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Abstract—Performance of battery energy management strate-
gies are largely affected by battery parameters which change
depending on real usage during its life. In fact, variations
of capacity, open circuit voltage characteristic and internal
resistance influence the battery management when cycled. In this
paper a technique for the simultaneous real-time co-estimation of
the battery parameters is proposed. The estimator consists of a
set of interconnected subsystems grounded on the integration of
recursive least square techniques and a state of charge observer.
The estimator effectiveness is verified by using experiments with
charging and discharging cycles of a Li-ion cell during its life.

I. INTRODUCTION

Knowledge of battery degradation due to aging and usage
conditions is key for energy management systems in many
applications such as electric and hybrid vehicles, smart grids,
satellites. Changes in the battery behavior can be captured by
means of corresponding variations of its model parameters [1],
[2]. It is widely recognized that the state of health (SOH)
reduction highlights the loss of the battery charge capacity
and is dependent on the usage, e.g., charging/discharging
patterns and on the overall cycles or ampere-hour-throughput
that the battery has undergone to during its life [3], [4], [5].
Degradation manifests itself not only on the SOH reduction,
but also on variations of the open circuit voltage (indicated
in the sequel with the variable OCV ) vs. state of charge
(SOC, indicated in the sequel with the variable z) nonlinear
map [6], [7]. The importance of accounting for changes in
the dependence of OCV (z) as the battery degrades has been
recognized in the literature [8], [9], [10], [11], [12]. Another
well known effect of aging and usage conditions is the increase
of the internal resistance R0 [13], [14].

In the literature it has been clearly motivated the importance
for an online identification of different parameters during the
battery life which led to the use of the term “co-estimation”
standing for simultaneous tracking of SOC and variations
of the battery parameters. On-board algorithms have been
proposed for the simultaneous estimations of SOC and SOH
based on reinforcement learning [15] and data-driven ap-
proaches [16]. Battery electrochemical models have been used
in combination with Kalman filters or sliding mode methods
for SOH and SOC estimations, see among others [17], [18],
[19]. The real-time feasibility of a sliding-mode electro-based

observer grounded in a single particle electrochemical model
has also recently been demonstrated in [20].

The co-estimation framework proposed in this paper is
based on an equivalent circuit model (ECM) [21], [22] for
simultaneous online evaluation of SOC, SOH, identification of
the parameters of the polynomial OCV (z) characteristic and
tracking of the other equivalent circuit parameters variations
during Li-ion battery life. The analysis of this “complete” co-
estimation problem is still in its infancy but there exist many
studies which consider co-estimation of SOC with specific
subsets of the battery parameters [23], so as discussed below.

The co-estimation problem of SOC and ECM parameters
has been investigated in [24] where a polynomial approxi-
mation of the OCV (z) map with constant coefficients and a
fixed capacity are used. A constant capacity is also considered
in [25]. The capacity is a fixed parameter also in the co-
estimation approach for SOC and ECM parameters proposed
in [26] where an offline identified piecewise linear approxi-
mation of the OCV (z) map is assumed and in [14] where the
coefficients of the OCV (z) characteristic are estimated online.
A co-estimation strategy based on a Wiener configuration of
the ECM is presented in [27] where the capacity is assumed
as a constant and the map OCV (z) is obtained offline by
averaging the curves recorded during charging and discharging
phases. Many co-estimation studies consider the battery health
degradation due to aging. The typical approach used for the
online evaluation of SOH is the reduction of the battery capac-
ity. The combined SOC/SOH estimation algorithm presented
in [28] requires offline experimental procedures for SOH and
internal resistance evaluations. A sliding-mode observer for
SOC/SOH estimation has been proposed in [29] but a linear
OCV (z) characteristic is assumed. In the Kalman filtering
approach proposed in [30] the model parameters are estimated
offline by conducting specific driving test at the beginning
of service life of the battery. The online estimation of the
internal resistance is included in the SOC/SOH algorithm
discussed in [31] which requires the knowledge of the slope
of the OCV (z) characteristic. A Kalman filter combined
with a recursive least-squares (RLS) algorithm for the ECM
parameters is proposed in [32] but the equation used for
the OCV estimation requires the comparison with a pre-
recorded table OCV (z) which is not corrected online. A



