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Abstract— A challenge with Lithium-ion battery (LIB) cells is
to study the impact of degradation parameter variations on the
model outputs. These parameters not only contribute to battery
aging, but also their accurate identification is crucial to enhance
battery management systems design. This paper employs a
global sensitivity analysis technique to analyze the impact of
kinetic, design, and solid-electrolyte interphase (SEI) aging
parameters on two different outputs, i.e., cell voltage and charge
capacity. The cell is modeled via a coupled nonlinear partial
and ordinary differential equations, and differential algebraic
equations representing the electrochemical, thermal, and aging
dynamics of a LIB cell via the enhanced single particle model
(ESPM). To perform the analysis, we adopt different optimal
currents at three ambient temperatures to achieve fast charging-
minimum degradation profiles. The analysis shows that anode
active phase volume fraction, anode reaction rate constant,
and solvent reduction kinetic constant are the most sensitive
parameters for both outputs.

Index Terms— Lithium-ion battery, Enhanced single particle
model, Aging, Global sensitivity analysis.

I. INTRODUCTION

Over the last decade, the use of lithium-ion battery (LIB)
has increased manifolds as the world moves towards sus-
tainable energy resources instead of fossil fuels. In 2017,
electric vehicles (EVs) surpassed global sales of one million
units. This global transition towards EVs has increased
the importance of developing battery management systems
(BMSs) that can not only inform the user about battery
diagnostics, but also ensure a high-level of performance.
Different kinds of battery models have been developed by
researchers such as models based on circuit designs [1] using
resistors and capacitors, or physics-based/electrochemical
models like Pseudo-two-Dimensional (P2D) [2] based on
porous electrode theory. The latter models are complex, but
provide great insights into the behavior of an actual battery.
Sensitivity Analysis (SA) determines how variation in the
model parameters affects the output of the model. Some
parameters of the model are generally more sensitive than
others. Since electrochemical models for LIBs contain a large
number of parameters, it is helpful to know which parameters
cause a significant variation in the output(s) of the model.
These highly sensitive parameters are the ones that have to
be accurately estimated for the model to perform accurately.
In [3], one-factor-at-a-time sensitivity analysis is performed
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for an Equivalent Circuit Model (ECM) and a reduced-
order model was developed using the sensitive parameters. In
[4] combined electrochemical impedance spectroscopy with
machine learning, and used systematic parameter sensitivity
analysis to identify parameters that are important for bat-
tery screening and health diagnosis. A Kriging-based global
sensitivity analysis (GSA) was performed in [5] to study
parameters that cause thermal variations. Since it is important
to verify SA in practical scenarios, the work in [6] used
real-world driving cycles on an electrochemical model of
lithium cells to conduct a local sensitivity analysis. In that
work, in addition to the terminal voltage, essential states
of the model, e.g., cathode bulk state of charge, cathode
surface state of charge, and anode potential, were also con-
sidered as outputs. Similarly, L2-norm-based local sensitivity
analysis was conducted in [7] where the effect of input
parameters was checked with respect to specific capacity
of Li-O2 batteries. In [8], sensitivity analysis for multi-
physics model of graphite/LiFePO4 battery was performed
under different conditions, e.g., temperature, discharge rate,
etc. Many global sensitivity analyses are performed through
Monte Carlo simulations. The work done in [9] builds a
probabilistic framework through a Gaussian process emulator
that mitigates the high dimensionality of the problem. This
allowed a SA to be performed using Monte Carlo sampling
for multi-output problems and also provided error bounds for
different sensitivity measures. A common technique in GSA
is Morris’ screening method [10] that uses mean and standard
deviation to recognize parameters that are sensitive and/or
have a large number of interactions with other parameters.
In [11], the Point Estimate Method (PEM) was used for its
low computational effort to conduct GSA on Single Particle
Model with electrolyte and thermal dynamics. Despite the
rich literature on using SA on electrochemical models for
LIBs, there is a current gap in understanding the sensitivity of
aging parameters towards various outputs of the model. The
novel contributions of this paper include: i) the use of Mor-
ris’ screening method on an electrochemical-thermal-aging
model, ii) studying the sensitivity of the aging parameters for
the cell voltage and capacity over optimized current charging
profiles. Seven aging parameters are included in the sensi-
tivity analysis. The results are generated for nine different
optimal charging current profiles at ambient temperatures of
15◦C, 25◦C, and 35◦C. Results show that anode solid phase
volume fraction, anode reaction rate constant, and solvent
reduction kinetic constant have the most impact on the model
outputs, i.e., cell voltage and capacity.
Notations: The following notations are used: x =
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[x1, . . . , xn]T ∈ Rn is a vector of parameters, A ∈ Rm×n is
a matrix of dimensions m-by-n, and |.| denotes the absolute
value of a scaler variable. Subscript j denotes the domain
in the lithium-ion battery. In the solid phase, it denotes
the negative and positive electrode, j∈[n,p], whereas, in
the electrolyte phase, it represents the negative electrode,
separator, and positive electrode, j∈[n,s,p].

