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Abstract— Microgrids are energy systems that are able to
supply power reliably in the face of instability on the main
electric grid, increasingly driven by the effects of anthropogenic
climate change. Microgrids are powered by diesel generators,
energy storage, and renewable energy resources such as
photovoltaics, to supply power to loads. Lithium-ion batteries
(LIBs) are currently the dominant grid-scale energy storage
technology and leading candidate for deployment in microgrids.
An optimal control problem can be formulated regarding the
optimal energy management of the LIB and other microgrid
components, with the goal of minimizing the fuel consumption of
the diesel engine. In this paper, Pontryagin’s Minimum Principle
(PMP) is used to solve the optimal energy management problem
where the LIB is modeled through an equivalent circuit model. A
semi-empirical model is used to assess the degradation of the LIB
under the resulting optimal control. PMP is applied to a variety
of initial and final outage conditions taken from real-world
scenarios, resulting in different impacts on LIB degradation
and fuel consumption.

Index Terms— Pontryagin’s Minimum Principle, microgrid,
optimal control, equivalent circuit model

I. INTRODUCTION

As the impacts of anthropogenic climate change increase,
so do the frequency and intensity of severe weather events,
including hurricanes, extreme heat waves, flooding, and
wildfires [1]. Such weather events can adversely impact
the stability of the electric grid, as was evident during
the Texas grid outage caused by a severe winter storm in
February 2021, causing millions to lose power and ultimately
leading to the deaths of hundreds of people [2]. In California,
nine of the twenty largest wildfires and five of the twenty
deadliest wildfires have occurred between 2017 and 2020
alone [3]. In particular, the interplay between wildfires and
the electrical grid is complicated: Wildfires threaten electrical
infrastructure, leading to power instabilities; on the other
hand, improperly maintained electrical equipment can lead
to the start of wildfires, as was the case for the deadly Camp
wildfire in 2018 [4]. This led to the California Public Utilties
Commission instituting the Public Safety Power Shutoff
(PSPS) program, which allows utilities to preemptively shut
off power to communities during high wildfire risk conditions,
e.g. high temperatures and strong winds.

Microgrids are a promising solution to the severe
weather/power instability problem [5]. They can be off-
grid, where the microgrid is permanently electrically isolated
from the macrogrid (defined as the rest of the electrical
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grid, external to the microgrid), or grid-tied, where the
microgrid is normally connected to the macrogrid, and may
electrically isolate itself from the macrogrid during periods
of grid instability. This paper addresses the scenario of a
grid-tied microgrid that is isolated from the macrogrid during
a particularly severe PSPS grid outage event in October
2019, when thousands of electricity customers served by
the Pacific Gas and Electric (PG&E) utility in Northern
California lost power for up to three days [6]. We formulate
an optimization problem to control the dispatch (charge and
discharge) of a lithium-ion battery energy storage system
(LIB) in order to balance supply and demand within the
microgrid, while minimizing diesel fuel consumption. This
optimal control problem is formulated and solved using
Pontryagin’s Minimum Principle (PMP).

