
  

  

Abstract— Battery management systems (BMSs) rely on 
empirical models, in the form of equivalent circuit models, 
thanks to their mathematical simplicity and low computational 
burden. However, empirical models undergo extensive 
calibration efforts, and they lack in transferability across 
chemistries. In addition, the inability to predict electrochemical 
internal states and account for degradation dynamics usually 
lead to ill usability of the battery system, possibly resulting in 
inaccurate state of health (SOH) estimations diverging over time. 
An advanced BMS design that can observe, and control internal 
variables of the battery system is imperative to overcome these 
limitations, enabling long-lasting, safer, and cost-effective 
battery systems for the fast-growing energy market. Physics-
based battery models have been regarded as one of the 
appropriate modeling frameworks to be integrated into the next-
generation BMS. In model-based estimation, available 
input/output sensor information (e.g., current, voltage, and 
temperature) are used along with a mathematical representation 
of the battery dynamics to estimate the internal states. The 
purpose of this tutorial paper is to review implementation 
challenges of physics-based battery models and provides an 
overview of the latest research trends focusing on numerical 
algorithms and observer designs for hardware implementation 
of physics-based battery models towards the advanced BMS. 

I. INTRODUCTION 

Lithium-ion batteries are currently the most popular 
electrochemical energy storage system to support and operate 
renewable energy applications and electric vehicles (EVs) 
thanks to their high specific power (300-1,500W/kg) and 
specific energy (100-270Wh/kg) [7, 8]. The battery system 
configuration is typically hierarchized from a cell level to a 
module and a pack level. 
          A lithium-ion cell is a basic unit of a lithium-ion battery 
containing a cathode, a separator, and an anode. The lithium-
ion cell system includes components at both the micro- and 
macro-scale. Micro-scale components represent the solid 
particles in the cathode and anode, whereas the macro-scale 
one consists of the electrolyte across the cathode, separator, 
and anode. In a lithium-ion cell system, electrons flow 
through an external circuit from the anode to the cathode (or 
from the cathode to the anode), while ions in the electrolyte 
are transported through the separator [1, 9, 10]. The battery 
module is a battery assembly that thermally interacts with 
individual cells by packing them closely together. The heat 
transfer through conduction between the surface of 
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neighboring cells is one of the key factors to causing different 
aging trajectories of individual cells in a module [5, 9, 12]. 
The battery pack is the final shape of the battery system 
installed in system-level applications, such as power grid and 
sustainable transport. It consists of battery modules connected 
in series and parallel, typically mounted on a system platform 
to provide the power and energy needed for the targeted 
application [14]. Lithium-ion battery packs always rely on a 
battery management system (BMS) to operate in a safe and 
efficient way, to achieve the desired performance while 
guaranteeing longevity of the pack. Typically, the current 
BMS employs an onboard microcontroller unit for capturing 
data from sensors through its peripherals as well as processing 
the data to make appropriate decisions and an analog front end 
for sensing signals from battery systems [16].  
          Mathematical battery models are typically used to 
understand, predict, control, and optimize battery 
performance in the BMS. The accuracy of BMS estimates 
largely depends on the accuracy and fidelity of the battery 
model used. By implementing adequate battery models, the 
viability and cost-effectiveness of existing electrochemical 
energy storage technologies used for transportation and grid 
storage can be further enhanced [17]. However, battery 
models must be implemented in low-cost BMS hardware 
components to make it commercially viable. This constrains 
the use of complex models in the BMS due to their memory 
and computational power needs, necessitating costly 
hardware. For this reason, the current practice employs 
empirical models, consisting of simple electric circuit 
components in the BMS thanks to their low computational 
cost and straightforward implementation [39]. However, 
empirical models are limited in providing physical insights 
and accurate aging predictions without vast amounts of 
testing and validation. Their accuracy varies with the 
calibration effort that goes to design accurate empirical 
models and chemistry specific [15].  The growing market of 
lithium-ion batteries in consumer electronics, automobiles, 
unmanned aerial vehicles, and the power grid sector has 
stressed the need and relevance for a properly designed 
advanced BMS that can ensure the battery system's reliability 
and performance.  
         An advanced BMS that can monitor and optimize 
battery behavior and predict internal electro- 
mechanical/chemical states and guarantee safety is essential 
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in renewable grid and EV systems. Model-based estimation 
uses available input/output sensor information (current, 
voltage, and temperature) to predict the internal battery states. 
It is key to know the values of these internal parameters to 
facilitate the application of control principles-e.g., to develop 
efficient charging/discharging profiles [1, 6]. Physics-based 
models are considered an adequate modeling tool for the next 
generation BMS applications. They can deliver high physical 
interpretability of internal electrochemical states, which can 
be used to maximize the safety, usability, and lifetime of the 
battery system. Therefore, the model choice has currently 
gravitated from empirical models towards physics-based 
electrochemical models capable of capturing the battery 
behavior and degradation accurately, as they describe the 
internal dynamics of the battery and retain relevant physics 
for precise state estimation.       
          Physics-based models have been implemented in 
combination with degradation mechanisms, including the 
solid electrolyte interface (SEI) layer growth and lithium 
plating [18].  In lithium-ion batteries, for example, lithium 
plating can lead to an internal short circuit by piercing the 
separator with irregular dendrite-shaped growth, possibly 
causing the battery to catch on fire. If detailed information on 
lithium plating near a separator is obtained, thermal runaway 
can be avoided by safer battery operation. Additionally, 
knowledge of the internal states can be used to minimize 
plating side reactions by controlling overpotential. 
Mathematically, lithium plating occurs when the anode 
overpotential is negative, and it can be minimized by 
restricting the overpotential above zero in the physics-based 
modeling framework.  The Doyle-Fuller-Newman (DFN) 
model is currently the most popular physics-based model used 
by the battery community to predict the electrochemical 
dynamics of lithium-ion batteries. The DFN model is made of 
partial differential equations (PDEs), which are numerically 
discretized into a large set of ordinary differential equations 
(ODEs) and algebraic equations (AEs) for implementation 

purposes [19]. There have been several challenges in 
implementing the physics-based model under the limited 
computational power and memory provided by onboard BMS 
hardware- e.g., computational costs, inconsistent 
initialization, and parameterization issues. Although the DFN 
model was developed in the late 1990s, an onboard physics-
based model BMS has not yet been commercialized. 
However,  strides  in the direction of having advanced BMS 
close to commercialization have been made over the past 
decade thanks to advancements in numerical algorithms and 
control designs to alleviate these obstacles (see Table I) [6, 
11]. The main objectives of this tutorial paper are to (i) 
provide a comprehensive summary of modeling frameworks 
and their pros and cons for estimation in battery systems, (ii) 
discuss challenges and opportunities in numerical algorithms 
for physics-based models, (iii) provide an exposure to the 
state-of-the-art technology in battery observability analysis 
and observer design, and (iv) present a robust DFN modeling 
implementation for inconsistent initial conditions within a co-
simulation framework for parameter identification.  