similar difficulty emerges from the technique proposed in [9]
where the errors used for the online adaptations require data
for the OCV and the battery capacity. The SOC/SOH and
ECM parameters co-estimation problems analyzed in [33],
[34], [35] do not consider online adaptations of the OCV map
which, instead, is taken into account in our solution. Possible
changes of the parameters of the OCV (z) characteristic are
not considered in [36] either. The problem of online estimation
of the OCV has been investigated in [37], [38] which consider
RLS equations where the instantaneous value of the OCV is
used as a parameter to be estimated. A similar idea is used
in [39]. Differently from our framework, the latter solutions
do not consider the fact that the parameters of the OCV (z)
curve are expected to change slower than the SOC dynamics.

The literature analysis presented above shows that finding
robust solutions to the complete co-estimation problem is still
an open issue. This paper provides a contribution in this
direction by proposing a new framework where estimators for
SOC, SOH, OCV (z) characteristic and ECM parameters can
be separately designed and simultaneously (or independently)
activated while keeping the calibration effort low. The rest
of the paper is organized as follows. In Section II the ECM
of a battery cell is recalled. In Section III the proposed esti-
mator is discussed. Section IV presents the estimation results
whose effectiveness is verified by using battery experimental
data. Finally, in Section V the conclusions of our study are
summarized.

II. EQUIVALENT CIRCUIT DYNAMIC MODEL

The equivalent electrical circuit of the battery (cell) con-
sidered in our analysis is shown in Fig. 1, where ib is the
battery current assumed to be positive during discharge, eb is
the voltage at the battery terminals, e` is the voltage across
the capacitor which captures the battery dynamics in the R`C`

branches, ` = 1, . . . , L, OCV is the open circuit voltage, R0

is the internal resistance. By applying the Kirchhoff’s laws to
the circuit in Fig. 1 the following continuous-time model is
obtained

ė` = − 1

R`C`
e` +

1

C`
ib, ` = 1, . . . , L (1a)

ż = − 1

Q
ib (1b)

eb = OCV (z)−
L∑

`=1

v` −R0ib (1c)

where the voltages e`, ` = 1, . . . , L, and the state of charge z
are the state variables whose continuous-time derivatives have
been indicated with ė` and ż, respectively, ib is the model
input and eb is the output. The parameter Q is the battery
capacity which determines the state of health as the ratio
Q/Q∗ where Q∗ is the nominal capacity of a fresh battery.
The function OCV (z) represents the nonlinear dependence of
the open circuit voltage on the SOC.
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Fig. 1. Equivalent circuit model of the battery cell.

By discretizing (1) with the forward-Euler method one
obtains

e`(k + 1) =

(
1− h

R`C`

)
e`(k) +

h

C`
ib(k) (2a)

z(k + 1) = z(k)− h

Q
ib(k) (2b)

eb(k) = OCV (z(k))−
L∑

`=1

e`(k)−R0ib(k) (2c)

for ` = 1, . . . , L, where k ∈ N is the discrete-time step, h ∈
R+ is the sampling period and the initial conditions e`(0) and
z(0) are given. The map of OCV vs. SOC is approximated
by a polynomial function. Specifically, one can write:

OCV (z) =

P∑
p=0

apz
p (3)

where ap ∈ R, p = 0 . . . , P and P ∈ N is the desired order
of the polynomial.