II. CELL MODEL EQUATIONS
The dynamics of a LIB cell are complex and coupled

through non-linear ODEs, PDEs, and DAEs. Each electrode
in the ESPM is approximated as a single spherical particle
withh uniform current density. Eq. (1), (2), and (3) are PDEs
describing the electrochemical dynamics of the cell. The
surface overpotentials ηj , described by Eq. (4), are calcu-
lated for each electrode intercalation reaction using elec-
trode surface and averaged electrolyte concentration of each
domain assuming Butler-Volmer kinetics. Eq. (5) describes
the exchange current density i0,j . To compute the open
circuit potentials Uj , empirical relationships are used that are
based on electrode surface concentration stoichiometry [13].
Finally, the voltage of the cell can be computed using Eq.
(6). The ohmic resistance of the cell is divided into Solid
Electrolyte Interphase (SEI) layer resistance Rsei, lumped
contact resistance Rl, and electrolyte resistance Rel. From
[14], SEI and electrolyte resistances are given by

Rsei =
Lsei

as,nALnκsei
(13)

Rel =
1

2A

[
Ln

κeffe,n

+
2Ls

κeffe,s

+
Lp

κeffe,p

]
(14)

where κeffe,j = f(cavge,j , εe,j) and cavge,j is the average concen-
tration in the electrolyte phase. To model the temperature of
a cell, the two-state thermal model using a lumped parameter
[15] is used. The two temperatures considered are the core
temperature Tc and the surface temperature Ts expressed
in Eq. (7) and (8) respectively. Electrode overpotentials
and Joule heating are the main sources of heat generation
inside the cell while the entropic contributions are assumed
negligible. In this model, aging is based on the growth of
SEI layer as a function of both solvent reduction kinetics and
diffusion dynamics, which is used to predict the cell capacity
loss and power fade [14] [16]. Eq. (9) describes the solvent
concentration available for reduction reaction at the anode
surface. SEI layer growth is modeled as linearly related to the
side-reaction current density is in Eq. (10), and is is defined
by Eq. (11). For capacity loss, the side reaction current is
integrated across the anode active surface area through Eq.
(12). This amounts to the lithium content consumed by the
solvent reduction reaction. At the same time, anode porosity
εe,n changes based on the change in the SEI layer thickness
according to the volume balance approach given by [14]

εe,n = 1− εs,n
(

1 +
3Lsei

Rs,n

)
− εf,n (15)

For robust model performance, concentration and
temperature-dependent transport and kinetic parameters are

updated at each point in time based on the relevant state.
Empirical relationships for temperature and concentration
dependencies of electrolyte parameters De,j and κe,j
are found in [17]. Similarly, solid electrode parameters
like Ds,j and kj follow an Arrhenius relationship with
temperature [12]. The parameter identification and the model
implementationconducted in [21] are used in this work.
[22]. Parameter sensitivity analysis helps to identify the
influence of model parameters on the output of the system.
Not all parameters have an equal affect on the output. In the
next section, Morris method is implemented to separate high
influence parameters from low influence parameters on the
chosen outputs. Morris’ method [18] is a commonly-used
technique for sensitivity analysis of a mathematical model
characterized by a large number of parameters over which
is performs a screening to separate out the most from the
least sensitive parameters. The nominal parameter vector
is defined as x∗ = [x1, x2, . . . , xk] ∈ Ω where each xi is
rescaled between [0, 1], and k is the number of parameters.
This input space is divided into equally-sized intervals or
levels which is denoted by p. Common values of p are 4
or 10. During analysis, each parameter is multiplied by
its nominal value to use the right value in the model. The
complete input space becomes a k-dimensional p-level grid
denoted by Ω ∈ Rk×p. One of the k parameters is randomly
selected from x∗ and its value is increased or decreased by
∆ such that

x(1) = (x1, . . . , xi−1, xi ±∆i, xi+1, . . . , xk) ∈ Ω (16)

where ∆ = p/2(p − 1) [18]. Once the perturbed parameter
vector is obtained, elementary effect is computed for the
ith parameter ξi = y(x(1))−y(x∗)

±∆i
where i = 1, . . . , k. This

step is repeated for all parameters j 6= i, and afterwards,
the complete experiment is repeated r times which results
in extensive exploration of the input space. Once all the
elementary effects ξi have been computed, the mean and
standard deviation of the elementary effects are defined as
follows.

