Version: April 2, 2021

Errata Corrige – A Novel Lithium-ion Battery Pack Modeling Framework - Series-Connected Case Study

Trey Weaver¹, Anirudh Allam², and Simona Onori^{2,*} IEEE Senior Member

This document provides some updates of the governing equations and nomenclature presented in "A Novel Lithium-ion Battery Pack Modeling Framework - Series-Connected Case Study", published in the proceedings of the 2020 American Control Conference (ACC), *IEEE*.

The following color code is used:

- blue: corrections;
- red: to be removed.

I. GOVERNING EQUATIONS - TABLE I

Electrochemical dynamics [1]		
Mass conservation in solid phase	$ \begin{aligned} \frac{\partial c_{s,j}}{\partial t} &= \frac{D_{s,j}(T)}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial c_{s,j}}{\partial r} \right], \qquad j \in [n,p] \\ \frac{\partial c_{s,j}}{\partial r} \Big _{r=0} &= 0 \frac{\partial c_{s,j}}{\partial r} \Big _{r=R_{s,j}} = \frac{\pm I_{app}}{D_{s,j}(T)a_{s,j}AL_jF} + g_{s,j}(c_{s,j}^{surf}, c_{solv}^{surf}, T_c, I_{app}, L_{sei}) \end{aligned} $	(1)
Mass conservation in electrolyte phase	$\begin{split} \epsilon_{e,j} \frac{\partial c_e}{\partial t} &= \frac{\partial}{\partial x} \left(D_{e,j}^{eff}(c_e,T) \frac{\partial c_e}{\partial x} \right) + \left(1 - t_0^+ \right) \frac{g_{e,j} I_{app}}{AL_j F}, \qquad j \in [n,s,p] \\ & \frac{\partial c_e}{\partial x} \Big _{x=0} = \frac{\partial c_e}{\partial x} \Big _{x=L_n+L_s+L_p} = 0 \\ D_{e,n}^{eff}(c_{e,n},T) \left(\frac{\partial c_{e,n}}{\partial x}(x,t) \right) \Big _{x=L_n} &= D_{e,s}^{eff}(c_{e,s},T) \left(\frac{\partial c_{e,s}}{\partial x}(x,t) \right) \Big _{x=L_n} \\ D_{e,s}^{eff}(c_{e,s},T) \left(\frac{\partial c_{e,s}}{\partial x}(x,t) \right) \Big _{x=L_n+L_s} &= D_{e,p}^{eff}(c_{e,p},T) \left(\frac{\partial c_{e,p}}{\partial x}(x,t) \right) \Big _{x=L_n+L_s} \end{split}$	(2)
Charge conservation in electrolyte phase	$\begin{split} \kappa_{e,j}^{eff}(c_e,T) \frac{\partial^2 \Phi_e}{\partial x^2} &- \kappa_D^{eff}(c_e,T) \frac{\partial^2 \ln c_e}{\partial x^2} + \frac{I_{app}}{a_{s,j}AL_j} = 0, \qquad j \in [n,s,p] \\ \frac{\partial \Phi_e}{\partial x}\Big _{x=0} &= \frac{\partial \Phi_e}{\partial x}\Big _{x=L_n+L_s+L_p} = 0 \end{split}$	(3)
Electrode Overpotential	$\eta_j = \frac{R_g T_c}{0.5F} \sinh^{-1} \left(\frac{I_{app}}{2Aa_{s,j}L_j i_{0,j}} \right), \qquad j \in [n,p]$	(4)
Exchange Current Density	$i_{0,j} = k_j F \sqrt{c_{e,j}^{avg} c_{s,j}^{surf} \left(c_{s,j}^{max} - c_{s,j}^{surf} \right)}, \qquad j \in [n,p]$	(5)
Cell voltage	$V_{cell} = U_p + \eta_p - U_n - \eta_n + \Delta \Phi_e - I_{app} \left(R_l + R_{el} + R_{sei} \right)$	(6)
Thermal dynamics [2]		
Cell Core Heat Balance	$C_c \frac{dT_c}{dt} = I_{app}(V_{oc} - V_{cell}) + \frac{T_s - T_c}{R_c}$	(7)
Cell Surface Heat Balance	$C_s \frac{dI_s}{dt} = \frac{I_{amb} - I_s}{R_u} - \frac{I_s - I_c}{R_c}$	(8)
Aging dynamics [3], [4]		
Mass conservation in SEI	$\begin{split} \frac{\partial c_{solv}}{\partial t} &= D_{solv}(T) \frac{\partial^2 c_{solv}}{\partial r^2} - \frac{dL_{sei}}{dt} \frac{\partial c_{solv}}{\partial r}, \\ -D_{solv}(T) \frac{\partial c_{solv}}{\partial r} \Big _{r=R_{s,n}} + \frac{dL_{sei}}{dt} c_{solv}^{surf} = \frac{i_s}{F} \end{split}$	(9)
	$c_{solv}\Big _{r=R_n+L_{sol}} = \epsilon_{sol}c_{solv}^{bulk}$	
SEI layer growth	$\frac{dS_{set}}{dt} = -\frac{e_{satset}}{2F\rho_{sei}},$	(10)
Side reaction current density	$i_s = -2Fk_f (c_{s,n}^{surf})^2 c_{solv}^{surf} \exp\left[\frac{-\beta F}{R_g T_c} \left(\Phi_{s,n} - R_{sei}I_{app} - U_s\right)\right] dO$	(11)
Cell capacity loss	$\frac{a\omega}{dt} = i_s A L_n a_{s,n}$	(12)

¹T. Weaver is with the Chemical Engineering Department, ²A. Allam and S. Onori are with the Energy Resources Engineering Department, Stanford University, Stanford, CA 94305, USA (email: (weaverwe, aallam, sonori)@stanford.edu)*S. Onori is the corresponding author.