Note that by assuming P = 1 in (3) and by substituting the
resulting expressions in (2c), the model (2) can be written in
the following linear discrete-time state space form

ξ(k + 1) = Aξ(k) +Bib(k) (4a)

eb(k) = c>ξ(k)−R0ib(k) + a0 (4b)

for k ∈ N, where ξ = (e1 . . . eL z)> is the state vector, c>

indicates the transpose of the vector c, and the matrices of the
model are given by

A = diag
(

1− h
R1C1

. . . 1 + h
RLCL

1
)

(5a)

B =
(

h
C1

. . . h
CL

− h
Q

)>
(5b)

c> = −
(

1 . . . 1 −a1
)

(5c)

where diag(v) stands for a diagonal matrix whose elements
on the diagonal are given by the elements of the vector v.
The model (2) is the basis for the design of the gains of the
SOC observer presented in next section as part of the proposed
estimator.

III. PROPOSED ESTIMATOR

The proposed estimation technique consists of the integra-
tion of the SOC, SOH, R0 and OCV estimators. The estimator



exploits in different forms the RLS equations which can be
written in the following general form

Σ(k) = µΣ(k − 1) + γ(k)γ(k)> (6a)

π̂(k) = π̂(k − 1) + Σ(k)−1γ(k)
(
y(k)− γ(k)>π̂(k − 1)

)
(6b)

where y(k) = γ(k)>π + ε(k), ε(k) is the error, y(k) and the
regression vector γ(k) are known quantities, π is the vector
of the parameters and µ is the forgetting factor.

Note that, in the following the generic vector π̂(k) corre-
sponds to different model parameters whether the RLS expres-
sions (6) are applied for the estimations of the parameters of
the OCV (z) characteristic, the resistance R0 and the battery
capacity Q.

The estimated parameters âp, p = 0, 1, . . . , P , in (3)
and R̂0 are approximated with their moving average which
can be written as α̂p = 1

N

∑k
s=k−N+1 âp(s) and β̂0 =

1
N

∑k
s=k−N+1 R̂0(s), respectively. The estimation of α̂p, p =

0, 1, . . . , P , and β̂0 is performed by taking the moving average
on both sides of (2c) after substituting (3). By assuming slowly
varying variations of the parameters, the moving average of the
products âpẑp, p = 0, 1, . . . , P , and R̂0ib can be approximated
with the products of the corresponding moving averages [40]
and one can implement the RLS equations (6) by choosing

π̂(k)> =
(
α̂0(k) . . . α̂P (k) β̂0(k)

)
, (7)

together with

y(k) =
1

N

k∑
s=k−N+1

[
eb(s) +

L∑
`=1

ê`(s)

]
(8a)

γ(k) =
1

N

k∑
s=k−N+1


1
ẑ(s)

...
(ẑ(s))P

ib(s)

 (8b)

for k ≥ N . The expressions (7)–(8) are obtained by applying
moving averages with a horizon of N steps to the model (2)–
(3) and by substituting the variables e`, ` = 1, . . . , L and z
with the corresponding estimations ê`, ` = 1, . . . , L and ẑ
from the SOC observer.

The battery capacity estimation Q̂ is obtained by applying
to (2b) the moving average with a horizon of N steps and then
by implementing (6) with π̂(k) = Q̂(k) and

y(k) = −
k−1∑

s=k−N

ib(s) (9a)

γ(k) = ẑ(k)− ẑ(k −N) (9b)

for k ≥ N .

The SOC observer is interconnected with the RLS algo-
rithms used for the estimation of the battery capacity and the
parameters of the OCV (z) characteristic and R0. In particular,

from (2)–(3) the SOC observer equations are:

ê`(k + 1) =

(
1− h

R`C`

)
ê`(k) +

h

C`
ib(k)

+ g`(eb(k)− êb(k)) (10a)

ẑ(k + 1) =ẑ(k)− h

Q̂(k)
ib(k) + gL+1(eb(k)− êb(k))

(10b)

êb(k) =

P∑
p=0

α̂p(k)ẑ(k)p −
L∑

`=1

ê`(k)− β̂0(k)ib(k)

(10c)

for ` = 1, . . . , L, k ∈ N, where the parameters Q̂(k), α̂p(k),
p = 0, 1, . . . , P , and β̂j , j = 0, 1, . . . , J , are obtained from
the RLS algorithms described above.