II. LITERATURE REVIEW

PMP for the energy management optimal control problem
has been previously studied in depth for hybrid electric
vehicles (HEVs), providing a formulation for real-time
optimal control strategies. In particular, PMP for minimizing
HEV fuel consumption has been shown to be equivalent to the
previously-proposed equivalent consumption minimization
strategy (ECMS) [7]. This PMP formulation is readily
applicable to microgrid energy storage; as in HEVs, the goal is
to minimize consumption of fuel by an engine used to supply
power by instead dispatching energy storage resources to
meet the requested power demand. ECMS for HEV has been
widely studied using a zeroth-order equivalent-circuit model
(ECM) for the battery [8]–[10]. In such studies, a “charge-
sustaining” mode of operation is employed, during which
the battery operates within a small state of charge (SOC)
window. In this operation mode, the open-circuit voltage and
internal resistance are approximately constant with respect to
SOC and the problem costate also remains constant, further
simplifying the optimization. Over the past several years
PMP has been applied to grid-scale energy storage. In [11],
PMP is used to formulate a sub-optimal control strategy
which balances a hybrid battery/supercapacitor energy storage
system within a grid-tied microgrid for the goal of minimizing
power consumed from the macrogrid, and this control strategy
is also compared to a more traditional frequency-based one.
In [12], PMP is employed to optimally dispatch battery energy
storage to minimize fuel consumption for a generic system
equivalent to an off-grid microgrid, but is reformulated as
a shortest-path method in terms of the evolution of stored
energy in the battery from its initial to final state, which
is extended in [13] to derive an optimal control strategy
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for energy storage systems with nonlinear power conversion
efficiency losses. All three papers simply model the battery
as a “bucket of electrons” which can freely store and release
energy as needed, without modelling any of the physical
operating characteristics of the battery. In [14], PMP is part
of a hierarchical control framework, representing the lowest
level real-time control of an LIB in a 100% clean energy (off-
grid) microgrid. The LIB is modelled with an ECM; however,
the dependence of battery voltage and internal resistance
on SOC is neglected, as in the HEV energy management
formulations above. This paper extends the existing literature
for energy management control of grid-scale energy storage by
leveraging laboratory data from prior lithium-ion cell testing
to include the dependence of operating characteristics (i.e.
open circuit voltage and internal resistance) on battery SOC
into the costate dynamics in the PMP problem formulation.
This problem formulation is applied to the specific use-case
of a grid-tied microgrid that is islanded during an outage,
optimally controlling the dispatch of the LIB with the goal of
minimizing fuel consumption. Finally, this paper provides an
analysis of the impacts of changing the boundary conditions
(final state, initial and final time) on the optimal control
solution as well as the resulting LIB degradation and diesel
fuel consumption reduction.

III. PROBLEM DESCRIPTION

A. Microgrid System

The microgrid system modelled in this paper is inspired
by an existing microgrid at the Blue Lake Rancheria
in Humboldt County, California, USA, which includes a
1MWAC (megawatts AC) genset, 420kWAC (kilowatts AC)
solar PV array, and a 500kWAC/950kWh LIB, and supports
a community with a peak load of 754kWAC [15]. In
this paper, the microgrid components are scaled down to
accommodate the data available for the 457kWAC genset
in [16], and are summarized in Table I. A detailed description
of the component models and their construction follows in
Section IV.

TABLE I: Components of the microgrid modelled in this paper

Name Rated (Peak) Power Rated Energy
[kWAC] [kWh]

Diesel Genset 475 -
Load 350 -

Solar PV Array 210 -
LIB 250 475

B. Outage Conditions

This paper focuses on the PSPS event from October 2019
in Northern California, for which power from the macrogrid
was unavailable for customers between Oct. 9 and Oct. 12 [6],
during which the Blue Lake Rancheria microgrid successfully
provided power to its community [17]. Within the PSPS, four
outage phases were rolled out to different customers within
the PG&E service territory. These are shown in Table II,
with outage times rounded to the nearest 0.25 hour (15-
minute) interval. During the outage, power is unavailable from

TABLE II: PSPS Outages for October 9-12 2019 [6]

Phase Start Time End Time Outage Length
[hr]

1 Oct. 9 2019, 00:00 Oct. 12 2019, 17:45 89.75
2 Oct. 9 2019, 15:15 Oct. 12 2019, 10:15 67
3 Oct. 9 2019, 22:30 Oct. 12 2019, 12:30 62
4 Oct. 10 2019, 09:45 Oct. 12 2019, 05:30 43.75

the macrogrid, and power flow within the microgrid at all
times is prioritized according to the following. The solar PV
generation can be used to either supply the load, or to charge
the LIB. The genset can only be used to support the load if
the solar PV and LIB cannot supply enough power to the
load, i.e. the LIB is charged only off of the available solar PV
and not the genset. On the other hand, if the solar PV output
exceeds that of the load consumption and LIB charging, then
the excess power is curtailed, without penalty. With this, the
usage of renewable energy resources (solar PV and LIB) are
prioritized over the genset usage. Explicitly, given solar PV
generation pv(t), LIB dispatch u(t), and load consumption
l(t) at time t, all in AC power of units kWAC, we define
the residual power Prd as Prd(t)) = [l(t)−max{0, u(t)}]−
[pv(t) + min{u(t), 0}], where u(t) is positive when the LIB
is discharging, and negative when the LIB is charging. Then,
the genset power output dg(t) is determined by dg(t) =
max {Prd(t), 0}. The curtailed solar PV generation pvcurt(t)
is given as pvcurt(t) = −min {Prd(t), 0}. A diagram of all
possible power flows for pv(t), l(t), u(t), and dg(t) is shown
in Fig. 1.