II. BATTERY MODELS 

Battery modeling candidates for the advanced BMS can be 
data-driven and physics-based models. 
          Recent developments in data-driven models with 
machine learning (ML) techniques have gained considerable 
attention as tools for predicting battery performance [20-22], 
due to their potential to achieve high accuracy with low 
computational cost (e.g., millisecond-scale simulation). 
However, ML models, typically viewed as a black box, rely 
on extensive historical field data to achieve better accuracy. 
A massive amount of data over a population of fleets is 
needed in order to cover as many usage scenarios as possible 
and provide accurate predictions [23]. Lab data is often 
utilized to establish the data-driven approach, which may 
misrepresent battery aging under real-world operations, 
limiting the extension of data-driven models [15]. 

Table I. Challenges and selected research trends towards advanced BMSs 
Implementation Issue Research approaches Comments Ref. 
High computational burden: 
Internal characteristics of the 
pseudo-two-dimensional axis 
cause expensive computational 
cost 
 

  

(i) Alternative modeling tool: 
full homogenized model         

           

· Consumes 60% of the computational 
costs over the DFN model. 
· Exhibits a decreased RMSE up to 75% 
over the DFN model under medium-high 
temperature EV operating conditions   
 

[3, 4] 

(ii) Mathematical 
reformulation of the DFN 
model 

  

· Orthogonal collocation and polynomial 
and biquadratic approximation for the 
solid phase concentration (milli-second 
scale simulation) 
 · Coupled with real-time nonlinear model 
predictive control (NMPC) 

[1, 5, 6] 

(iii) Reduced order models 
from the DFN model 

· An optimal observer design was 
proposed coupling with reduced-order 
models 

[10, 11] 

Initialization: In the DAE 
system, AEs act as constraints, 
and consistent initial conditions 
are not known priori 

Single-step iteration-free 
initialization for the DAE 
system 
 
 

· The DFN model has been simulated with 
this initialization approach in the Maple 
environment  

[13] 

Optimal parameter identification Robust and sleek MATLAB® 
framework  

· Efficiently enables to couple various 
optimization techniques with the DFN 
model relying on the single-step iteration-
free initialization approach 
 

[15] 
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On the other hand, physics-based battery models have been 
considered one of the front-runner modeling candidates for 
the advanced BMS in the current battery community. The 
main advantage of physics-based models is that they can be 
simulated in real-time using efficient numerical algorithms as 
well as providing high physical interpretability of internal 
electrochemical states. In addition, physics-based models can 
integrate degradation mechanisms -e.g., lithium plating and 
be used to optimize fast charge and battery life while 
minimizing the growth of plated lithium. For example, 
lithium plating is known to occur during high charge C-rates 
and/or low-temperature operation. In physics-based modeling 
frameworks, the overpotential condition can be restricted 
above zero to identify optimal charging strategies, 
maximizing usability, performance, and life of the battery 
systems [1, 6]. 
 

B. DFN Model 
DFN model is the most widely accepted physics-based model 
to predict electrochemical dynamics of lithium-ion batteries 
by the battery community [19]. The solid and the electrolyte 
phases are considered in the DFN model. In the solid phase, 
states evolve in the x and r dimension. In the electrolyte, states 
evolve in the x dimension only.  The model predicts the 
evolution of lithium concentration in the solid phase 
𝑐!,# 	(𝑥, 𝑟, 𝑡), at the anode and at the cathode (i=negative, 
positive) the electrolyte concentration 𝑐$(𝑥, 𝑡),  solid phase 
potential	𝜙!,#(𝑥, 𝑡),	electrolyte electric potential, 𝜙$(𝑥, 𝑡) 
(lithium-ion diffusion creates voltage gradients in both the 
electrodes and electrolyte), and lithium intercalation current 
𝐽#. The Butler-Volmer equation is used to describe the 
relationship between the lithium intercalation current and the 
overpotential. The difference between solid and electrolyte 
phase potentials drives the main intercalation reaction on both 
electrodes as well as a side reaction on the anode, - e.g., 
leading to SEI layer growth [19]. All equations, variables, and 
parameters are shown in Tables II, III, IV, and V. In Table III, 
Equations 1, 5, and 7 represent electrolyte dynamics in the 
positive electrode, separator, and negative electrode, 
respectively. The electrolyte potential is represented by 
Equations 2, 6, and 8 in Table III. Equations 3 and 9 (Table 
III) represent solid particle potentials, and Equations 4 and 10 
(Table III) represent solid particle concentrations. Additional 
equations related to governing equations are given in Table 
IV. 
 

Table II. List of variables for DFN model 
Symbol Variables Units 
C Electrolyte concentration  mol/m3 
cs Solid phase concentration  mol/m3 
Ф1 Solid phase potential  V 
Ф2 Liquid phase potential  V 
I Applied current density A/m2 
Ui Open circuit potential at positive and 

negative  
V 

Ji Pore wall flux at positive and negative  mol/m2/s 
ϴi State of charge at positive and negative  - 
  

 
 
 

 

 
Table III. Governing equations for DFN model 
Governing equations 
Positive 
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Table IV. Additional equations for DFN model 
D"##,, = D · ε,-./00,			i = p, s, n (11) 
σ"##,, = σ,(1 − ε,), i = p, s, n    

(12) 
a, =

1
2!
(1 − ε,),		i = p, n   

(13) 
j!