In the particular case P = 1 the model (2) is linear and
the observer gains g`, ` = 1, . . . , L + 1 can be designed
with classical techniques for linear systems. To this aim the
observability of the system can be verified by considering the
observability matrix of the model (4) which is given by

O =


c>

c>A
...

c>AL



= −


1 . . . 1 −a1

1− h
R1C1

. . . 1− h
RLCL

−a1
...

...
...

...(
1− h

R1C1

)L
. . .

(
1− h

RLCL

)L
−a1


(11)

where the matrices A and c> are given by (5). It is easy to
verify that for almost all nonzero a1 and h, if RiCi 6= RjCj

for any i 6= j, the matrix (11) is full rank. Therefore, a possible
design rule for the observer vector gain g ∈ RL+1 consists of
assigning the desired eigenvalues to the dynamic matrix of the
observer (2), i.e. A− gc> where g = (g1 . . . gL+1)>.

IV. ESTIMATION RESULTS

The effectiveness of the proposed estimator is verified
over experimental data collected for a cylindrical LG M50T
INR21700 Li-ion cell with NMC cathode chemistry, nominal
voltage 3.63 V, nominal capacity Q∗ = 4.85 A h. Experiments
were carried out at the Stanford Energy Control Laboratory
in the Energy Resources Engineering Department at Stanford
University [41]. The aging campaign consists in subjecting the
battery to a real driving profile. Periodic characterization tests,
i.e. Capacity test and Hybrid Pulse Power Characterization
(HPPC) test, were performed to assess battery health. Every
50 aging cycles a capacity test and a HPPC test are performed.
The former consists of a C/20 constant discharge and the
latter consists of charge and discharge pulses at different SOC.
Algorithm 1 synthesizes the procedure for the aging campaign
where the integer n is the number of the aging tests already



performed and the entire campaign is stopped when n reaches
the parameter nmax. The occurrence of the characterization
tests is expressed by the condition n = 25 + 50ν where ν is
the number of Capacity/HPPC tests already performed.

Algorithm 1: Aging campaign
Parameter: nmax

Input : z
Initialize : n = 0, ν = 0
begin

CC − CV standard charging protocol;
while n ≤ nmax do

while z ≥ 0.8 do
CC(at C/4) discharge;

end
while z ≥ 0.2 do

UDDS driving cycle;
end
if n = 25 + 50ν then

Capacity test (C/20) AND HPPC test;
ν = ν + 1;

end
n = n+ 1;
while z ≤ 0.8 do

CC(at 3C)− CV (at 4V ) charge;
end
while z ≤ 1 do

CC(at C/4)− CV (at 4.2V ) charge;
end

end
end

A. Model parameters determination

The benchmark values of the battery capacity have been
obtained by using the measurements of the capacity tests. In
particular, for a discharging current ib and a time interval ∆t
for the discharge the capacity can be evaluated as Q = ib∆t.
The values obtained for the battery under test are detailed in
next subsection. The HPPC test is used for the determination
of the benchmark values for the model parameters. The bench-
mark values for the resistance R0 for the fresh battery and after
cycling are obtained by computing the voltage discontinuities,
say ∆v , in correspondence to the step changes of the current,
say ∆i. By applying least square estimations to the set of
voltage-current discontinuity pairs obtained in the HPPC tests
the following benchmark values have been obtained: 0.0265 Ω
for the fresh battery and 0.0286 Ω after 200 cycles. The values
of R1 and C1 are obtained by considering the time intervals
of the transients during the relaxation phases of the HPPC
tests and the corresponding steady state voltages [21]. The
experimental data allow us to calibrate R1 = 0.016 Ω and
C1 = 0.036 F.

Two sections of the aging test at different aging stages
have been used to verify the estimation performance of the

proposed integrated estimator. The estimator parameters are:
g1 = 0.5, g2 = 0.001, µ = 0.99 for both RLS estimators.
For the estimator of αp with p = 0, ..., P and β0 it is Σ(0)
equal to the identity matrix of dimension (P + 1)× (P + 1).
For the estimator of Q it is Σ(0) = 1. All initial conditions
for estimated states and parameters are assigned equal to zero
unless otherwise noted.