Fig. 1: Possible power flows of in the islanded microgrid system
modelled in this paper. Arrows denote the flow of power, and the
colors denote the origin of the power. u(t) is positive when the LIB
is discharging to the load, and negative when the LIB is charging
from the solar PV.

Further assumptions on outage conditions: In this paper,
we assume that the outage times in Table II are fixed and
known to the microgrid. As the start time of the outage is
known, we assume that the microgrid can prepare ahead of
the outage start time by pre-charging the LIB to an initial
SOC SOCUB to maximize its available stored energy. We
also assume that the microgrid will exit the outage at some
final SOC SOCf , so that the microgrid can be prepared for
any subsequent outages.
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IV. MICROGRID COMPONENT MODELS

A. Load Model

The microgrid load consumption is constructed from data
obtained from Pecan Street Inc. Dataport, which includes
residential load consumption data from several locations in
the United States [18]. Within the Pecan Street Inc. Dataport,
residences in the Berkeley and Oakland areas in California,
USA were selected, as these homes were geographically
closest to Blue Lake Rancheria. Within these locations, 18
homes were found to have a complete year’s worth of 15-
minute consumption data. The load data were aggregated
and multiplied by a factor of 10 to form the microgrid load
consumption, representing 180 residential homes.

B. Solar Photovoltaic Array Model

The solar PV generation data are obtained from the System
Advisor Model (SAM) developed by the National Renewable
Energy Laboratory [19], which incorporates local weather data
(wind, temperature, and insolation), the panels and inverter
used in the microgrid solar PV array, and the total kWAC
rating of the array. SAM uses these inputs to model the array
power generation output for each hour in the year. The panels
and inverter modelled were the same used in the Blue Lake
Rancheria microgrid, as presented in [16]. The generation
data were upsampled to 15-minute data to match the temporal
resolution of the load.

C. Diesel Generator Model

The size and operating characteristics of the genset are
obtained from existing test data collected by the Alaska Center
for Energy and Power for a genset rated at 457 kWAC [16],
for which fuel efficiency in kWh/L was measured at various
load (genset power output) setpoints. By dividing the load by
the fuel efficiency, the fuel consumption in L/hr at each load
kWAC setpoint are obtained. The diesel fuel consumption
ṁf (dg(t)) is then approximated by a polynomial function
of genset power output

ṁf (dg(t)) = 1.23× 10−4dg(t)2 + 0.20dg(t) + 16.36 (1)

D. LIB Model

The LIB pack is modelled as a set of identical NMC
lithium-ion cells electrically connected as s cells in series
and p cells in parallel. The LIB pack is then connected to the
LIB inverter, which converts the LIB pack DC power into
AC power to interact with the rest of the microgrid. The cells
are modelled using experimental data from [20], which used
LG Chem INR21700-M50 NMC lithium-ion cells of nominal
voltage Vcell,nom = 3.63V and nominal capacity Qnom =
4.85Ah.

1) Pack Sizing: s and p are determined based on the
nominal voltage and capacity of the cells, as well as the
specifications of the LIB inverter with DC voltage range
of 530V - 830V, rated power Pinv = 250kWAC, and DC-
AC conversion efficiency η = 0.975 [21]. Using Kirchhoff’s

voltage law, the cell DC voltage, Vcell, and the pack DC
voltage, Vpack, are related by the following equation

Vpack(t) = sVcell(t) (2)

Similarly, the cell DC current, Icell, and the pack DC current,
Ipack, are related using Kirchhoff’s current law Ipack(t) =
pIcell(t). The LIB dispatch AC power u(t) is determined from
the pack DC current, the pack DC voltage, and the inverter
efficiency η, as u(t) = ηsgn(u(t))Vpack(t)Ipack(t). We assume
that each identical cell contributes the same amount of power
in the pack. Therefore, u(t) is a function of cell power Pc,
i.e. u(t) = ηsgn(u(t))spPc(t). where

Pc(t) = Vcell(t)Icell(t) (3)

The pack rated energy Enom can be calculated from Vcell,nom

and Qnom as

Enom = spVcell,nomQnom (4)

First, s is chosen so that the pack voltage remains within
the limits of the LIB inverter. In particular, the pack voltage
cannot exceed the LIB inverter upper DC voltage limit of
830V. Using Equation 2 with Vpack = 830V and Vcell,nom =
3.63V yields s = 228.

