
 

 

 

 
Abstract— This paper presents a novel battery modeling 
framework based on the enhanced single particle model (ESPM) 
to account for degradation mechanisms of retired electric vehicle 
batteries. While accounting for the transport and 
electrochemical phenomena in the battery solid and electrolyte 
phases, the dominant anode-related aging mechanisms, namely, 
solid electrolyte interphase (SEI) layer growth and lithium 
plating, are modeled. For the first time, the loss of active material 
(LAM), which describes the tendency of anode and cathode, over 
time, to reduce the electrode material available for intercalation 
and deintercalation, is introduced in the ESPM. Moreover, the 
coupling of the aging mechanisms with the LAM dynamics 
provides a comprehensive means for the prediction of both 
linear and non-linear capacity fade trajectories, crucial to assess 
the health of batteries that are considered for second-life 
applications. Relying on data borrowed from [13], a model 
parameter identification and a comprehensive sensitivity 
analysis are performed to prove the effectiveness of the modeling 
approach. 

I. INTRODUCTION 

Lithium-ion battery (LIB) technology takes advantage of the 
high electrochemical potential of lithium (-3.040V vs. 
standard hydrogen electrode) while providing high specific 
power (300-1500W/kg) and specific energy density (100-
250Wh/kg) against all the electrochemical battery devices 
available on the market [1]. For this reason, LIBs are 
considered the best means to store energy to support 
sustainable transportation systems and renewable grid 
applications. In 2019, the market of LIBs was valued at $36.7 
billion and is expected to grow by an annual rate of 18.0% to 
reach $129.3 billion by 2027 [2].  
     Deployment of electric vehicles (EVs) has been growing 
rapidly over the past decade. It was estimated that 1.18 million 
EVs were present on the U.S. roads in 2019 [4].  Typically, 
EV batteries have a lifetime of 8-10 years, and they retire from 
the first life when their capacity and/or power capability 
decreases to 70-80 percent of their initial values. The first 
large wave of retired EV batteries is expected by 2025, after 
the 15-year lifetime of the Tesla Model S and Nissan LEAF 
that first went to market [6]. In California, about 45,000 EV 
batteries are expected to retire by 2027 [7].  
     Potential end-of-life pathways for retired EV batteries 
include repurposing, remanufacturing, recycling, and disposal 
[8]. ‘Repurposing’, or reuse, is defined as the redeployment 
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of retired EV batteries in a different application from the one 
they were first used. Retired EV batteries are postulated to be 
able to provide energy storage services in a stationary grid 
application. In the ‘Remanufacturing’ process, damaged 
battery cells/module are replaced with new ones within the 
battery module/pack and reused in EVs. The objective of 
‘Remanufacturing’ is to extend the useful life of batteries with 
minimal additional cost. In ‘Recycling’ extraction and 
reprocessing of valuable metals (e.g., nickel and cobalt) are 
practiced. A sustainable life cycle would apply the ‘Recycling’ 
process after the batteries have been repurposed to provide   a 
second-life. In the ‘Disposal’ pathway, the battery cells are 
moved to landfill and discarded under the assumption that 
they are no longer worth recycling.  
     Compared to other routes, the repurposing of EV batteries 
would maximize the total lifetime value and revenues of the 
device. The optimal deployment of repurposed retired EV 
batteries holds potential to reduce up-front costs and provides 
benefits to consumers and utilities, maximizing the usability 
and performance of the device. 
     To date, most second-life EV battery projects have been 
conducted by industrial vendors. In 2013, for example, ABB 
and General Motors built a 25kW energy storage system in 
San Francisco, California, USA by collecting retired EV 
batteries from the Chevrolet Volt plug in hybrid vehicle [10]. 
In 2015, BMW, Vattenfall, and Bosch obtained retired 
batteries from more than a hundred EVs and jointly 
constructed a 2 MW, 2800 kWh second-life battery energy 
storage system for grid support (Hamburg, Germany) [11]. In 
the same year, Toyota also built a stand-alone 10MW energy 
storage system with Prius retired batteries at the Lamar 
