of ESSs and inform further 
laboratory experiments.

The synthetic duty cycles presented in this paper are 
currently being used to cycle the LIB cells presented in [28], 
which were aged using first-life EV driving cycles. The 
resulting dataset will form a second-life aging dataset, which 
can then be  used to advance modelling and valuation of 
second-life LIBs for grid-scale ESSs.
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Definitions, Acronyms, 
Abbreviations
CC - Constant current
CV - Constant voltage
EV - Electric vehicle
ESS - Energy storage system
LFP - Lithium-iron phosphate
LIB - Lithium-ion battery
LMO - Lithium manganese oxide
MILP - Mixed-integer linear problem
NMC - Nickel manganese cobalt
PV - Photovoltaic
TOU - Time-of-use

Appendix A: Nomenclature
Symbol Unit Quantity
PESS kW Rated maximum power of the ESS

EESS kWh Rated energy of the ESS

c(t) kW ESS charge power at time t

d(t) kW ESS discharge power at time t

pv(t) kW Solar PV power production at time t

l(t) kW Load power consumption at time t

g(t) kW Grid power supply at time t

gl(t) kW Power flowing from grid to load at time t

pvESS(t) kW Power flowing from solar PV to ESS at 
time t

pvl(t) kW Power flowing from solar PV to load at 
time t

pvg(t) kW Power flowing from solar PV to grid at 
time t

gESS(t) kW Power flowing from grid to ESS at time t

gl(t) kW Power flowing from grid to load at time t

ESSl(t) kW Power flowing from ESS to load at time t

C E(t) $/kWh TOU cost of energy for time t

C P (m) $/kW Peak demand charge for month m

h unitless Temporal resolution of the data in fractions 
of an hour

Tm,h unitless Number of timesteps of the data at 
resolution h for month m

Jm $ Monthly utility bill

Y unitless Number of years that the load and PV data 
span

E(t) kWh Stored energy in the ESS at time t
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Einit kWh Initial stored energy of the ESS at the 
beginning of each day

SOE(t) unitless State of energy of the ESS at time t

dbin(t) unitless Binary variable for ESS discharge

c* (t) kW Optimal ESS charge at time t

d* (t) kW Optimal ESS discharge at time t

w* (t) kW Optimal ESS dispatch at time t

S(t) kW Synthetic duty cycle for the ESS at time t

s unitless Number of cells in series within the ESS

p unitless Number of cells in parallel within the ESS

Scell(t) W Synthetic duty cycle for a single cell at 
time t

Qcell Ah Nominal cell capacity

Vcell V Nominal cell voltage

VESS V Nominal voltage of the ESS

Sr(t) kW Residential synthetic duty cycle for the 
ESS at time t

Sr,cell(t) W Residential synthetic duty cycle for a 
single cell at time t

Sc(t) kW Commercial synthetic duty cycle for the 
ESS at time t

Sc,cell(t) W Commercial synthetic duty cycle for a 
single cell at time t

d unitless Interval used for synthetic duty cycle 
algorithm

D unitless Total number of intervals in the dataset

m unitless Number of metrics for dispatch metrics 
matrix

M unitless Interval metrics matrix

σi unitless Singular value i

vi unitless Principal component i

p* unitless Optimal number of principal components 
for dimensionality reduction

P unitless Reduced-dimension matrix representation 
of M

Nc unitless Optimal number of clusters for k-means 
clustering

k unitless Number of clusters used in k-means 
clustering

cj unitless Cluster centroid j

rj kW ESS power dispatch for representative 
interval j

Appendix B
The synthetic duty cycle algorithm is based on previous work 
from the authors [27], and is summarized in Algorithm 1.

ALGORITHM 1 Synthetic duty cycle algorithm

Require: Set of cost-optimal ESS dispatch power w* and state of 
energy SOE*, and tariff rate CE, divided into D dispatch intervals

1: for d = 1, 2, …, D for D dispatch intervals do

2:   Compute all m metrics for interval d using its 
corresponding dispatch power, state of energy, and tariff 
rate ∗

dw , ∗
dSOE , and CE,d

3:   Store normalized metrics for interval d in the dispatch 
interval matrix M

4: end for

5: Obtain principal components v1, …, vm and singular value σ1, …, 
σm of M via PCA

6: Select number of principal components p* ∈ [1, m] as the 
minimum number of components needed to preserve 90% of 
the variance in the rows of M

7: Obtain PCA subspace matrix P = M[v1,  v2, …, vp∗]

8: Select optimal number of clusters, Nc to minimize intra-cluster 
distance and maximize inter-cluster distance

9: Obtain cluster centroids c1, c2, …, cNc of P with number of 
clusters Nc via k-means clustering

10: for j = 1, 2, …Nc do

11:   Select representative interval dj of cluster j as the cluster 
with smallest L2-distance to cluster centroid cj

12:   Obtain representative power interval dispatch ∗= jj dr w  as 
the characteristic duty cycle of cluster j

13: end for

14: Concatenate the Nc characteristic duty cycles to form the 
synthetic duty cycle S = [r1,  r2,  …,  rNc]

15: return Synthetic duty cycle S

The metrics computed for each interval (Line 2 of 
Algorithm 1) are shown in Table 1. Metrics relating to 
discharge are only computed in segments of the dispatch 
interval where power is non-negative (the “discharge periods”). 
Similarly, metrics relating to charge are only computed in 
segments of the dispatch interval where power is non-positive 
(the “charge periods”). The peak frequencies in charge and 
discharge are the peak of the power spectral density computed 
over the charge and discharge periods respectively, as 
computed in [29].
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