Then, p is chosen so that Enom = 475kWh, as in Table I.
Using Equation 4 with s = 228, Vcell,nom = 3.63V, and
Qnom = 4.85Ah yields p = 118.

2) Cell model: Each cell is modelled with a zeroth-order
ECM, shown in Fig. 2.

+

−
Voc(SOC)

Icell(t)

+ −
R0(SOC)

+

−

Vcell(t)

Fig. 2: Zeroth-order ECM used to model the cells within the LIB
pack.

For applied cell current Icell(t), the cell voltage Vcell(t) is

Vcell(t) = Voc(SOC)−R0(SOC)Icell(t) (5)

From Equation 5, open-circuit voltage Voc and internal
resistance R0 are both functions of SOC. The functions
Voc(SOC) and R0(SOC) are found using the experimental
data in [20]. In this data, values for Voc were measured and
values R0 were identified for 6 cells at discrete SOC values.
This paper only uses the data for three cells (Cells 1, 3, and 6)
as they showed the most consistent internal resistance trend
over SOC. The Voc and R0 values were averaged and fit to
a piece-wise linear function (Equation 6) and a polynomial
function (Equation 7), respectively. Note that SOC does not
reach 0 due to the limits of the laboratory testing.

Voc(SOC) =

{
2.61SOC + 2.93 SOC ∈ [0.095, 0.19]

0.94SOC + 3.24 SOC ∈ (0.19, 1]
(6)
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R0(SOC) = 1.23SOC6 − 4.34SOC5 + 6.16SOC4

− 4.52SOC3 + 1.81SOC2 − 0.37SOC + 0.066,

SOC ∈ [0.095, 1] (7)

In addition to assuming that all cells are identical, we
further assume that all cells are balanced at all times. This
means that the SOC of each cell, and therefore Voc, R0,
and Vcell, evolve identically through time, as determined
by Equations 5, 6, and 7. Solving for cell current using
Equations 3 and 5 yields

Icell(t) =
Voc(SOC)−

√
V 2
oc(SOC)− 4R0(SOC)Pc

2R0(SOC)
(8)

V. OPTIMIZATION PROBLEM

The optimization problem is formulated as follows. Given
the initial outage time t0 and final outage time tf , the goal is
to minimize the objective function J for control u(t), state
SOC(t), and time t

J =

∫ tf

t0

ṁf (dg(t))dt (9)

The control u(t) is constrained by the solar PV generation,
load consumption, and the rated power of the LIB inverter,
given the outage conditions defined in Section III-B

−min (pv(t), Pinv) ≤ u(t) ≤ min (l(t), Pinv), ∀t ∈ [t0, tf ]
(10)

The SOC dynamics are defined as

˙SOC(t) = − 1

Qnom
Icell(t) (11)

In this paper, the state is constrained at all times by

SOCLB ≤ SOC(t) ≤ SOCUB , ∀t ∈ [t0, tf ] (12)

where SOCLB = 0.20 and SOCUB = 0.85, selected as
reasonable bounds for microgrid LIB operation [22]. With
the assumptions stated in Section III-B, the initial and final
conditions of the SOC are

SOC(t0) = SOCUB (13)

SOC(tf ) = SOCf (14)

VI. PONTRYAGIN’S MINIMUM PRINCIPLE

PMP provides a set of necessary conditions for the
optimal control u∗(t) to minimize the objective function
J in Equation 9 [23]. At each time t ∈ [t0, tf ]:

1) The optimal control u∗(t) minimizes the Hamiltonian

H(t, SOC∗, u∗, λ∗) ≤ H(t, SOC∗, u, λ∗) (15)

where the Hamiltonian is defined as H(t, SOC, u, λ) =
ṁf (dg(t)) + λf(SOC, u).

2) The optimal costate λ∗(t) satisfies the following

λ̇∗(t) = − ∂H

∂SOC
(t, SOC∗, u∗, λ∗) (16)

3) The optimal state SOC∗(t) satisfies the following

˙SOC
∗
(t) =

∂H

∂λ
(t, SOC∗, u∗, λ∗) = f(SOC∗, u∗)

(17)
In addition, the state constraints in Equations 13 and 14

must hold for the optimal state trajectory SOC∗(t0) =
SOCUB and SOC∗(tf ) = SOCf .