= 2c3.5k!c*!,*/.#(c*!,678 − c*!,*/.#)3.5sinh	(
αF
RT

LФ& −Ф' − U!N) 
(14) 

j+
= 2c3.5k+c*+,*/.#(c*+,678 − c*+,*/.#)3.5sinh	(

αF
RT

(Ф& −Ф' − U9)) 
(15) 

 
Table V. A. Parameters for DFN model 
Symbol Parameter 
σi Solid phase conductivity (𝑖 = 𝑝, 𝑛) 
εi Porosity	(𝑖 = 𝑝, 𝑠, 𝑛)  
Brugg Bruggeman coefficient 
D Electrolyte diffusivity 
Ds,i Solid phase diffusivity (𝑖 = 𝑝, 𝑛) 
ki Reaction rate constant (𝑖 = 𝑝, 𝑛) 
cs,i,max Maximum Solid phase concentration (𝑖 = 𝑝, 𝑛) 
Rp,i Particle radius (𝑖 = 𝑝, 𝑛) 
ai Particle surface area to volume (𝑖 = 𝑝, 𝑛) 
li Region thickness (𝑖 = 𝑝, 𝑠, 𝑛) 
t+ Transference number 
F Faraday’s constant 
R Gas constant 
T Temperature 
α Transfer coefficient 
Acell Electrode area 
c Electrolyte concentration 

 

III. NUMERICAL ALGORITHMS/MODELING APPROACHES 
TOWARDS ADVANCED BMS DESIGN 

As part of the implementation process, the PDE system of the 
DFN model is converted to the differential algebraic equation 
(DAE) system by numerical discretization, resulting in 
ordinary differential equations (ODEs) (see Equation 16) and 
algebraic equations (AEs) (see Equation 17) as follows: 
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                          ODE:  		!"($)

!$
= 𝒇(𝑡, 𝒚, 𝒛),                             (16)   

               AE:    𝒈(𝑡, 𝒚, 𝒛) = 0                               (17) 
 
where 𝒛 represents the set of discretized AE variables, 
including the solid and liquid phase potential, 𝒚 represents the 
set of discretized ODE variables, including the electrolyte and 
solid phase concentration, and 𝑡 represents simulation time.   

A.  High computational cost 
The DFN model typically generates considerable numbers of 
discretized variables when utilizing conventional 
discretization methods, such as the finite difference method 
(FDM), the finite volume method (FVM), and the finite 
element method (FEM) (note: the Appendix section provides 
detailed information on numerical discretization methods).  
These discretization methods convert time and space domains 
into time domains. Equations 1, 4, 5, 7, and 10 in Table III are 
converted into ODE systems, Equations 2, 3 6, 8, and 9 in 
Table III are converted into AE systems. In addition, the 
pseudo-two-dimensional nature of the DFN model generates 
a large set of ODEs and AEs, resulting in high computational 
cost; The DFN model assumes that solid particles in the 
positive and negative electrodes are distributed in one 
dimension along the x-axis of the electrolyte, and the solid-
phase concentration of each solid particle is solved along the 
radius r dimension at a particular discretized point on the x-
axis in the electrolyte.   
Consider numerically discretizing the cathode, separator, and 
anode, using 20 node points. For the electrolyte and solid 
phase potential, the cathode produces a total of 40 AEs, and 
for the electrolyte concentration, it produces 20 ODEs.  
The solid particle is also discretized with a number of 5 node 
points. The solid particles are placed at each discretized point 
along with the x-axis of the LIB, resulting in a total number 
of 100 ODEs, and a total of 160 DAEs for the cathode. The 
anode is also discretized in the same way resulting in 160 
DAEs. The separator contains 20 node points, which yields a 
total of 40 DAEs, consisting of 20 ODEs for the electrolyte 
concentration and 20 AEs for the electrolyte potential. The 
solid phase concentration and potential are ignored since they 
do not exist in the separator. Therefore, the total number of 
DAEs of the full-order DFN model becomes 160 + 160 + 40 
= 360. Given the large number of DAEs to be solved,  
 

 

 
Figure 1. The electrochemical control-oriented model based on 
homogenization developed in 2015 provides higher accuracy in 

predicting battery response under certain operating conditions 
electric vehicles would experience.  

simulation of the DFN model can be computationally 
expensive. This has been one of the main obstacles to 
incorporate the DFN model for advanced BMS design. The 
following sections A.1, A.2, and A.3 present modeling 
approaches and numerical algorithms to address the 
computational issues towards advanced BMS feasibility.  

A-1. Alternative physics-based modeling tool 
In references [3] and [4], the full homogenized macroscale 
(FHM) model was proposed as an alternative modeling 
framework to overcome the limitations of the DFN model 
(see, Figure 1). In the FHM framework, homogenization 
methods to upscale pore-scale battery dynamics are adopted 
to design a macroscale model of lithium-ion batteries [3, 4]. 
The FHM model is formulated under the assumption that the 
electrodes are composed of spatial unit cells, causing micro-
scale continuity in the lithium-ion cell system. In addition, the 
FHM model’s effective ionic properties are determined by 
resolving the closure problem in the unit cell of the electrode 
microstructure [3]. The FHM model also considers solid and 
electrolyte phases, but the solid and electrolyte states evolve 
in the x dimension only.  
Reference [4] compares the performance of the DFN model 
with the FHM model in a COMSOL® environment adopting 
the FEM to numerically simulate battery models. Due to the 
one-dimensional implementation characteristic, the FHM 
model is reported to consume 60% of the computational costs 
over the DFN model under the same numerical discretization 
method. The FHM model predicts the evolution of average 
lithium concentration in the solid phase 𝑐!,R 	(𝑥, 𝑡) , at the 
anode and at the cathode, average lithium concentration in the 
electrolyte 𝑐$(𝑥, 𝑡), average solid electric 
potential	𝜙!,R	(𝑥, 𝑡),	average electrolyte electric potential, 
𝜙$	(𝑥, 𝑡), and lithium intercalation current [4]. In addition to 
lower computational cost, the FHM model was reported to 
provide more accurate predictions over the low state of charge 
and medium-high temperature, as well as high C-rate (see 
Figure 1).  
The DFN framework is based on the assumption that 
electrodes can be idealized as spherical-shaped particles. 
Moreover, simplifications are made to derive the effective 
coefficients for ionic diffusion and conductivity based on not-
validated empirical laws. These assumptions possibly make 
the model ineffective and poor predictability leading to 
underutilization (or overutilization) of the battery system–and 
inaccuracy at the condition of operations in which electric 
vehicles would experience – e.g., low SOC, medium-high 
temperature, and medium-high C-rate. The FHM modeling 
framework exhibits a decreased root mean square error 
(RMSE) up to 75% when compared to the error generated 
from the DFN model under medium-high temperature 
conditions [4].      Despite the shortcomings of the DFN model 
under the aforementioned operating conditions, numerous 
studies have been conducted on capacity fade, mechanical 
stress effects, and several numerical approaches to implement 
the DFN model in advanced BMS applications its inception  

Data set 
(discharge) 

RMSE 
DFN FHM 

1C at 45°C 2.59% 0.57% 
1C at 52°C 2.59% 0.51% 
15C at 23°C 2.28% 1.27% 
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in 1993. Thus, it is undeniable that the DFN model is currently 
the most used and understood modeling tool for advanced 
BMS, while the FHM model, which is still in the early stages 
of research, is also valuable as an alternative modeling 
framework. 