Buffalo Ranch in Yellowstone National Park, USA. This 
storage system supported a wind-battery microgrid system 
[12]. These early-stage research projects provided no 
systematic approach for the deployment of second-life 
batteries in grid applications; the original battery packs are 
just collected as they are and deployed in a microgrid or a 
building site to supply the needed power and energy. 
    A battery cell is a basic unit of a LIB whereas a battery 
module contains multiple battery cells, connected either in 
series or in parallel. Similarly, a battery pack involves 
multiple battery modules in parallel and/or series. In a battery 
module, individual cells packed closely together interact with 
each other thermally, and heat is transferred through 
conduction between the surface of neighboring cells [19]. 
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     The SOH estimation and cell screening approaches for 
second-life batteries found in the literature are based on the 
use of empirical models and lack electrochemical dynamics 
information. To date, the SEI layer growth has been regarded 
as the main cause of capacity fade and impedance increase of 
the battery system [13]. Accurate estimation of lithium plating 
dynamics is essential to assess future and safe usability of 
retired EV batteries. Lithium plating is defined as the 
formation of metallic lithium on the anode of LIBs during 
charging (Li++e- → Li). Lithium plating not only causes 
capacity and power fade but also poses  significant safety 
concerns when it forms unmonitored. Lithium plating can 
lead to irregular dendrite-shaped growth that could cause 
thermal runaway inside the device. Once EV batteries are 
retired, one critical question is whether lithium plating has 
developed. Typically, lithium plating is known to occur under 
extreme operating charging conditions, such as fast charging 
and low temperature [9]. In order to study the second-life of 
retired EV batteries, it is deemed important to investigate 
whether lithium plating is generated under operating 
conditions controlled by the battery management system 
(BMS). Several nondestructive lithium plating detection 
methods have been proposed for online battery 
characterization. 
     In [14], differential voltage analysis to detect the high 
voltage plateau was introduced to provide quantitative results 
concerning the lithium stripping reaction. Lithium stripping, 
which is the opposite reaction (Li → Li++e-) to lithium plating, 
can occur during discharge after lithium plating has formed 
during charge. During discharge, if lithium plating already 
exists on the anode, the metallic lithium favors the conversion 
to lithium ions rather than deintercalation of lithium ions 
inside the solid particles (the electrochemical potential of 
metallic lithium is higher compared to the potential of lithium 
deintercalation from the negative electrode). For this reason, 
a voltage plateau can be observed at the initial stage of the 
discharge process, when starting from a fully charged battery. 
In [14], a cylindrical 26650-type commercial Li-ion battery 
(LiFePO4) with 2.5 Ah capacity was tested under various low 
temperatures (-20°C, -22°C, -24°C, -26°C), within a SOC 
range of 100-10% and charge currents 1CC/2). This study 
showed that the differential voltage and capacity discharge 
curves can be used to calculate lithium plating quantitatively. 
In [13], the identification and quantification of lithium plating 
on a commercial graphite NMC cell was proposed. This study 
indicated that lithium plating can also occur at mild charging 
conditions after extended cycling, leading to rapid aging of 
the cell. This is a fundamental breakthrough in the field of 
SOH estimation. In addition, in [14-15] the loss of active 
material (LAM) was indicated as one of the causes leading to 
lithium plating after extended cycles (LAM is defined when 
active mass of the electrodes is no longer available for the 
insertion of lithium). The amount of lithium ions can exceed 
the accommodation of anode capacity due to the LAM of the 
electrode. Excess lithium ions can plate on the surface of the 
graphite. Mathematical battery models can be used to 
understand and optimize LIBs’ performance. Among many 
other models, physics-based battery models deliver internal 
physics dynamics such as transport and kinetic phenomena. 