A. Modification of Hamiltonian with state constraints
In order to guarantee the state constraints in Equation 12,

the following additive penalty function w(SOC) is intro-
duced [7]

w(SOC) =


K SOC > 0.85

−K SOC < 0.2

0 o.w.

(18)

K is a constant chosen to be arbitrarily large. Any dispatch
of the LIB where the SOC falls outside the specified bounds
(i.e. discharging at low SOC or charging at high SOC) is
penalized by the optimizer. In this paper, K = 200. The
Hamiltonian is then modified to include this penalty function

H(t, SOC, u, λ) = ṁf (dg(t)) + (λ+ w) f(SOC, u) (19)

B. Costate dynamics
With the modified Hamiltonian in Equation 19, Equation 16

is rewritten as λ̇∗(t) = − (λ+ w) ∂f(SOC,u)
∂SOC .

It remains to find ∂f(SOC,u)
∂SOC . Using Equation 11, and

considering that Icell is a function of the independent
functions of SOC, Voc(SOC) and R0(SOC)

∂f(SOC, u)

∂SOC
=

∂ ˙SOC

∂SOC

= − 1

Qnom

[
∂Icell
∂Voc

∂Voc

∂SOC
+

∂Icell
∂R0

∂R0

∂SOC

]
(20)

The partial derivatives ∂Voc

∂SOC and ∂R0

∂SOC are determined
from Equations 6 and 7

∂Voc

∂SOC
=

{
2.61 SOC ∈ [0.095, 0.19]

0.94 SOC ∈ (0.19, 1]
(21)

∂R0

∂SOC
= 7.40SOC5 − 21.69SOC4 + 24.66SOC3

− 13.55SOC2 + 3.61SOC − 0.37, SOC ∈ [0.095, 1]
(22)

The partial derivatives ∂Icell
∂Voc

and ∂Icell
∂R0

are determined
from Equation 8

∂Icell
∂Voc

=
1

2R0
− Voc

2R0

√
V 2
oc − 4R0Pc

(23)

∂Icell
∂R0

=
Pc

R0

√
V 2
oc − 4R0Pc

−
Voc −

√
V 2
oc − 4R0Pc

2R2
0

(24)

C. Finding the optimal control
PMP allows for the reformulation of the finite horizon

global optimization in Equation 9 in terms of the instantaneous
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local minimization in Equation 15 and the differential
equations for the state and costate [7]. As the evolution
of state and costate are interdependent, and given the fixed,
known initial state, it remains to find the initial costate λ∗

0 to
determine the optimal solution to Equation 9 which satisfies
the state constraints.

The initial costate λ∗
0 is found via shooting method using

PMP and bisection line search on the initial costate value [7],
shown in Algorithm 1. Given an initial guess for the initial
costate value, λ0, the PMP conditions are solved over the
duration of the outage [t0, tf ], finding the optimal values for
control, state, and costate at each time step. The final value of
the state is compared to the target value, and the initial guess
λ0 is adjusted until convergence is reached and λ∗

0 is obtained.
In this paper, the initial bounds on the initial value of the
costate λLB and λUB are set to -150 and -80 respectively,
and the tolerance for convergence is set to ϵ = 0.01, which
results in convergence within 7 iterations.

Algorithm 1 Pseudocode for Optimal Control via Bisection
Line Search on Initial Costate Value
Require: Outage load l(t0, ..., tf ), PV pv(t0, ..., tf ), target final SOC

SOCf , upper bound of initial costate λUB , lower bound of initial
costate λLB , target final SOC tolerance ϵ
while |SOC(tf )− SOCf | > ϵ do

Set λ0 = (λUB − λLB)/2
Solve the PMP conditions over t ∈ [t0, tf ] and retrieve optimal SOC
trajectory SOC(t0), ...SOC(tf )
if |SOC(tf )− SOCf | < ϵ then

break
else if SOC(tf ) > SOCf then

Set λLB = λ0

else if SOC(tf ) < SOCf then
Set λUB = λ0

end if
end while
Set λ∗

0 = λ0

return Initial value of costate λ∗
0

The functions ˙SOC and ∂f(SOC,u)
∂SOC are pre-computed as

maps of SOC and u at discrete points within the operational
bounds of the LIB. The range of SOC included in the maps
is that of the functions Voc(SOC) and R0(SOC), and range
of u included in the maps is selected to encompass the
power limits set by Pinv and therefore the entire operating
range of the LIB. In solving the PMP conditions, the function
values are linearly interpolated between the map points. These
function maps are shown as contour plots in Fig 3a and
Fig. 3b, respectively.