A-2.  Numerical algorithms for model predictive control 
To maximize the battery system’s usability and performance, 
models are required to be simulated in real-time. For example, 
charging/discharging optimization must be achieved within a 
given response time. Assume that the battery model consumes 
one millisecond to generate a single charge profile, and the 
response time is one second. In this scenario, a thousand 
different charging optimization protocols can be theoretically 
performed in one second. For this reason, identifying an 
optimal charging/discharging protocol is directly related to 
simulation speed because it determines how many different 
charging/discharging profiles can be generated to obtain the 
optimal profile within the given time framework [5, 6]. 
Several numerical approaches have been proposed to enable 
fast and efficient DFN model simulation. Mathematical 
reformulation of the DFN model is an efficient way of 
reducing the number of DAEs to improve the speed of 
simulation, thus enabling better control [5, 8]. This also 
lowers the memory footprint and allows for the use of 
economical hardware components in deploying the BMS. 
          The DFN model can be reformulated by making 
assumptions to simplify the physics or aggregating regions 
within a system, thereby reducing the number of equations to 
be solved. 

 
 
Figure 2. The fast charging protocol is validated with a 16Ah nickel-
manganese-cobalt (NMC) pouch-type lithium-ion cell (3.5C rate as 
the upper limit for charging current) (a) optimal (long-dash) and 
CC-CV (short-dash) current-time curves (b) optimal (long-dash) and 
CC-CV (short-dash) voltage-time curves (c) optimal (long-dash) and 
CC-CV (short-dash) overpotential-time curves (d) optimal (short-
dash) and CC-CV (straight line) cycling life [1] 
 

Reference [8] proposed a polynomial and biquadratic 
approximation for the concentration profiles of lithium in the 
electrodes. Using such approximations reduces the number of 
equations to be solved and can be very efficient for long-time 

scales. These approximations are ideal for adaptive solvers for 
the DFN model and have been shown to be accurate at low and 
medium charging/discharging C-rates of battery operation. 
Reference [5] used a coordinate transform for cathode-
separator-anode units and adopted spectral methods such as 
orthogonal collocation combined with analytical solutions for 
electrochemical internal variables (see comparison of single-
discharge simulation time between the FDM and orthogonal 
collocation method in Table VI; more information related to 
orthogonal collocation can be found in the Appendix). 

Table VI. Comparison of DFN single-discharge simulation time 
between orthogonal collocation method and FDM [5] 
 
Method Number 

of DAEs 
Simulation 
time (ms) ǂǂ 

RMSE 
(mV) ǂǂǂ 

FDM (50, 35, 50) ǂ 590 4617 - 
Collocation (1,1,1) ǂ 20 46 17.84 
Collocation 
(5,3,5) ǂ 

56 109 1.56 

ǂ Number of node point: (anode, separator, cathode) 
ǂǂ The simulation times are presented using a FORTRAN based DASSL solver 
ǂǂǂ RMSEs are calculated by difference between the FDM and collocation 
method 
 

These reformulation techniques have recently been 
demonstrated to be used in optimal charging protocols [1, 6].  
A significant push to adopt EVs over gasoline vehicles can 
come from reducing charging times by providing EVs with 
fast-charging capabilities. Since lithium plating is accelerated 
at high C-rates, it is critical to limit its formation while 
developing fast charging protocols. Reference [6] and [1] 
incorporate the DFN model via real-time nonlinear model 
predictive control (NMPC) to constrain the plating 
overpotential. A control formulation was proposed to 
maximize the charge stored such that the plating overpotential 
(anode overpotential) is greater than zero. Equations 
describing the same are shown below: 
 

max Q = ∫ 𝑖STT(𝑡)𝑑𝑡
U!
V                        (18) 

such that 
0 < 𝑖STT < 𝑖WSX (=3.5C) 

                                       𝜂SYZ[$ > 0                                 (19) 
where Q is the charged stored in the battery, iapp is the applied 
charging current, tf is the total time of charging, imax is the 
maximum allowable current for charging, and ηplating is the 
overpotential at the anode (Ф& −Ф' −𝑈(). Coupling this with 
a reformulated DFN model- a polynomial solid phase 
concentration approximation along with orthogonal 
collocation, a dynamic charging profile was designed in 
reference [1]. Figures 2(a) and 2(b) show the comparison of 
current and voltage profiles between NMPC and CC-CV 
charging protocol, respectively. It is seen that the cell voltage 
is higher in the former as the anode potential is being 
controlled to be constantly above zero, which prevents lithium 
plating, as can be seen from Figure 2(c). In Figure 2(d), the 
cycle life was reported to be more than doubled compared to 
standard CC-CV charging protocols [1]. The NMPC protocol 
has been applied to various cell types and chemistries and 
tested with experimental protocols to validate a longer cycling 
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life of the battery system (note: the data were provided by 
BattGenie, Inc). 
 