Moreover, physics-based battery models can incorporate 
transport phenomena, chemical/electrochemical kinetics, side 
reactions, and thermal/stress/mechanical effects. Physics-
based models offer the SOC and SOH along with internal 
electrochemical information that can be used to maximize 
safety, usability, and lifetime of the battery.  
     In this paper, we formulate a physics-based modeling 
framework that integrates LAM, lithium plating, and SEI 
dynamics, using the enhanced single particle model (ESPM). 
This paper consists of four sections: ESPM, Parameter 
identification, Results, and Conclusion. In the ESPM section, 
governing equations including the SEI layer growth, lithium 
plating, and LAM are presented. In the Parameter 
Identification section, the particle swarm optimization (PSO) 
algorithm is used to identify the kinetic/transport parameters. 
The experimental discharge voltage profiles at constant C-rate 
obtained from [13] are used to identify the model parameters. 
In the Results section, we show the model performance over 
experimental data from [13]. 
 

 
Figure 1. Schematic representation of the ESPM. Starting from a 
fresh particle, mechanical stresses due to lithium intercalation and 
deintercalation can induce the formation of cracks. After prolonged 
cycling, isolation of active material can also occur, together with SEI 
growth and lithium plating. 

II. ENHANCED SINGLE PARTICLE MODEL 

     The ESPM is formulated upon the assumption that each 
electrode can be represented by a single spherical particle, 
which implies that all solid particles are uniform and have the 
same chemical properties (see Figure 1) [17].  
     In the ESPM framework, solid particle concentration is 
described along with the radial dimension r. The variation of 
electrochemical potential in the solid particles along 𝑥  is 
ignored whereas the electrolyte concentration and potential 
are considered. According to [3], ESPM shows only a few 
millivolts error for discharge voltage profiles at constant C-
rate ≤5C (compared to the Doyle-Fuller-Newman (DFN) 
model). For this reason, in this paper, the ESPM is selected as 
a modeling tool to include SEI layer growth and lithium 
plating (considered the dominant aging mechanisms [13]) and 
LAM.  
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A. Model governing equations 
     The ESPM model is in the form of partial differential 
equations (PDEs), including multivariable functions and their 
partial derivatives. The model predicts the dynamics of 
lithium concentration in the solid phase 𝑐$,&	(𝑥, 𝑟, 𝑡)  at the 
anode and cathode (i=p, n), electrolyte concentration  𝑐(𝑥, 𝑡), 
and electrolyte potential 𝜙-(𝑥, 𝑡) . All equations, variables, 
and parameters are described in Table I, II, and III. Variables  

and parameters are shown in Table I. Equations in Table II 
describe the battery charge and mass transport dynamics in 
the positive electrode, separator, and negative electrode. 
Additional equations are given in Table III. Equations T.3 
show the porosity change due to aging  phenomena. Equations 
T.4 describe the cell voltage as a function of the open-circuit 
voltage, overpotential, and liquid phase potential difference 
between the positive and negative electrodes, respectively. 
Ohmic losses due to the internal resistance and SEI layer 
growth are also included. Equations T.5 describe the 
electrochemical overpotential, and Equations T.6 and T.7 
adopt the Butler-Volmer (BV) kinetic expression to model the 
intercalation/deintercalation of lithium ions, SEI layer 
growth, and lithium plating. The BV expression describes the 
charge transfer processes, which occur at the surface of solid 
particles–electrolyte interfaces (for SEI layer growth and  
lithium plating). The SEI layer growth dynamics was 
successfully implemented in our previous  study [17], within 
the ESPM framework, following the approach proposed by 
[18]. In 2019, Narayanrao et al. modeled LAM by decreasing 
the specific surface area of solid particles from active surface 
area at the initial stage (𝑎& ) [16]. This LAM model is 
established in two steps (see Figure 1); solid particles fracture 
(𝑎&,/) occurs first, resulting in a larger overall active surface 
area. The wider surface area at this stage is still active 
material, but as the surface area increases, the SEI layer is 
formed over a wider area, and the capacity loss phenomenon 
becomes more pronounced. The first step assumes that the 
ratio between the area created through the fracture to the total 
initial area of the electrode particles is a linearly increasing 
function of time as show below: 

01
23,4
23
5

06
= 𝑘&9	→ 𝑎&,/ = 𝑎&𝑘&9                        (1) 

where 𝑘&9 is the fracture rate coefficient. 
     In the second step, inactive surface area or isolation  occurs 
under the assumption that the rate of increase of inactive area 
is proportional to the total surface area 𝑎&,6: 

0:3,3;2
06

= 𝛽&9𝑎&,6 = 𝛽&9(𝑎& + 𝑎&,/ − 𝑎&,&?:)             (2) 

where 	𝑎&,&?: is the inactive surface area and 𝛽&9 is the inactive 
area evolution coefficient. The inactive surface area dynamics 
(Equations T.8 and T.9 in Table III) can be obtained by  

Table I. Nomenclature (p: positive electrode, s: separator, n: negative 
electrode).  
Symbol Variables Units 

t+ Transference number - 
α Transfer coefficient - 
𝑏𝑟𝑢𝑔𝑔 Bruggeman coefficient - 
𝜀& , 𝜀&,D Porosity and its initial condition (i = p,n) - 
𝜈& , 𝜈&,/&FF-G Active volume fraction of solid phase and 

filler (i = p,n) 
- 

𝛽 Fraction of lithium plating converted into 
SEI 

- 

𝛽&9 Inactive area evolution coefficient (i = p,n) - 
𝑘&9 Fracture evolution coefficient (i = p,n) - 
𝑆𝑂𝐶& State of charge (i = p,n) - 
𝜃& Normalized lithium concentration (i = p,n) - 
𝜃&,D%, 𝜃&,MDD% Reference stoichiometry ratio at 0% and 