VII. RESULTS AND DISCUSSION

The PMP conditions are solved using the initial costate
value obtained in Algorithm 1 for outage Phase 1 and outage
Phase 3 in Table II for different values of SOC(tf ) = SOCf .
In each case, the resulting optimal state and control are then
used to determine the total diesel consumption reduction
Msaved and LIB capacity reduction Sloss. For Msaved,
we calculate the percent change in diesel fuel consumed
from the case when the LIB is not dispatched, to the case
when the LIB is optimally dispatched Msaved(SOCf ) =

(a)

(b)
Fig. 3: Contour plots of (a) ˙SOC and (b) ∂ ˙SOC/∂SOC, as
functions of SOC and cell power Pc.

J(0)−J(u∗(t),SOCf )
J(0) , where J(u∗(t), SOCf ) is the objective

function in Equation 9 evaluated under the optimal LIB
dispatch u∗(t) for the condition SOC(tf ) = SOCf , and
J(0) is the objective function evaluated when u(t) = 0
(independent of SOCf ). Sloss, in percentage of nominal
capacity Qnom, is determined using the semi-empirical model
in [24], which models capacity loss as a function of Ampere-
hour (Ah) throughput, the ratio of time spent in charge-
sustaining mode, and temperature. Due to the constraints of
this semi-empirical model, SOCf is limited to the range
[0.2, 0.45] in this paper. Fig. 4 shows the optimal SOC
trajectory for different values of SOCf for Phase 1. This
shows that the PMP conditions were successfully solved
under the boundary conditions, as the values of SOCf are
reached at at the end of the outage. As SOCf decreases from
0.45, the LIB discharges at a higher current initially, which
has the effect of lowering the final SOC and increasing Ah
throughput. However, as SOCf approaches 0.2, the LIB has
less opportunity to dispatch towards the end of the outage in
order to maintain a lower SOC, decreasing Ah throughput.
Fig. 5 shows the total diesel fuel consumption reduction and
LIB cell capacity loss for different values of SOCf for Phase
1 and Phase 3. For Phase 1, the reduction in cell capacity
does not vary much across the SOCf range, so in practical
operation during this outage, SOCf could be optimized to
minimize diesel fuel consumption with minimal effect on
degradation. In Phase 3, however, minimizing SOCf has a
clear effect on minimizing both diesel fuel consumption and
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Fig. 4: Plot of optimal state trajectory SOC∗(t) in Phase 1 for
different values of final SOC, SOCf . Redder lines denote final
SOC closer to 0.2, while bluer lines denote final SOC closer to
0.45.

degradation. Additionally, the Phase 3 LIB degradation and
diesel fuel consumption reduction are significantly lower than
that of Phase 1 across all values of SOCf . These results
show that the optimal control and state, and the resulting
capacity loss and diesel savings, are highly dependent on the
initial and final conditions of the outage, even for different
outage phases within the same PSPS.

Fig. 5: Plot of reduction in cell capacity Sloss and reduction in
diesel consumption Msaved in Phase 1 (square markers) and Phase
3 (diamond markers) for different values of final SOC SOCf ∈
[0.2, 0.45], in increments of 0.025. Redder markers denote final
SOC closer to 0.2, while bluer markers denote final SOC closer to
0.45.

VIII. CONCLUSIONS

This paper presented a formulation for the energy manage-
ment optimal control problem of a microgrid during islanded
grid outage operation, where the LIB was modelled using
an ECM informed by laboratory testing data. The necessary
conditions for optimality in PMP were constructed using the
ECM, and the optimal control was obtained for a variety
of different boundary conditions, including variation of the
final outage state. The resulting impacts on LIB degradation
and diesel fuel consumption were compared across different
outage phases. The results demonstrate that LIB degradation
and diesel fuel consumption can be highly sensitive to outage
conditions and the LIB operating constraints.
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