 

 
Figure 3. (a) Optimal charging of a 26Ah pouch cell. (a.1) Discharge 
capacity vs cycle number is observed for baseline cells and optimally 
charged cells (a.2) Reduction in charging time is observed for 
optimally fast charged cells. Curves Model-based Control (MBC) -
Cell42, MBC-Cell43 and MBC-Cell44 refers to the cells that are 
charged using the optimal charging profile. Baselines-
Cell20/Cell21/Cell22 are charged using a baseline protocol. (b) 
Optimal charging of a 3Ah NMC 18650 cell using MBC. (b.1) MBC 
cell lasts for over 400 cycles compared to the baseline cell lasting 
120 cycles before reaching End-of-Life (75% relative capacity). The 
orange ● refers to a baseline cell charged at 1.33 CC-CV (b.2) Clear 
reduction in charging time observed for optimally fast charged cell 
compared to the baseline cell. For comparison, the total charging 
time of a cell charged using a 1.33C CC-CV protocol is also plotted 
(orange ●). (c) MBC on a 5Ah NCA 21700 cell. Cells 10/13/14 
(MBC) refer to the cells that are charged using the optimal charging 
profile. Cells 1/7/9 are charged using a baseline protocol, the C-rate 
used is mentioned in a bracket beside the cell number (example: Cell 
7 is charged and discharged at 2C rate). (c.1) MBC cells have lost 
around 7% Relative Capacity compared to baseline Cell 7 that has 
lost 25% Relative capacity at cycle 200. (c.2) Clear reduction in 
charging time observed for optimally fast charged cells. MBC cells 
take around 62 minutes to charge compared to baseline Cell 7 and 
Cell 9, whose charging time increases with cycles from around 60 
minutes at the start to 95 minutes after 200 cycles [2]. 
 

Fast charging of a 26Ah nickel-manganese-cobalt (NMC) 
pouch cell using model-based control shows a 23% reduction 
in the average charge time while compared to baseline cells 
(see Figure 3a.1), while achieving similar discharge capacity 
as the baseline cell (see Fig 3a.2). Experiments performed on 
a 3Ah NMC 18650 cell, being charged using an optimal 
charging profile have also shown significant improvements in 
battery performance. Figure 3b.1 depicts an improvement in 
cycle life by more than 200% (shown by green X) as compared 
to baseline 2C CC-CV protocol (shown by red X). Figure 3b.2 
shows the total charging time of the cells using the baseline 
protocol and the optimal protocol. It is seen that using an 
optimal profile enables lower charging times of around 60 
minutes for charging, while the baseline charge times for the 
2C CC-CV profile increase from an initial time of 60 minutes 
to over 75 minutes after 150 cycles of operation. In addition, 

model-based control on a 5Ah nickel-cobalt-aluminum (NCA) 
21700 cell has shown improvement in cycle life (see Figure 
3c.1) and achieved a faster charging time (see Figure 3c.2). 

 

A-3. Reduced order models and observer design 
Observability is defined as a structural property of the battery 
system that allows the internal state of a system to be inferred 
from available input and output sensor measurements [11]. In 
observable systems, therefore, an observer can be designed 
for the battery system, thereby estimating the internal state 
variables, including the SOC and SOH [11].  
          The mathematical structure of the DFN model has still 
been considered too complicated for observer 
implementation, even though the electrochemical model can 
account for electrochemical internal state variables [25]. 
Within the DFN modeling framework, therefore, additional 
assumptions have been added to construct reduced-order 
models with simplified descriptions of electrolyte dynamics 
and nonuniform reaction distributions, to  help reduce the 
number of ODEs and AEs [15]. For example, the enhanced 
single particle model (ESPM) assumes that each electrode can 
be represented by a single spherical particle, which implies 
that all solid particles are uniform and have the same chemical 
properties. In the single particle model (SPM), the electrolyte 
dynamics is ignored [26, 38].  
          Observer design approaches have included model 
reduction and estimation. The first step towards creating a 
model-based observer is to verify the observability property 
of the model. For example, observability matrices have been 
used to check for local observability. Following observability 
analysis, the rank test of the observability matrix is applied to 
nonlinear battery modeling frameworks. A standard way of 
addressing nonlinear observability employs differential 
geometry to check the rank condition [11].  
          Studies on closed-loop observers and estimators for 
reduced-order electrochemical models have been extensively 
conducted to estimate internal states of a battery. A critical 
issue with observability in electrochemical models is the 
weak observability of lithium concentration when estimating 
solid-phase concentration in the positive and negative 
electrode separately. In order to overcome the weak 
observability, several methods to estimate the lithium 
concentration on a single electrode or both electrodes have 
been proposed in the literature such as single electrode 
observers, inclusion of thermal model and measurements, and 
interconnected observers [11].  
Among many other observer designs (see, for example [25, 
38, 39, 41]), reference [40] and [10] provide combined 
estimation of non-measurable critical battery variables such 
as lithium concentration and total cell capacity by using an 
electrochemical model-based interconnected observer (see 
Figure 4). Specifically, in [10] a dynamic relationship 
between capacity and power fade is exploited in order to 
formulate an adaptive interconnected observer by assuming 
that the SEI layer density is the dominant aging mechanism. 
By adopting a model-based adaptive interconnected observer, 
reference [10] proposes a real-time method to estimate 
lithium concentration in both electrodes, cell capacity, and 
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additional aging-sensitive parameters such as anode diffusion 
coefficient and ionic conductivity in the SEI layer. The 
capacity estimates were found to be within 2% of their 
respective true values across different lithium-ion cells in 
various states of health. Capacity estimates are also found to 
be robust against measurement noise and sensor bias as shown 
from the Battery-In-the-Loop validation performed on dSpace 
system [24]. 
 

 
Figure 4. Interconnected adaptive observer structure for the 
estimation of lithium concentration states, total cell capacity, anode 
diffusion coefficient, and the SEI layer ionic conductivity .  
 

B. Inconsistent initialization issue 
In the DAE system, the definition of consistent initial 
conditions refers to initial values of y0 and z0 that satisfy the 
AE system (see Equations 19). In the DFN model, however, 
consistent initial conditions for all electrochemical variables 
are not known a priori. For this reason, the equilibrium state 
of the lithium-ion battery is used for initial guesses when 
implementing the DFN model. For example, initial guesses of 
solid-phase potentials at positive and negative electrodes are 
obtained from the values of positive and negative open-circuit 
potentials, respectively. Open-circuit potentials are a function 
of solid particle concentrations at the surface, and therefore, 
initial guesses of open-circuit potentials are determined by 
initial guesses of solid particle concentrations at the surface.         
The initial guesses of solid concentrations at the surface are 
given by the state of charge of the battery.  
          However, when the current is applied to the battery, the 
battery exits from its equilibrium state, and the aforementioned 
initial guesses no longer satisfy the AE constraint. The 
difference between initial guesses based on the equilibrium 
status and consistent ICs can be considerable, especially under 
high C-rate operating conditions. In addition, conventional 
numerical discretization methods, such as FDM, FVM, and 
FEM, generate many numbers of variables along with spatial 
scales at high number of node points. In this case, if 
inconsistent initial conditions are given, DAE solvers might 
not sort out the consistent initial conditions between the spatial 
variables. In order to determine consistent ICs, researchers 
have typically implemented iterative-based initialization 
approaches (e.g., fsolve and bisection algorithms); however, 
these iterative algorithms often come with fail to obtain 
consistent ICs [13]. 