100% 𝑆𝑂𝐶  (i = p,n) 
- 

𝑡, 𝑥, 𝑟 Time and cartesian/radial coordinates s,m 
𝑅&  Particle radius (i = p,n) m 
𝐿& Region thickness (i = p,s,n) m 
𝐿/&FQ Thickness of the surface film m 
𝐿R&, 𝐿STU SEI and lithium plating thickness m 
𝐴W-FF Cell cross sectional area m2 
𝑎&  Specific surface area (i = p,n) m2/m3 
𝑎&,/ Specific fracture surface area (i = p,n) m2/m3 
𝑎&,&?: Specific inactive surface area (i = p,n) m2/m3 
𝑎&,6 Total specific surface area (i = p,n) m2/m3 
𝑘/ SEI side reaction kinetic constant  m/s 
𝐷& Electrolyte phase diffusion coefficient  

(i = p,s,n) 
m2/s 

𝐷$,& Solid phase diffusion coefficient (i = p,n) m2/s 
𝑐 Electrolyte concentration  mol/m3 
𝑐$,& Solid phase concentration (i = p,n)  mol/m3 
𝑐R&, 𝑐STU Plated lithium and SEI concentration mol/m3 
𝑘&  Reaction rate (i = p,n) m2.5/(mol0.5·s) 

𝐽&
 

Pore wall flux (i = p,n) mol/(m3·s) 
𝐼 Applied current  A 
𝑖D,&  Exchange current (i = p,n) A/m2 
𝑖D,F\F  Lithium deposition exchange current A/m2 
𝑗&?6 , 𝑗STU, 𝑗F\F  Intercalation and side current densities (SEI, 

lithium plating)  
A/m3 

𝜅& Liquid phase conductivity (𝑖 = 𝑝, 𝑠, 𝑛) S/m 
𝜅STU SEI layer ionic conductivity S/m 
𝑅/&FQ  Film resistance Ω 
𝑅F  Lumped contact resistance Ω 
𝑅-F  Electrolyte resistance Ω 
Φ$,?,Φ-,?

 
Solid and liquid phase potential at the anode V 

ΔΦ-  Diffusion overpotential V 
𝜙- Liquid phase potential V 
𝑈& Open circuit potential (i = p,n) V 
𝑉W-FF  Cell voltage V 
𝜂&  Overpotential (i = p,n) V 
𝑇, 𝑇G-/  Battery cell temperature and reference  K 
𝑅  Universal gas constant  J/(mol·K) 

𝐸:,ij
&  Activation energy of solid diffusivity 

(i = p,n) 
J/mol 

𝐹 Faraday constant C/mol 
𝑀R&, 𝑀STU Plated lithium and SEI molar mass  kg/mol 
𝜌R&, 𝜌STU Plated lithium and SEI density kg/m3 

Table II. Governing equations for the ESPM model. Only the boundary 
conditions modified with the lithium plating current density 𝑗F\F  are 
shown. For a comprehensive description of the boundary conditions, the 
reader is referred to [17].  

𝐽? =
𝐼

𝐴W-FF𝐹𝐿?
;					𝐽\ = −

𝐼
𝐴W-FF𝐹𝐿\

;					𝐽$ = 0 

Mass transport in the electrolyte phase	(𝑖 = 𝑝, 𝑠, 𝑛) 

𝜀&
𝜕𝑐
𝜕𝑡
=
𝜕
𝜕𝑥
1𝐷-//,&(𝑐, 𝑇)

𝜕𝑐
𝜕𝑥
5 	+ (1 − 𝑡q)𝐽&  

Charge transport in the electrolyte phase (𝑖 = 𝑝, 𝑠, 𝑛)  

𝜅-//,&(𝑐, 𝑇)
𝜕
𝜕𝑥
1
𝜕𝜙-
𝜕𝑥

5 +
2𝜅-//,&(𝑐, 𝑇)𝑅𝑇

𝐹
(1 − 𝑡q)

𝜕s ln 𝑐
𝜕𝑥s

+ 𝐹	𝐽& = 0		 

Mass transport in the solid phase (𝑖 = 𝑝, 𝑛) 
𝜕𝑐$,&
𝜕𝑡

=
1
𝑟s

𝜕
𝜕𝑟
1𝑟s𝐷$,&(𝑇)

𝜕𝑐$,&
𝜕𝑟

5 ;				
𝜕𝑐$,&
𝜕𝑟

|𝑡GwD = 0		 

𝜕𝑐$,?
𝜕𝑟

|𝑡Gwx; =
−𝐼 + 𝐿?𝐴W-FFy𝑗STU + 𝑗F\Fz
𝐷$,?(𝑇)𝑎?,6𝐴W-FF𝐹𝐿?