µi =
1

r

r∑
j=1

ξi

(
x(j)

)
(17)

µ∗
i =

1

r

r∑
j=1

∣∣∣ξi(x(j))
∣∣∣ (18)

σi =

√√√√ 1

r − 1

r∑
j=1

(
ξi
(
x(j)

)
− µi

)2
(19)

where r is the number of times the experiment is per-
formed. Usually, elementary effects can assume both signs
and cancel each other out. To avoid this, the absolute
value of the elementary effects is used and the mean is
denoted by µ∗ as shown in Eq. (18). The parameters
that have a high mean have a greater overall impact on
the output while parameters with a high standard devia-
tion have a more non-linear relationship with the output
and/or have interactions with other parameters. A technical
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TABLE I: Electrochemical-thermal-aging dynamics of a LIB cell.

Electrochemical dynamics [19]

Mass conservation
in solid phase

∂cs,j

∂t
=
Ds,j(T )

r2
∂

∂r

[
r2
∂cs,j

∂r

]
, j ∈ [n, p] (1)

∂cs,j

∂r

∣∣∣
r=0

= 0
∂cs,j

∂r

∣∣∣
r=Rs,j

=
±Iapp

Ds,j(T )as,jALjF
+ gs,j(csurfs,j , csurfsolv , Tc, Iapp, Lsei)

Mass conservation
in electrolyte phase

εe,j
∂ce

∂t
=

∂

∂x

(
Deff

e,j (ce, T )
∂ce

∂x

)
+
(

1− t+0
) ge,jIapp

ALjF
, j ∈ [n, s, p] (2)

∂ce

∂x

∣∣∣
x=0

=
∂ce

∂x

∣∣∣
x=Ln+Ls+Lp

= 0

Deff
e,n (ce, T )

(
∂ce

∂x
(x, t)

)∣∣∣
x=Ln

= Deff
e,s (ce, T )

(
∂ce

∂x
(x, t)

)∣∣∣
x=Ln

Deff
e (ce, T )

(
∂ce

∂x
(x, t)

)∣∣∣
x=Ln+Ls

= Deff
e (ce, T )

(
∂ce

∂x
(x, t)

)∣∣∣
x=Ln+Ls

Charge conservation
in electrolyte phase

κeffe,j (ce, T )
∂2Φe

∂x2
− κeffD (ce, T )

∂2 ln ce

∂x2
+

Iapp

as,jALj
= 0, j ∈ [n, s, p] (3)

∂Φe

∂x

∣∣∣
x=0

=
∂Φe

∂x

∣∣∣
x=Ln+Ls+Lp

= 0

Electrode Overpotential ηj =
RgTc

0.5F
sinh−1

(
Iapp

2Aas,jLji0,j

)
, j ∈ [n, p] (4)

Exchange Current Density i0,j = kjF

√
cavge,j c

surf
s,j

(
cmax
s,j − csurfs,j

)
, j ∈ [n, p] (5)

Cell voltage Vcell = Up + ηp − Un − ηn + ∆Φe − Iapp (Rl +Rel +Rsei) (6)

Thermal dynamics [15]

Cell Core Heat Balance Cc
dTc

dt
= Iapp(Voc − Vcell) +

Ts − Tc
Rc

(7)

Cell Surface Heat Balance Cs
dTs

dt
=
Tamb − Ts

Ru
−
Ts − Tc
Rc

(8)

Aging dynamics [14] [16]

Mass conservation
in SEI

∂csolv

∂t
= Dsolv(T )

∂2csolv

∂r2
−
dLsei

dt

∂csolv

∂r
, (9)

−Dsolv(T )
∂csolv

∂r

∣∣∣
r=Rs,n

+
dLsei

dt
csurfsolv =

is

F

csolv

∣∣∣
r=Rn+Lsei

= εseic
bulk
solv

SEI layer growth
dLsei

dt
= −

isMsei

2Fρsei
, (10)

Side reaction
current density

is = −2Fkf (csurfs,n )2csurfsolv exp

[
−βF
RgTc

(Φs,n −RseiIapp − Us)

]
(11)