B-1. Single-step iteration-free initialization approach 
In 2015, a robust and efficient single-step iteration-free 
initialization approach was proposed to simulate the DAE 
system [13]. In the initialization approach, the DAE system is 
separated into AEs and ODEs. Next, while a switch function 
is multiplied by the ODEs, the AEs are converted into implicit 
ODE systems by the perturbation method [27]. In the final 
step, the implicit ODE system and the original ODE system 
including the switch function are simultaneously simulated. 
During a solving process, while implicit ODE systems 
identify the consistent initial conditions, the switch function 
converts the original ODEs into zero. Once consistent initial 
conditions are determined, the switch function is set to one. 
In this way, consistent initial conditions are guaranteed with 
a single-step iteration-free process. To date, the single-step 
iteration-free initialization approach has been implemented to 
simulate the DFN model in Maple® environment. A detailed 
derivation is described in the following paragraph. 
 
AE system. AE variables are expressed as 𝑔(𝑡). When a 
perturbation parameter (ε) is a very small constant (<<1), 
𝑔(𝑡′) becomes zero as follows: 
 

                  𝑔(𝑡′) = 𝑙𝑖𝑚
)→+

𝑔(𝑡, + 𝜀) = 0                       (20) 
 
When t\ = t + ε, Equation 20 becomes 
  

𝑔(𝑡 + 𝜀) = 𝑙𝑖𝑚
)→+

𝑔(𝑡, + 2𝜀) = 0                  (21) 
 
Therefore, from Equation 21, 
 

𝑔(𝑡 + 𝜀) = 0                                (22) 
 
Equation 20 and Equation 22 have the relation as below.  
 

                 𝑔(𝑡′) = 𝑔(𝑡 + 𝜀) = 0                         (23) 
 
The original AE to be solved is g(t′) = 0. However, from 
Equation 23, solving g(t + ε) = 0 equals to solving g(t′) =
0. By the Tayler series expansion, 
 
𝑔(𝑡 + 𝜀) = 𝑔(𝑡) + 𝜀 "#(%)

"%
+ '

(
𝜀( "

:#(%)
"%:

+⋯ ≈ 𝑔(𝑡) + 𝜀 "#(%)
"%

     (24) 
 
Combining Equation 23 with Equation 24, 
 

𝜀 [](U)
[U

− 𝑔(𝑡) = 0                              (25) 
 
Arranging Equation 25, 
 

𝜀 [](U)
[U

= −𝑔(𝑡)                               (26)    
We demonstrate that solving  g(t′) = 0 equals to solving  
ε ^_(`)

^`
= −g(t) from Equations 20 to 26.  

 
ODE system. ODE variables are expressed as 𝑦(𝑡). 
Equation 29 represents ODE systems. 
 

!"($)
!$

= 𝑓(𝑡, 𝑦, 𝑧)                              (27) 
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Now, a switch function is introduced. 
 

𝑇a =
b
c
(1 + 𝑡𝑎𝑛ℎ	(𝑞(𝑡 − 𝑡R))                  (28) 

 
If q has enough large values (e.g., 1000), switch function 
becomes zero when t < td and becomes one when	t > td. 
Now, Equation 27 is multiplied by Equation 28. 
 

[e(U)
[U

= 𝑓(𝑡, 𝑦, 𝑧) b
c
(1 + 𝑡𝑎𝑛ℎ	(𝑞(𝑡 − 𝑡R))           (29) 

 
This initialization approach combines Equation 26 and 
Equation 29 and solves AES and ODEs simultaneously. That 
is,  
(i) when 𝑡 < 𝑡R, 𝜀

[](U)
[U

= −𝑔(𝑡)	will find consistent initial 
conditions  
(ii) when 𝑡 > 𝑡R,  

!"($)
!$

= 𝑓(𝑡, 𝑦, 𝑧) and 𝜀 [](U)
[U

= −𝑔(𝑡) are 
solved simultaneously. 
 

B-2. MATLAB® framework and parameter identification 
The  initialization approach described in the previous section 
has recently been implemented in MATLAB®, one of the 
most widely used software in the control community. The 
DFN modeling framework was provided as an open-access 
MATLAB® code referred to as DEARLIBS (Doyle-Fuller-
Newman Electrochemical Battery Model Implementation in 
a Robust and Sleek MATLAB® Framework for Lithium-ion 
Batteries), allowing users to simulate the DFN model along 
with a standard solver (e.g., ode15s) as well as identify model 
parameters directly after numerical discretization [15]. 
DEARLIBS adopts the FDM, over which the single-step 
iteration-free initialization approach is applied. The 
MATLAB® standard ode15s solver is then adopted as the 
solver of choice to simulate the DFN model. Kinetic/transport 
parameters of a commercial battery system (LG INR 21700) 
were identified at different temperatures (5°C, 25°C, and 
35°C), adopting the particle swarm optimization (PSO) as an 
example of gradient-free optimization algorithms to minimize 
the RMSE between a 1C voltage discharging experimental 
profile and modeling voltage outputs (see Figure 5). In the 
PSO, a solution is represented by particles, including two 
vectors of position and velocity. Each particle moves to a new 
position using velocity based on the global best position in the 
PSO algorithm. When a new position is reached, the best 
positions of each particle are updated. Modeling voltage 
outputs were also validated with dynamic urban driving 
schedule profiles based on the identified parameters.          In 
addition to robust and efficient initialization, DEARLIBS 
maximizes users’ convenience, including a parameter 
identification routine along with a standard solver provided 
by MATLAB®. Currently, multiple parameters identification 
remains a challenge in the DFN model. The DFN model 
requires over 20 parameters to fully describe the physical, 
chemical, and electrochemical properties of LIBs. In 
commercial LIBs, model parameter values are generally not 
provided because battery manufacturers treat them as trade 
secrets.  
 