B. Discharge validation test

The proposed estimation strategy has been validated over
the current and voltage profiles shown in Fig. 2, which are
part of the aging tests performed during the aging campaign,
at different aging stages of the battery.
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Fig. 2. Battery current ib (top) and voltage eb (bottom) profiles for the first
validation test of the estimator applied to the fresh battery.

The estimated state of charge is shown in Fig. 3. The RMS
of the estimation error z− ẑ for the fresh battery is 6.8 · 10−3

while for the aged one is 2.1 · 10−3.
For the polynomial approximation of the OCV (z) map a

fifth order polynomial, i.e., P = 5, has been chosen. The
estimation of αp, p = 0, ..., P are shown in Fig. 2. The
parameters estimation captures the variation of the OCV (z)
characteristic due to the battery aging, so as shown in Fig. 5
where the characteristics are reported for the fresh battery and
after 200 cycles. The reference OCV (z) maps are obtained
through a discharge operation at C/20 when the battery is
considered as new one and after 200 cycles. The RMS error
of the polynomial approximations are 1.1·10−3 and 1.7·10−3,
respectively.

The time evolution of the battery capacity estimations for
the tests carried out when the battery is fresh and after 200
cycles are shown in Fig. 6. The benchmark values of the bat-
tery capacity have been obtained by using the measurements
of the capacity tests. In particular, for the fresh battery it is
ib = 24.33 mA and the duration of the test is 19.95 h which
corresponds to a capacity equal to Q0 = 4.8538 A h. The esti-
mated value of the capacity at steady state is Q̂0 = 4.8742 A h
which corresponds to a relative percentage error of 0.4%. For
the capacity test after 200 cycles the same battery current is
used and the duration of the test is 19.14 h which corresponds
to a capacity equal to Q200 = 4.6568 A h. The estimated value
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Fig. 3. Real (blue, continuous) and estimated (red, dashed) state of charge
for the discharge validation test when the battery is fresh.
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Fig. 4. The estimations of the parameters αp p = 0, ..., 5 activated during
the test in Fig. 2 which has been implemented at the beginning of battery life
(blue, continuous) and after 200 cycles (red, dashed).
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Fig. 5. ˆOCV (z) evaluated at the beginning of battery life (blue, continuous)
and after 200 cycles (red, dashed). The corresponding benchmark values are
represented with dashed-dotted lines, blue and red, respectively.

of the capacity at steady state is Q̂200 = 4.6425 A h which
corresponds to a relative percentage error equal to 0.3%.

The series resistance estimations are shown in Fig. 7. The
steady state values of the estimated resistance obtained with
the proposed procedure are 0.0268 Ω for the fresh battery and
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Fig. 6. Battery capacity Q̂ evaluated during the discharge validation test at
the beginning of battery life (blue, continuous) and after 200 cycles (red,
dashed). The corresponding benchmark values are represented with dashed-
dotted lines, blue and red, respectively.

0.0295 Ω after 200 cycles. The relative percentage errors of the
estimated values with respect to the corresponding benchmarks
obtained from the HPPC tests are 1.1% and 3.1%, respectively.
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Fig. 7. Series resistance R̂0 evaluated during the discharge validation test
at the beginning of battery life (blue, continuous) and after 200 cycles (red,
dashed). The corresponding benchmark values are represented with dashed-
dotted lines, blue and red, respectively.

V. CONCLUSION

A co-estimation technique for battery parameters (capacity,
open circuit voltage vs. state of charge characteristic, internal
resistance) combined with a state of charge observer has been
proposed. The estimator exploits the application of moving
average functions to the equivalent circuit model of a battery
cell. Experimental results show the effectiveness of the pro-
posed solution during battery discharging tests over battery
life. Future research will focus on validating the proposed
strategy in complete driving cycles and more complex testing
scenarios, in the direction traced by the authors in [42].
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