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Abstract— In this paper, a novel physics-based modeling
framework is developed for lithium ion battery packs. To
address a gap in the literature for pack-level simulation, we
establish a high fidelity physics-based model that incorporates
electrochemical-thermal-aging behavior for each cell and which
is then upscaled at the pack level by incorporating electrical
and thermal interaction terms. Such a construct is suitable
both for performance analysis upon cell heterogeneity as well
as control and optimization for on-board operation. Governing
equations in the form of Partial Differential Equations (PDEs)
are discretized into a system of Ordinary Differential Equations
(ODEs) using Finite Difference and Finite Volume methods
and reformulated into state-space models for both cell and
pack dynamics. Computational time studies are conducted to
demonstrate the effects of spatial discretization fidelity and
pack size on simulation time. Pack model predictive capabilities
are exercised by inducing hetereogeinity in the cell design
parameters and effects of parameter perturbation are shown
for pack voltage and energy responses. The goal for this
modeling framework is to provide a computationally-feasible
and easily scalable platform for high-fidelity offline simulation
and optimization without compromising the integrity of cell
dynamics across multiple time scales.

I. INTRODUCTION

Despite the broad literature covering physics-based ap-
proaches for lithium-ion battery (LIB) modeling applications,
there is a current gap addressing battery pack-level applica-
tions. To date, there has been limited use of computationally-
tractable models for pack-level control and optimization pur-
poses that simultaneously consider electrochemical, thermal
and aging cell dynamics, as well as cell-to-cell thermal
interactions, from physics-based perspectives. A fundamental
challenge of battery pack modeling is that pack-level per-
formance cannot be accurately extrapolated from single-cell
models. This is due not only to manufacturing variations
between cells and non-uniform degradation rates, but to the
very fact of the cells being connected in series or parallel
within the pack. As shown in [1], battery pack aging dy-
namics can be understood through the phenomena of thermal
retroactivity, whereby the state-of-health of an individual cell
is affected by the aging state of upstream and downstream
cells through their interconnected thermal behaviors. This
divergence between cell and pack aging behavior has been
demonstrated in experimental studies, with particular focus
given to elevated and non-uniform temperatures accelerating
pack degradation [2] and manufacturing variances between
cells limiting pack capacity [3]. Given this complex interplay,
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we believe that detailed consideration of aging, cell-to-
cell interactions and cell heterogeneity is an important step
in the development of robust battery management system
(BMS) design. For single-cell control and optimization,
aging-conscious modeling frameworks have been explored
in the literature across a broad span of complexities, ranging
from Equivalent Circuit Model (ECM) with semi-empirical
capacity fade relationship [4] to pseudo two-dimensional
(P2D) electrochemical-thermal models with simplified Solid
Electrolyte Interphase (SEI) growth [5]. For pack-level con-
trol and optimization, the majority of studies have tended
towards simplified or reduced-order modeling approaches.
The most common approach is to integrate series-or parallel-
connected ECMs with simple thermal models (e.g. lumped
capacitance) and semi-empirical aging relationships [6], [7].
Others implement physics-based models for a subset of cell
dynamics, but simplify or neglect important contributions
such as aging, thermal interconnections or cell heterogene-
ity [8],[9]. Some approaches have included physics-based
electrochemical-thermal-aging models but scaled up the pack
response from a reference cell using a Taylor approximation
sensitivity equation and left out thermal interactions between
cells [10]. From the literature review, it follows that a
comprehensive model that can closely predict the electro-
chemical, thermal, and aging behavior at the pack-level
by accounting for thermal interactions in between cells is
lacking. To that end, the primary objective of this paper is to
propose a state-space modeling framework for a battery pack
that gives detailed consideration of relevant dynamics while
remaining computationally-feasible and easily scalable, with
the ultimate goal of implementation in high-fidelity offline
simulation and optimization applications. The novel contri-
butions of this paper are: 1a) the state-space formulation
of cell level electrochemical, thermal and aging dynamics,
and 1b) their use in the pack level dynamics modeling after
being augmented with cell-to-cell interconnection relations,
2) computational time assessment and cell-level hetereogeity
study for pack level performance in terms of voltage and
energy of a series-connected module.