 

Multiple parameters in the DFN model, such as geometric, 
kinetic, and transport parameters, can be mathematically 
identified simultaneously from available measurements of 
voltage, current, and temperatures. The multiple parameters 
identification techniques are essential to be used to update the 
transport and kinetic parameters of LIBs during battery 
operation. Current practice mostly focuses on fitting 
simulated voltage with experimental voltage data at different 
C-rates via a specific parameter identification algorithm. In 
DEARLIBS, a robust and efficient single-step iteration-free 
initialization algorithm is one of the most crucial parts to 
implement parameter identification techniques. A set of 
model parameter values are changed during the parameter 
identification process at every iteration. The iteration process 
requires different consistent initial conditions depending on a 
set of updated parameter values. The DEARLIBS simulates 
the DFN model using a standard solver, which enables users 
to efficiently couple and execute numerous parameter 
identification routines by relying on the Optimization 
Toolbox provided MATLAB®. 

 

 

Figure 5. Comparison of 
voltage profiles between 
experimental data and 
battery model outputs 
from the DFN model. 
Voltage profiles from 
experimental 
measurement and DFN 
model outputs are 
compared at (a) 25°C 
and (b) 35°C 
(Experimental data: red-
color and empty circle 
dots, the P2D model: 
blue-color straight line). 

 

 

IV. CONCLUSION AND PERSPECTIVES 

We discussed the necessity of a physics-based modeling 
framework for advanced BMS design. Challenges and 
research trends were introduced to address implementation 
issues, including high computational cost, inconsistent 
initialization, and parameter identification routines, as well as 
state observer design. One key challenge is to characterize 
and validate performance under different degradation stages  
occurring in lithium-ion battery systems. In physics-based 
modeling frameworks, a few main degradation mechanisms 
have been implemented -e.g., the SEI layer growth and 
lithium plating. Modeling degradation modes that occur in a 
battery throughout its lifespan is a massive undertaking as it 
requires coupling electrochemical, thermal, and mechanical 
effects at various length scales. Degradation mechanisms are 
coupled and nonlinear and they hard to observe through non-
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invasive onboard BMS measurements.  To address this issue, 
the concepts of several possible integration architectures for 
physics-based and data-driven models with machine learning 
techniques have been recently proposed to achieve better 
accuracy, robustness to limited or low-quality data, and life 
prediction generalizability. For this hybrid integration 
framework, historical operation data needs to be utilized for 
validation, but data storage is often limited in the onboard 
BMS [28, 29].  
Cloud computing and the Internet of Things (IoT) can be 
leveraged to overcome onboard BMS limitations, providing 
high computation and data storage capability, as well as 
system reliability through wireless IoT communication [30]. 
New communication technologies such as 5G technology 
have led to an unprecedented increase in cloud adoption. 5G 
wireless technology delivers higher performance and 
improved efficiency through higher data speeds, low latency, 
more reliability, and massive network capacity empowering a 
new network of connectivity. These technologies together 
enable real-time monitoring, prediction, and fast optimization 
of battery systems with almost unlimited storage, processing 
capacity, and high system reliability. However, there are also 
concerns that the BMS should be the onboard system rather 
than the cloud-based control over battery operation. 
Cyberspace attacks are expected to proliferate with millions 
of connected sustainable transportation and renewable energy 
systems in the cloud environment. There is the possibility of 
catastrophic infrastructure disruption from cyberattacks such 
as malicious commands and incorrect over-the-air updates. 
Cybersecurity demands much attention and is critical in 
regulating malicious hacking [31, 32]. The state-of-the-art 
research technologies introduced in this paper unlock the 
potential to implement physics-based models that provide an 
information on internal electrochemical states in real-time and 
optimal fast charge strategies while minimizing memory, 
even when executing in an onboard BMS as well as a cloud 
environment. Implementing physics-based models can 
alleviate critical weaknesses of current BMS related to the 
inability to capture degradation mechanisms using empirical 
models. Through advanced BMS computing, we envision that 
battery performance and usability can be enhanced, providing 
longer and safer battery use. 

APPENDIX 
The finite difference method (FDM) is the most direct 
approach to discretizing the PDE system. In the FDM 
framework, a point on the x-axis (or r-axis) represented by the 
continuum representation of the governing equations is 
converted into a set of discrete equations. The FDM is 
considered the easiest and most straightforward discretization 
method while producing an accurate performance on regular 
geometries (e.g., one-dimensional setting and rectangular-
shaped models) [33]. In the FDM, for example, time and 
space domains of the DFN model are converted into time 
domains at each local point; the first and second order x- and 
r-derivatives of PDEs are converted into ODEs as follows: 
 
 

    First order: fg)(X,U)
fX

= g)*+(U)hg)(U)
i

                            (A.1)     

                    
fj),-(X,k)

fk
= j)*+,-(U)hj),-(U)

i.
             (A.2) 

      Second order: f
/g)(X,U)
fX/

= g)*+(U)hcg)*+(U)lg)0+(U)
i/

    (A.3) 

         
f/j),-(X,U)

fk/
= j)*+,-(U)hcj)*+,-(U)lj)0+,-(U)

i./
     (A.4)                 

In the finite volume method (FVM), the differential form of 
the material balance is replaced with an integrated form [33]. 
Consider one-dimensional transport in the element shown in 
Fig. 1.A. At steady state, a shell mass balance is written as 
 
 

							F	𝑟𝑎𝑡𝑒	𝑜𝑓𝑚𝑎𝑠𝑠	𝑖𝑛K −	F
	𝑟𝑎𝑡𝑒	𝑜𝑓
𝑚𝑎𝑠𝑠	𝑜𝑢𝑡K +	M

	𝑟𝑎𝑡𝑒	𝑜𝑓
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛O = 	0   (A.5) 

 

 
 
Figure 1.A. A control volume. Fluxes are evaluated at the faces 
between node points, and mass is rigorously conserved 
 
or on a unit area basis, 
 
                 𝑁m Q𝑥 −

i
c
R − 𝑁m Q𝑥 +

i
c
R + 𝑅mℎ = 0             (A.6) 

 
where NA is the flux of species A, RA is the homogenous 
production rate, and h is the thickness of the element.  
Typically, after making the balance for a shell of finite 
thickness, one lets the thickness of the shell, h, become 
infinitesimally small. Performing this and substituting Fick's 
law for diffusion gives 
 