;						
𝜕𝑐$,\
𝜕𝑟

|𝑡Gwx{ =
𝐼

𝐷$,\(𝑇)𝑎\,6𝐴W-FF𝐹𝐿\
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combining Equations (1) and (2). This paper couples the 
inactive surface dynamics with related terms presented in 
Table III. Porosity (Equations T.3), electrochemical 
overpotential (Equations T. 5), and mole fluxes for lithium 
intercalation/deintercalation, SEI layer growth, and lithium 
plating are a function of the active surface area. As the total 
active surface area changes with cycles, the aforementioned 
electrochemical states vary. The total mole flux (Equation 
T.6) is a function of the mole fluxes for lithium 
intercalation/deintercalation, SEI layer growth, and lithium 
plating. As the total active area is reduced, the relative ratio 
of mole fluxes for lithium intercalation/deintercalation and 
SEI layer growth are decreased, while the relative ratio of 
mole flux for the lithium plating is increased.  
 

III. PARAMETER IDENTIFICATION 

The identification of the model parameters is carried out 
relying on the particle swarm optimization (PSO) algorithm. 
To this aim, voltage vs capacity data for a 12.4Ah pouch cell 
discharged at C/3 (at 25°C) from [13] are used. In this study, 
the identification process is divided into two phases. First, the 
parameter vector ΘM is identified over a fresh cell. Secondly, 

for the aged cell, the parameter vector Θs is identified.  For 
the aged cell, experimental data at the 1000th and 3300th cycle 
are employed. Data at the 1000th cycle are related to aging 
conditions dominated by SEI growth. Conversely, 
measurements at the 3300th cycle are characterized by the 
superposition of two aging modes, namely, SEI growth and 
lithium plating. In accordance with [13], for both the fresh and 
aged cell, we assume that LAM is not occurring.  

The identification aims at minimizing a cost function 
defined as follows:   

𝐽(Θ) = 𝑤M~
1
𝑁
� �𝑉W-FF(𝑘;Θ) − 𝑉W-FF

-�\(𝑘)�
s�

�wM
+ 

+𝑤s~
1
𝑁
� y𝑆𝑂𝐶?(𝑘; Θ) − 𝑆𝑂𝐶-�\(𝑘)z

s�

�wM
+ 𝑤�	~

1
𝑁
� �𝑆𝑂𝐶\(𝑘; Θ) − 𝑆𝑂𝐶-�\(𝑘)�

s�

�wM
 

where Θ is a generic vector collecting the parameters to be 
identified ( ΘM  and Θs	 for the fresh and aged cell, 
respectively), 𝑆𝑂𝐶\, 𝑆𝑂𝐶?  are the simulated state of charge at 
the cathode and anode (computed as in Equations T.10), 𝑉W-FF 
is the simulated voltage profile (Equations T.4), 𝑘 is the time 
instant,  𝑁 the number of samples,  𝑉W-FF

-�\	and 𝑆𝑂𝐶-�\ are the 
experimental cell voltage and state of charge from Coulomb 
counting, respectively. The weights 𝑤M  [1/V], 𝑤s  [-], and 
𝑤�[-] are user-defined parameters here equal to one. 

Starting from the fresh cell, the set of parameters to be 
identified is determined from the correlation analysis 
proposed in [17]. The values for the unidentified parameters 
are retrieved from [13] and [18] and are maintained unvaried 
moving from the fresh to the aged condition. The vector ΘM 
contains  the following parameters: the electrode area (𝐴W-FF), 
the lumped contact resistance (𝑅F), the volume fraction at the 
negative electrode (𝜈?), the solid particle radius at the positive 
and negative electrode (𝑅\ and 𝑅?), the reference diffusion 
coefficients at the positive and negative electrode (𝐷$,\

G-/ and 
𝐷$,?
G-/ ), and the stoichiometry values at the positive and 

negative electrode (𝜃\,MDD% and 𝜃?,MDD%). Under this scenario, 
the SEI growth and lithium plating side reaction paths are 
inactive (no aging is happening on a fresh cell) and the 
identification is performed minimizing the objective function 
(3), with lower and upper bounds of the parameters defined in 
Table IV. The bounds are computed as ±50% of the initial 
guesses, with some exceptions: for the diffusion coefficients 
a larger range is analyzed, for 𝜈?  ±20% is employed (values 
for the solid phase volume fraction lie around 0.5). Initial 
guesses for the identified parameters are obtained from [17] 
and [18]. For the aged cell, the parameter vector Θs is defined 
as the array of the following quantities: the ratio between the 
SEI thickness and ion conductivity (𝐿STU/𝜅STU ), and the 
stoichiometry values 𝜃\,D% ,𝜃?,MDD% . 𝐿STU/𝜅STU  is identified 
under the assumption of constant SEI layer during the 
discharge experiment, which is reasonable since 𝐿STU  is a 
slow varying variable. Generally speaking, open circuit 
potentials at the anode and cathode are a function of the 
normalized lithium concentration 𝜃& , defined in Equations 
T.10.  As SEI layer and lithium plating start growing, lithium 
ions participating in these side reactions are lost, leading to a 
reduction of the cyclable lithium and, consequently, to a 
modification of the solid phase normalized concentrations. 