Cell capacity loss
dQ

dt
= isALnas,n (12)

framework exists to generate trajectories with the desired
properties in the form of the matrix B∗ ∈ R(k+1)×k where
the rows of B∗ are x1, x2, . . . , x(k+1). The randomized
version of the sampling matrix B∗ is given by B∗ =
(Jk+1,1x∗ + (∆/2)[(2B− Jk+1,k)D∗ + Jk+1,k]) P∗ where B
is a strictly lower triangular matrix of ones and Jk+1,k is a
(k+1)×k dimensional matrix of ones, D∗ is a k-dimensional
diagonal matrix with either minus one or plus one on the
diagonal with equal probability, P∗ is a k-dimensional square
permutation matrix with one element equal to one in each
row and remaining elements equal to zero, and x∗ is a
randomly-chosen base vector from the input space Ω.

III. RESULTS & DISCUSSION

The focus of this work is to find out the impact of aging
parameter variations on voltage and capacity. To extract these
parameters, the chain of electrochemical equations for both
voltage and capacity is studied. To analyze the cell voltage
(Eq. (6)), anode overpotential ηn (Eq. (4)) is considered

from which the only state-varying parameter is exchange
current density i0,n. In view of Eq. (5), the anode reaction
rate constant kn is a parameter that varies over aging. The
Rsei and Rel, defined by Eq. (13) and (14) are a function of
the aging parameters SEI layer ionic conductivity κsei and
anode solid phase volume fraction εs,n. The rate of change
of capacity, Eq. (12), is linearly dependent on is (Eq. (11))
from which the solvent reduction kinetic constant kf is one
parameter that affects capacity. Furthermore, is is also related
to the rate of change of Lsei (Eq. (10)) which contains SEI
layer density ρsei that varies with aging. is also contains
anode surface potential φs,n defined as

φs,n = Un + ηn +
LseiIapp

as,nALnκsei
(20)

Since Eq. (20) contains ηn, we can conclude that kn affects
the capacity as well. Apart from these parameters, we also
include anode particle radius Rs,n and anode diffusion
coefficient Ds,n in our analysis due to their indirect impact
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on the outputs. Table II shows the parameters with their
nominal values. For running Morris’ method, we set the
number of experiments to r = 4, which implies that a total
of r(k + 1) simulations are run to get the final results.
The level for the input space Ω is set to p = 4. For
each parameter, the perturbation is uniformly chosen from
[0, 1/(p − 1), . . . , 1 − 1/(p − 1)], which implies that any
parameter will have a variation within [-100% to +100%].
We utilize nine different optimal current profiles at three

TABLE II: Model parameters used in the Morris sensitivity
method and their nominal value

Parameter(s) Nominal Value(s) Unit(s)
Rs,n 4.2642× 10−6 m
Ds,n 1.4493× 10−14 m2 s−1

εs,n 0.6187 -
kn 1.0× 10−10 m2.5mol−0.5 s−1

κsei 17.5× 10−5 Sm−1

kf 1.18× 10−22 -
ρsei 1690 kgm−3

different ambient temperatures Tamb = [15, 25, 35]◦C. Each
profile is generated through a multi-objective fast charging-
minimum degradation optimization problem defined as U∗ =
argminU=[tf ,Icell(t)]

αOPTβ1tf +β2(1−αOPT )(Lsei+ ˙Lsei)
(from [20]), where the vector of optimization variables U∗

is comprised of final time of charging tf and the cell
current Icell;β1, β2 > 0 are the optimization weights; and
0 ≤ αOPT ≤ 1 is a trade-off coefficient that can be adjusted
for three different paradigms: fast charging (αOPT = 1),
minimum degradation (αOPT = 0), and balanced charging-
degradation (αOPT = 0.5). The operation of the battery cell
requires solving the optimization subject to the battery cell
dynamics and different task constraints [20] among which
Iapp must lie within the C-rate of 3C and 8C. Table III shows

TABLE III: Optimal Current Profiles

Scenario(s) Profile tf (s) Tamb (◦C)
Minimum Iapp,D1 393.1 15

degradation Iapp,D2 668.3 25
Iapp,D3 716.9 35

Balanced Iapp,B1 389.8 15
Iapp,B2 538.6 25
Iapp,B3 713.4 35

Fast Iapp,F1 311 15
Iapp,F2 422.8 25
Iapp,F3 690 35

the three scenarios, and nine optimal profiles with final times
tf and corresponding ambient temperatures (see, Fig. 1).