II. CELL GOVERNING EQUATIONS

For this work, each Li-ion cell is modeled with coupled
nonlinear PDEs, ODEs and differential algebraic equations
(DAEs) describing the electrochemical, thermal and ag-
ing dynamics. Electroltye enhanced single particle model
(ESPM) framework is applied to simplify the first-principles
approach adopted in the P2D model [15]. We restrict our
discussion to 1-dimensional battery packs of Ncells cells



TABLE I: Electrochemical-thermal-aging dynamics of a LIB cell

Electrochemical dynamics [11]
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Charge conservation
in electrolyte phase
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sinh−1
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(
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)
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Cell voltage Vcell = Up + ηp − Un − ηn + ∆Φe − Iapp (Rl +Rel +Rsei) (6)

Thermal dynamics [12]

Cell Core Heat Balance Cc
dTc

dt
= Iapp(Voc − Vcell) +

Ts − Tc
Rc

(7)

Cell Surface Heat Balance Cs
dTs

dt
=
Tamb − Ts

Ru
−
Ts − Tc
Rc

(8)

Aging dynamics [13], [14]

Mass conservation
in SEI
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∂t
= Dsolv
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∂r2
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Side reaction
current density
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[
−βF
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Cell capacity loss
dQ

dt
= isALnas,n (12)

connected in series. Throughout, the subscript i refers to the
discretization grid position when converting from PDEs to
ODEs in solid electrode, electrolyte and SEI layer spatial
dimensions; the subscript j, where j ∈ [n, s, p], refers to the
cell domain (e.g. n = anode, s = separator, p = cathode); and
superscript k refers to the cell position within the pack.

A. Electrochemical Governing and Response Equations

ESPM approximates the electrode active material as single
spherical particles with uniform current density. The model is
described by three governing PDEs for electrochemical dy-
namics given by (1), (2), and (3) in Table I, respectively. Fur-
ther, surface overpotentials, ηj , given in (4), are calculated
assuming Butler-Volmer kinetics for the electrode intercala-
tion reaction using electrode surface and averaged electrolyte
concentration for each domain, whereas the exchange current
density, for each electrode, i0,j , is described by (5). Given
the concentration and potential distribution in the electrodes
and electrolyte, cell voltage can be calculated by (6). Open-

circuit potentials of electrodes, Uj , are calculated from em-
pirical relationships based on electrode surface concentration
stoichiometry [16]. Cell ohmic resistance is separated into
three terms, Rl, Rel, Rsei, representing lumped contact,
electrolyte, and SEI layer resistances. Electrolyte and SEI
resistances are given by [14]

Rel =
1

2A

[
Ln

κeffe,n

+
2Ls

κeffe,s

+
Lp

κeffe,p

]
, (13)

Rsei =
Lsei

as,nALnκsei
, (14)

where κeffe,j = f
(
cavge,j , εe,j

)
.

B. Two-State Thermal Model
Thermal dynamics are modeled using a lumped parameter

two-state thermal model that considers core, Tc, and surface,
Ts, temperatures of each cell [12], as expressed in (7) and (8).
Heat generation in the battery cells is attributed to electrode
overpotential and Joule heating; entropic contributions are



assumed to be negligible. To account for cell-to-cell heat
transfer at the pack-level, (8) is modified as follows:

Cs
dTCell k

s

dt
=

Tamb − TCell k
s

Ru
− TCell k

s − TCell k
c

Rc
+

TCell k
s − TCell k+1

s

Rm
+

TCell k
s − TCell k−1

s

Rm
. (15)

Cell-to-cell heat transfer is a primary interconnection that
differentiates battery pack-level aging dynamics from cell-
level and is therefore a critical consideration for pack-level
modeling frameworks1.

C. Aging Dynamics - Solvent Diffusion and Side-Reaction

We adopt a physics-based approach for battery aging that
considers anode SEI layer growth as a function of both
solvent reduction kinetics and diffusion dynamics across the
growing SEI layer in order to predict cell capacity loss and
power fade [13], [14]. The solvent concentration available
for reduction reaction at the anode surface is modeled by (9).
The SEI layer growth can be modeled as linearly related to
side-reaction current by (10), where the side reaction current
is given by (11). Capacity loss is attributed to lithium content
consumed by solvent reduction, estimated by integrating side
reaction current across the anode active surface area (12).
Anode porosity, εe,n, is updated based on the growing SEI
layer thickness using a volume balance approach [14] given

by εe,n = 1− εs,n
(

1 +
3Lsei
Rs,n

)
− εf,n.

D. State-dependent Parameters

To ensure the most robust model performance,
concentration- and temperature-dependent transport and
kinetic parameters are updated based on the relevant state
variables at each time-point. Solid electrode parameters,
such as Ds,j and kj , follow an Arrhenius relationship with
temperature as given in [15]. Empirical relationships for
concentration and temperature dependencies of electrolyte
parameters De,j and κe,j are taken from [17].