Table  III. Additional equations for the ESPM model.  The abbreviations 
avg, eff, ref, and surf stand for average, effective, reference, and surface. 
Diffusion and conduction coefficients (T.1) 
𝐷-//,&(𝑐, 𝑇) = 𝐷&(𝑐, 𝑇) · 𝜀&�G���;		𝜅-//,&(𝑐, 𝑇) = 𝜅(𝑐,𝑇) · 𝜀&�G���; 			𝑖 = 𝑝, 𝑠, 𝑛 

𝐷$,&(𝑇) = 𝐷$,&
G-/ exp �−

𝐸:,ij
&

𝑅
�
1
𝑇
+

1
𝑇G-/

�� ; 			𝑖 = 𝑝, 𝑛 

Active area (T.2) 
𝑎& = 3/𝑅&; 				𝑖 = 𝑝, 𝑛 
Porosity (T.3) 
𝜀&,D = 1 − 𝜈& − 𝑣&,/&FF-G ; 				𝑖 = 𝑝, 𝑛 

𝜀\ = 𝜀\,D +
𝑎\,&?: − 𝑎\,/

3
𝑅\;				𝜀? = 𝜀?,D +

𝑎?,&?: − 𝑎?,/
3

𝑅? − 𝜈?
3𝐿/&FQ
𝑅?

 

Cell voltage (T.4) 
𝑉W-FF = 𝑈\	(𝜃\) − 𝑈?(𝜃?) + 𝜂\ − 𝜂? + ∆Ф- − 𝐼(𝑅𝑙 + 𝑅𝑒𝑙 + 𝑅𝑓𝑖𝑙𝑚) 

𝑅-F =
1

2𝐴W-FF
�

𝐿?
𝜅-//,?(𝑐, 𝑇)

+
2𝐿$

𝜅-//,$(𝑐, 𝑇)
+

𝐿\
𝜅-//,\(𝑐, 𝑇)

� 

Φ$,? = 𝑈?(𝜃?) + 𝜂? + 𝑅/&FQ𝐼 
Electrochemical overpotential (T.5) 

𝜂& =
𝑅𝑇
0.5𝐹

𝑠𝑖𝑛ℎ�M �
𝐼

2𝐴W-FF𝑎&,6𝐿&𝑖D,&
� ;		 𝑖D,& = 𝑘&(𝑇)𝐹 𝑐:¡�𝑐$,&

$�G/y𝑐$,&Q:� − 𝑐$,&
$�G/z 

𝑖 = 𝑝, 𝑛 
Total mole flux (T.6) 
𝐼

𝐴W-FF𝐿?
= 𝑗&?6 + 𝑗STU + 𝑗F\F  

Lithium plating and SEI layer growth (T.7) 

𝑗F\F = −2𝑎?,6𝑖D,F\F𝑒𝑥𝑝 �−
𝛼𝐹
𝑅𝑇

yФ$,? − Ф-,? − 𝑅𝑓𝑖𝑙𝑚𝐼z� ;			 

𝑗STU = −𝐹𝑎?,6𝑘/y𝑐$,?, 𝑇z𝑐$£F¡
$�G/𝑒𝑥𝑝	 �−

𝛼𝐹
𝑅𝑇

yФ$,? − Ф-,? − 𝑅/&FQ𝐼z�	 
𝑑𝑐STU
𝑑𝑡

= −1
𝑗STU
2𝐹

+
𝑗F\F
2𝐹

𝛽5 ;			
𝑑𝑐R&
𝑑𝑡

= −
𝑗F\F
2𝐹

(1 − 𝛽) 

𝑑𝐿/&FQ
𝑑𝑡

=
1
𝑎?,6

1
𝑑𝑐STU
𝑑𝑡

𝑀STU
𝜌STU

+
𝑑𝑐R&
𝑑𝑡

𝑀R&

𝜌R&
5 = 𝐿STU +	𝐿R&; 		𝑅/&FQ =

𝐿STU
𝑎?,6𝐴W-FF𝐿?𝜅STU

 

Loss of active material (T.8) 
𝑑𝑎&,&?:
𝑑𝑡

= 𝛽&9(𝑎& + 𝑎&,/ − 𝑎&,&?:); 					𝑖 = 𝑝, 𝑛 

Total active area (T.9) 
𝑎&,6	 = 𝑎& + 𝑎&,/ − 𝑎&,&?:; 			𝑎&,/ = 𝑎&𝑘&9𝑡; 				𝑖 = 𝑝, 𝑛 
State of charge (T.10) 