[
[X
(𝐷m

[n1
[X
) + 𝑅m                           (A.7) 

 
          Equation A.7. is then cast in finite-difference 
form via a Taylor-series expansion, and the 
resulting algebraic equations are solved 
numerically. For the finite volume approach, 
instead of making the step size infinitesimally 
small, one works directly with A.6. The fluxes at 
𝑥 ± *

+
 are expressed with Fick's law and then cast in 

finite difference form. The main feature of the 
finite-volume formulation is the integral 
conservation of material, momentum etc. Since the 
fluxes in the common face between two adjacent 
control volumes are represented by the same 
expression, material is rigorously conserved. This 

x x+h x-h 
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conservation is preserved regardless of the mesh 
size. In contrast, it can be shown that, when DA is 
not constant, the standard finite-difference 
approximation of Equation A.7. conserves material 
only in the limit of h approaching zero [34]. The 
FVM divides the spatial axis domain in the PDE system into 
finite-sized elements of control volumes. The FVM is 
established by the integral conservation law on each of the 
control volumes where the flux entering a given volume is 
identical to leaving the adjacent volume. While FDM solves 
differential form, FVM is a general solution technique for 
uniform and un-structured grids since it solves the integral 
form. FVM handles better discontinuities in boundary 
conditions compared to FDM.  

Figure 2.A describes the FVM coordinate and 
compares the FVM coordinate with the FDM coordinate [35]. 
For example, when the number of FDM internal nodes is 4, 
the number of FVM internal nodes is 5 (N´=5), and the FVM 
includes imiginary points beyond or before its boundaries (see 
Φ´0 and Φ´6). Likewise the FDM coordinate, the subscript i 
presents the ith order of nodes, but in the FVM coordinate, 
when N´=n, the value i ranges from 0 to n+1 (e.g., when n=5, 
i ranges from 0 to 6). The potential value on the ith node is  
expressed as Φ´i and the value is located in the middle of Φi-1 
and Φi+1 in the FDM coordinate. In the one-dimensional 
coordinate of the FVM, Φ´i can be expressed as a function of 
(Φ´i-1 + Φ´i+1)/2. Also, the ith position of the coordinates can 
be expressed as Yi=h´i/2+Yi-1 (Y1=h1/2). The first and second 
order x- and r-derivatives of PDEs in the FVM are converted 
into ODEs as follows: 

First order: fg)(X,U)
fX

= g)*+(U)hg)(U)
i\

                      (A.8)     

                    
fj),-(X,k)

fk
= j)*+,-(U)hj),-(U)

i.2
                (A.9) 

      Second order: f
/g)(X,U)
fX/

= g)*+(U)hcg)*+(U)lg)0+(U)
i\/

      (A.10)            

         
f/j),-(X,U)

fk/
= j)*+,-(U)hcj)*+,-(U)lj)0+,-(U)

i.\/
        (A.11)                 

 
Orthogonal collocation expands the solution of a desired 
variable in orthogonal polynomials in the x space dimension. 
When applied to porous electrode, the battery system is 
discretized in the x-direction while maintaining dependence 
of variables in the time domain to be solved by time-adaptive 
solvers. In the reformulation, the variable of interest is 
approximated by a summation of trial functions of the form 
as follows:  

𝑢(𝑋, 𝑡) = 𝐹(𝑋, 𝑡) + ∑ 𝐵o(t)𝑇o(𝑋)p
oqV            (A.12) 

 
where 𝑢(𝑋, 𝑡) is the variable of interest, 𝑇o(𝑋)	are the chosen 
trial functions with homogenous boundary conditions, 𝐹(𝑋, 𝑡) 
is a function chosen to satisfy the time-dependent boundary 
conditions, and 𝐵o(t) are the coefficients of the trial 
functions. Note, the choice of the trial function does affect the 
accuracy of the final solution. This method has been adopted 
in reference [5] for galvanostatic boundary condition. The 
current density is approximated as a sum of polynomials using 

orthogonal collocation which allowed to find an analytical 
solution for the solid-phase potential in the x dimension. This 

allowed for a closed form solution for the solid-phase 
potential as a function of other dependent variables without 
compromising on accuracy. The same is done for all the 
dependent variables and suitable number of collocation points 
are chose which can reduce the number of DAEs [5]. Many 
spatial discretization methods exist, including the FDM 
(constant grid, variable grid, higher order), FVM, spectral 
methods, and global and local FEM (strong form and  weak 
form). All these methods result in a system of algebraic 
equations for steady-state models, and a system of 
differential-algebraic equations (DAEs) for models with time 
dynamics. Some methods might be more suitable than others 
for certain problems. For example, the FEM in its weak form 
only conserves flux globally and not locally, whereas the 
finite volume formulation ensures that the flux is conserved 
locally in each finite volume considered. Higher order 
methods work very well for elliptic PDEs with no 
singularities, but for highly convective PDEs, a lower order 
locally conservative FVM may be more directly applicable. 
The best choice for spatial discretization can be answered by 
performing grid convergence studies [36]. Once the spatial 
discretization is chosen, the resulting set of DAEs can be 
integrated in time with adaptive solvers using Method of 
Lines (MOL). It should be noted that a particular spatial 
discretization approach providing a particular order of 
accuracy for steady-state models may not provide the same 
order of accuracy in a MOL framework. In addition, all the 
time-integrators will not provide the expected order of 
accuracy in temporal discretization for the numerical 
simulation of DAEs, in particular close to the boundaries, 
which are of interest for battery models. For example, while 
backward differential formula (BDF) methods can integrate 
stiff DAEs, the same approach, when used for temporal 

 
Figure 2.A. The comparison of the 1-D coordinate between 
finite difference and finite volume methods. The potential values 
(Φi and Φ´i), the node spacing (hi and h´i), and the coordinate 
position (Yi ) are described on the 1-D coordinate of the finite 
difference and finite volume method. In the 1-D coordinate, 
potential profiles of Φ´i in the FVM is located in the middle of 
Φ´i-1 and Φ´i+1 in the FDM, and the 1-D coordinate has the 
linear profile, Φ´I can be expressed as (Φ´i-1 and Φ´i+1)/2. 
Therefore, can be calculated by (Φ´0+ Φ´1)/2. 
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discretization in a simultaneous approach framework, loses 
order of accuracy (and yields unstable results) even for simple 
ODEs [37]. 
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