A. Results

Morris’ method is run for all nine optimal current profiles,
and mean and standard deviation of all parameters are
illustrated on a log-log plot. In Fig. 2, the heatmap shows the
results of GSA for the cell voltage corresponding to different
charging regimes. It can be seen that the least sensitive
parameters are ρsei, kf , and κsei. While the most sensitive

0 200 400 600 800

Time (s)

-15

-10

-5

0

C
u

rr
e

n
t 

(A
)

15

25

35

A
m

b
ie

n
t 
T

e
m

p
e
ra

tu
re

 (
°
C

)

Fig. 1: Optimal input current profiles for balanced charging,
fast charging-minimum degradation, and fast charging at
15◦C (blue), 25◦C (green), and 35◦C (red).

parameters are εs,n, kn and Ds,n. As ambient temperature
increases, the general trend of the parameters is to increase
in both mean and standard deviation, which implies that
sensitivity and non-linear interactions are generally larger at
higher temperatures for the cell voltage. For cell capacity,
since capacity change is a slow process and the effect of
aging is not present in a fresh cell, the results are generated
for a cell with an 8% capacity loss. This means that the cell
has a high Ah-throughput implying that its capacity decreases
over time. It can be seen in Fig. 3 that the same high
sensitivity parameters for the cell voltage are also sensitive
for the capacity. Furthermore, we see that kf is another
sensitive parameter for capacity which was not sensitive for
cell voltage. This makes sense because kf has a direct rela-
tion with the rate of change of capacity through is. Another
interesting observation is that capacity is the least sensitive
to ρsei at low temperature; however, as ambient temperature
increases, capacity becomes relatively more sensitive to ρsei
for all three optimal charging scenarios. Based on these
results, the cell voltage with nominal value of parameters
is compared with the one when the most (εs,n and kn)
and least (ρsei) sensitive parameters are perturbed by +33%
(randomly selected from our set of perturbation intervals)
from the nominal values at Tamb = 25◦C over fast charging-
minimum degradation profile (see Fig. 5). This figure shows
that due to the non-linear nature of the relationship between
these parameters and cell voltage, it is not guaranteed that
same direction of perturbation leads to similar changes in
the voltage response. Hence, the focus is on the amount of
perturbation, which is kept the same for all parameters. From
Fig. 5, we can see that the perturbation in εs,n and kn (most
sensitive parameters) leads to a significant deviation from the
voltage with nominal values. Fig. 5 also compares the error
between the nominal voltage and the voltage when εs,n, kn,
and ρsei are perturbed one-at-a-time. It can be seen that εs,n
has the largest and ρsei has the smallest average error; this
is consistent with what we observe from Fig. 2. A similar
validation is performed for cell capacity using the same
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Fig. 2: Voltage heatmap of Morris’ elementary effects for
(a) balanced, (b) minimum-degradation, and (c) fast charging
profiles for seven candidate parameters.

parameters and perturbation. The results of the validation
are shown in the bar plots in Fig. 4. The reference bar
shows the capacity loss for nominal values of the parameters.
Perturbation in εs,n results in the largest capacity variation
while perturbation in ρsei results in negligible variation in
the output, which is consistent with the capacity sensitivity
analysis shown earlier. Another interesting observation is that
during fast charging, the degradation is relatively higher than
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Fig. 3: Capacity heatmap of Morris’ elementary effects for
(a) balanced, (b) minimum-degradation, and (c) fast charging
profiles for seven candidate parameters.

the other two charging scenarios.

IV. CONCLUSION

In this paper, a sensitivity technique was used to analyze
and screen parameters a ESPM-thermal-aging model of LIB
cell. Main focus of the sensitivity analysis was given to
the aging parameters. Cell capacity and voltage were the
considered outputs and different optimal current profiles to
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Fig. 4: Bar plots showing percentage capacity loss for all
nine charging scenarios at a) 15oC and and b) 35oC. The
results at 25oC follow the same trends as the ones at 15oC.
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Fig. 5: The top figure shows the impact of perturbation of
the most sensitive (εs,n and kn), and least sensitive (ρsei)
parameters on the cell voltage with fast charging-minimum
degradation profile at Tamb = 25◦C. The bottom figure
shows the absolute error between cell voltage with one-at-a-
time perturbed parameters and nominal voltage.

charge the cell at three ambient temperatures where used
as case studies. Morris’ method was used to conduct the

sensitivity analysis to explore how sensitive the selected
outputs were to the aging parameters. The results revealed
that the kinetic parameters are highly-sensitive while design
and SEI parameters show low sensitivity for both the cell
voltage and the capacity.
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