𝑆𝑂𝐶? =
𝜃? − 𝜃?,D%

𝜃?,MDD% − 𝜃?,D%
; 	𝑆𝑂𝐶\ =

𝜃\,D% − 𝜃\
𝜃\,D% − 𝜃\,MDD%

;	𝜃& = 𝑐$,&
$�G//𝑐$,&Q:�; 𝑖 = 𝑝,𝑛	 

Notes 
The variables 𝑇  and ΔΦ-	 are modeled as in [5]. The parameters 𝐷&(𝑐, 𝑇),
𝜅(𝑐, 𝑇),	and 𝑘&(𝑇) are computed according to [17]. Eventually, a comprehensive 
description of 𝑘/y𝑐$,?, 𝑇z	and 𝑐$£F¡

$�G/ is provided in [18]. 

(3) 
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Therefore, as the battery cycles, the stoichiometry values 
𝜃&,D%  and 	𝜃&,MDD%  are expected to change. Among the four 
stoichiometry values, 𝜃\,D% and 𝜃?,MDD% are expected to vary 
more because of the SEI layer growth and lithium plating. In 
fact, if cyclable lithium is lost, during the discharge of the cell 
the anode open circuit potential increases more rapidly (with 
respect to the fresh condition) and 𝜃?,D% is reached quickly, 
limiting the intercalation in the cathode. This leads to a 
reduction of the cathode solid phase lithium concentration 
(with respect to the fresh condition) or, equivalently, to a 
decreased 𝜃\,D% . Conversely, while charging, the cathode 
open circuit potential increases more rapidly (with respect to 
the fresh condition) and 𝜃\,MDD% is quickly reached, limiting 
the intercalation in the anode. This leads to a decrease of the 
anode solid phase lithium concentration (with respect to the 
fresh condition) or, equivalently, to a decreased 𝜃?,MDD% . 
Therefore, 𝜃\,D% and 𝜃?,MDD% are the chosen parameters to be 
identified. Further details regarding this choice can be found 
in [15]. 

From experimental data at the 1000th cycle, the vector Θs is 
identified minimizing the cost function in Equation (3), with 
suitable upper and lower bounds for the parameters (Table V) 
and assuming the lithium plating side reaction to be inactive. 
A meaningful initial guess for 𝐿STU/𝜅STU  is obtained from 
[18]. Moreover, except for 𝜃?,MDD% , parameters in Table IV 
are not identified again. The outcome of the identification is 
summarized in the first column of Table V.  

 
Table V. 𝚯𝟐 identified over a cell aged for 1000 cycles. 

Parameter Lower 
bound 

Upper 
bound 

Initial 
guess 

Identified 
value Unit 

𝐿STU/𝜅STU 0.0015 0.15 0.076 0.085 Ωms 

𝜃\,D% 0.7 1 0.85 0.92 - 

𝜃?,MDD% 0.7 1 0.85 0.88 - 

Cost function value:  𝑱(𝚯𝟐) = 𝟎. 𝟎𝟑 

 
Table VI. 𝚯𝟐 identified over a cell aged for 3300 cycles. 

Parameter Lower 
bound 

Upper 
bound 

Initial 
guess 

Identified 
value Unit 

𝐿STU/𝜅STU 0.003 0.3 2 0.25 Ωms 

𝜃\,D% 0.6 1 0.8 0.79 - 

𝜃?,MDD% 0.6 1 0.8 0.72 - 

Cost function value:  𝑱(𝚯𝟐) = 𝟎. 𝟎𝟒 

To reflect the increase in battery aging, 𝐿STU/𝜅STU, 𝜃\,D%, and 
𝜃?,MDD% must be updated with battery cycles. Therefore, the 
parameter vector Θs  is identified again relying on 
experimental data at the 3300th cycle. At this stage of the life, 
the lithium plating reaction path is active, with the parameter 
𝑖D,F\F  retrieved from [13]. The identified parameters for the 
experimental data at the 3300th cycle are shown Table VI. 
 

IV. RESULTS 

In Figure 2, simulated voltage and 𝑆𝑂𝐶  profiles are 
compared with experimental data at the 0th (fresh cell), 1000th, 
and 3300th cycle, respectively. Simulation results are obtained 
considering the corresponding identified parameters collected 
in Tables  IV, V, and VI. 