II. OTHER EQUATIONS

• Equation (16):

$$\frac{\partial c_{s,j,i}}{\partial t} = \frac{D_{s,j}}{\Delta r_j^2} \cdot \left[\left(1 + \frac{1}{i} \right) c_{s,j,i+1} - 2c_{s,j,i} + \left(1 - \frac{1}{i} \right) c_{s,j,i-1} \right]$$

• Equation (22):

$$\alpha_{s,j} = \frac{D_{s,j}}{\Delta r_j^2}, \ \beta_{s,j} = \begin{cases} \frac{-1}{AL_j F a_{s,j} \Delta r_j} & \text{if } j = n \\ \frac{1}{AL_j F a_{s,j} \Delta r_j} & \text{if } j = p \end{cases},$$

• Equation (25):

$$\begin{split} \dot{\boldsymbol{c}}_{e} &= \alpha_{e} A_{e} \boldsymbol{c}_{e} + \beta_{e} B_{e} \boldsymbol{u}, \text{ where } \beta_{e} = \frac{\left(1 - t_{0}^{+}\right)}{A L_{j} F \boldsymbol{\epsilon}_{e,j}}, \\ \boldsymbol{c}_{e} &= \begin{bmatrix} \boldsymbol{c}_{e,n} \\ \boldsymbol{c}_{e,s} \\ \boldsymbol{c}_{e,p} \end{bmatrix}_{N_{el} \times 1} \alpha_{e} = \frac{1}{\Delta_{x}^{2} \boldsymbol{\epsilon}_{e,j}} \text{ and } N_{el} = \sum_{j} N_{x,j} \end{split}$$

III. NOMENCLATURE

$c_{s,j}$	Concentration in solid phase [mol/m ³]	c_e	Concentration in electrolyte phase [mol/m ³]	c_{solv}	Solvent concentration [mol/m ³]
Q	Cell Capacity [Ah]	I_{batt}	Applied current [A]	Φ_e	Electrolyte Potential [V]
$\Phi_{s,n}$	Anode Surface Potential [V]	η_j	Overpotential [V]	$i_{0,j}$	Exchange Current Density [A/m ²]
U_j	Open circuit potential (electrode) [V]	V_{oc}	Open circuit potential (cell) [V]	i_s	Side reaction current density [A/m ²]
$D_{s,j}$	Solid phase diffusion [m ² /s]	$R_{s,j}$	Particle radius [m]	$a_{s,j}$	Specific interfacial surface area [m ⁻¹]
A	Cell cross sectional area [m ²]	L_j	Domain thickness [m]	F	Faraday's constant [C/mol]
$\epsilon_{e,j}$	Electrolyte Porosity	$D_{e,j}$	Electrolyte phase diffusion [m ² /s]	t_0^+	Transference number
$c_{s,j}^{max} \\$	Maximum electrode concentration [mol/m ³]	$\kappa_{e,j}$	Electrolyte conductivity [S/m]	κ_D	Diffusional conductivity [S/m]
k_{j}	Intercalation rate constant [m ^{2.5} /s-mol ^{0.5}]	R_l	Lumped contact resistance $[\Omega]$	R_g	Universal gas constant [J/mol-K]
$\epsilon_{s,j}$	Active volume fraction of solid phase	$\epsilon_{f,j}$	Active volume fraction of filler/binder	D_{solv}	Solvent diffusion coefficient in SEI layer [m ² /s]
ϵ_{sei}	SEI Layer porosity	ρ_{sei}	SEI layer density [kg/m ³]	κ_{sei}	SEI layer ionic conductivity [S/m]
c_{solv}	Solvent concentration [mol/m ³]	M_{sei}	Molar mass of SEI layer [kg/mol]	U_s	Solvent reduction potential [V]
k_f	Solvent Reduction rate constant [mol ⁻ 2s ⁻ 1]	β	Side Reaction charge transfer coefficient	C_s	Heat Capacity of cell surface [J/K]
C_c	Heat Capacity of cell core [J/K]	R_c	Conductive resistance - core/surface [K/W]	R_u	Convective resistance - surface/surroundings [K/W]
R_m	Cell-to-cell heat transfer resistance [K/W]	T_{amb}	Ambient temperature [K]	$N_{r,j}$	Number of radial discretization points
$N_{x,j}$	Number of cartesian discretization points	N_{el}	Total number of electrolyte discretization points	N_{sei}	Number of SEI layer discretization points

References

[1] C. D. Rahn and C.-Y. Wang, Battery systems engineering. John Wiley & Sons, 2013.

- [2] X. Lin, H. E. Perez, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, Y. Ding, and M. P. Castanier, "A lumped-parameter electro-thermal model for cylindrical batteries," *Journal of Power Sources*, vol. 257, pp. 1–11, 2014.
- [3] M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, "Multimodal physics-based aging model for life prediction of li-ion batteries," Journal of The Electrochemical Society, vol. 156, no. 3, p. A145, 2008.
- [4] E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, and F. Huet, "A simplified electrochemical and thermal aging model of lifepo4-graphite li-ion batteries: power and capacity fade simulations," Journal of The Electrochemical Society, vol. 160, no. 4, p. A616, 2013.