From Equation (2), the behavior of LAM is classified into 
three cases. Case (i): 𝑘&9  and 𝛽&9  are greater than zero and 
comparable in magnitude, i.e., (1 − 𝑘&9/𝛽&9)	is close to zero. 
Case (ii): 𝑘&9 dominates over the inactive area evolution, i.e., 
(1 − 𝑘&9/𝛽&9) 	≪ 0 . Case (iii): the inactive area evolution 
coefficient 𝛽&9 dominates and 0 < (1 − 𝑘&9/𝛽&9) 	< 1. Starting 
from values proposed in [16] and summarized in Table VII 
one can deduce that the cathode is mostly experiencing 
mechanical fractures, which increase the surface area 
available for intercalation/deintercalation reactions. Instead, 
the anode is experiencing LAM, which reduces the area 
available for both intercalation/deintercalation phenomena 
and side reactions. 

Assuming the cathode active surface area to remain 
constant over time, i.e., neglecting the mechanical fractures, 
the impact of LAM dynamics on the cell behavior is analyzed. 
Thus, for each combination of parameters 𝑘?9  and 𝛽?9  in Table 
VII, the model is simulated and results are compared to 
experimental data in Figure 3(a). 
 

 

 
Figure 2. Comparison between experimental voltage (top) and 

𝑆𝑂𝐶 profiles (bottom) with ESPM predicted voltage and 𝑆𝑂𝐶. 

Table IV. ΘM identified over a fresh cell. 

Parameter Lower 
bound 

Upper 
bound 

Initial 
guess 

Identified 
value 

Unit 

𝐴W-FF 0.28 0.83 0.55 0.57 ms 
𝑅F  0.02 0.07 0.045 0.04 Ω 
𝜈? 0.45 0.65 0.5 0.54 - 
𝑅\  0.6×10-6 1.9×10-6 1.25×10-6 10-6 m 
𝑅? 5×10-6 15×10-6 10×10-6 5.16×10-6 m 
𝐷$,\
G-/ 10-14 3.4×10-13 2.25×10-13 2×10-13 ms/s 

𝐷$,?
G-/  10-14 3.4×10-13 2.25×10-13 10-13 ms/s 

𝜃\,MDD%  0.14 0.41 0.28 0.30 - 
𝜃?,MDD% 0.43 1 0.85 0.99 -  

Cost function value:  𝑱(𝚯𝟏) = 𝟎. 𝟎𝟑 
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Table VII. Fracture and inactive area evolution coefficients. Minimum and 
maximum values are retrieved from [16] and remapped from cycle to time 
domain relying on the following expressions: 𝛽&9 = 𝛽&

W±WF-/𝑇W±WF-, 	𝑘&9 =
𝑘&
W±WF-/𝑇W±WF-, with 𝑇W±WF- the time to perform a charge/discharge cycle. 
Cathode 𝑘\

W±WF- 	𝑘\9  𝛽\
W±WF- 𝛽\9  

 1.65e-7 3.06e-11 1.07e-8 0.198e-11 
 5e-7 9.26e-11 1e-7 1.85e-11 

Anode 𝑘?
W±WF- 	𝑘?9  𝛽?

W±WF- 𝛽?9  
 7.57e-7 1.40e-10 4e-6 0.741e-9 
 3.40e-6 6.30e-10 5.18e-5 9.59e-9 

The reduction of the active area, related to an increment of the 
parameter 𝛽?9 , leads to a reduced discharged capacity. This 
phenomenon is mainly caused by the increment in the film 
resistance (Equations T.7 and Figure 3(b)), caused by the 
reduced total active surface 𝑎?,6, and by the modification of 
the solid phase porosity (Equations T.3). Ultimately, the 
decreased discharged capacity is a symptom of the reduced 
capability of the anode of accepting lithium ions during the 
intercalation process. Thus, the negative electrode limits the 
charging capability of the cell, reducing the available capacity 
during the discharge process. 

 
(a) 

 
(b) 

Figure 3. (a) Comparison of experimental voltage profile (yellow 
dots) with ESPM predicted voltages (grey shaded area) at the 3300th 
cycle as 𝛽?9  varies within the limits reported in Table VII.  (b) The 
film resistance for different combinations of the parameters  𝑘?9  and 
𝛽?9  at the 3300th cycle. 

V. CONCLUSION  
In this paper, the ESPM was formulated to include SEI 

growth, lithium plating, and LAM dynamics. LAM dynamics 
accounts for mechanical fractures, which lead to an increment 

of the active surface, and isolation, which brings to a 
decrement of the active surface. Coupling LAM dynamics 
with lithium plating can help to accurately predict the 
electrochemical state of retired EV batteries. Model 
identification results show the predictability of the proposed 
modeling strategy for 1) fresh cell scenario, aged conditions 
at 2) 1000th and 3) 3300th cycle).  This model, a first to the 
authors’ knowledge, will offer the opportunity to tackle the 
SOH evaluation and monitoring in retired batteries. 
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