III. DISCRETIZATION METHODS

To solve the system of coupled electrochemical and ag-
ing dynamics, PDEs with spatial dependence (e.g. Solid,
Electrolyte and SEI Layer Solvent Diffusion) are discretized
using Finite Difference Method (FDM) and Finite Volume
Method (FVM), as described below.

A. Finite Difference Method - Solid Phase
Solid electrode diffusion PDEs are discretized using FDM,

with Central Difference schemes being applied for both 1st

and 2nd spatial derivatives. Using this discretization scheme,
(1) is simplified to the following algorithm for each grid-
point i ∈ [1, Nr,j ] as

∂cs,j,i

∂t
=
Ds,j

∆r2j
·
[(

1 +
1

i

)
cs,j,i+1 − 2cs,j,i

(
1 −

1

i

)
cs,j,i−1

]
(16)

1We assume here that the battery pack has no thermal management system
and therefore can only expel heat to the ambient surroundings. This is a
useful simplification in that it gives the worst case scenario for pack aging
performance and can therefore be used as a baseline for evaluating thermal
management strategies.

where ∆rj =
Rs,j

Nr,j − 1
. The algorithm is modified for

concentration states at the sphere center and surface using
the relevant boundary conditions. FDM is well-suited for this
implementation of the Solid Diffusion equation because the
empirical relationship for the diffusion coefficient does not
depend on concentration and therefore does not vary between
electrode grid points (see discussion in following section).

B. Finite Volume Method - Electrolyte Phase

Electrolyte diffusion dynamics is discretized with FVM
rather than FDM. The empirical relationship used for elec-
trolyte diffusivity is dependent on both concentration and
temperature, such that the coefficient varies throughout the
region [17]. FVM has been found to be particularly robust
to variable coefficients due to its mass-conserving proper-
ties [18] and is therefore a more appropriate discretization
scheme. In FVM, the state of each discretized cell is treated
as a volume-average. Fluxes into and out of a given cell are
equal to the respective fluxes of adjacent cells, thus main-
taining conservation of mass. The following ODE is obtained
by integrating (2) across a discretized cell centered at xi to
find volume average and discretizing spatial derivative using

a Central Difference scheme, where ∆xj =
Lj
Nx,j

:

εe,j
∂ce,i
∂t

=
1

∆x2
j

[
Deff
e,i+1/2 (ce,i+1 − ce,i) + (17)

Deff
e,i−1/2 (ce,i − ce,i−1)

]
+
(
1− t+0

) ge,jIapp
ALjF

,

where ge,j =


1 if j = n

0 if j = s

−1 if j = p

.

This formula can be applied across the entire electrolyte
region due to its explicit consideration of discontinuities in
diffusivity and porosity at cell boundaries, such as those
that occur at the electrode/separator interfaces. Defining

Θ =
∆xj,i

∆xj,i−1 + ∆xj,i
, transport properties are calculated at

intermediate grid-points xi±1/2, using the harmonic mean:

Deff
e,i±1/2 =

Deff
e,i D

eff
e,i±1

ΘDeff
e,i + (1−Θ)Deff

e,i±1

. (18)

C. Non-dimensional FDM - Solvent Diffusion

When discretizing the solvent diffusion equation (9), it is
necessary to account for the changing SEI layer thickness,
which results in a time-varying grid size. The PDE is
spatially non-dimensionalized with the updated SEI layer
thickness at each time-point, and following the same steps
described in [19] gives the final expression as

dcsolv,i
dt

=
Dsolv

(Lsei∆ξ)
2 (csolv,i+1 − 2csolv,i + csolv,i−1)

+
ξ − 1

2Lsei∆ξ

dLsei
dt

(csolv,i+1 − csolv,i−1)

(19)



where ξ =
r −Rs,n
Lsei

and ∆ξ =
1

Nsei − 1
.

D. Approximation - Conservation of Charge

Rather than spatially discretizing and integrating the re-
sulting ODEs, the Conservation of Charge equation (3) is
analytically integrated and solved. This allows for the differ-
ence in electrostatic potential between current collectors to be
solved for based on the electrolyte concentration distribution
at each time point.

IV. CELL-LEVEL STATE-SPACE FORMULATION

Following discretization, the governing PDEs are reduced
to a system of ODEs in addition to algebraic expressions for
electrochemical model outputs. This system of equations is
reformulated into a cell-level state-space form. This approach
is highly modular and can be rapidly scaled-up or -down in
terms of both discretization fidelity and pack size. See Table
II for detailed definitions of coefficient matrices. Note that
coefficient matrices are not explicitly assembled for solvent
diffusion dynamics due to the complexities introduced by
non-dimensionalization. Instead, solvent diffusion dynamics
are calculated algorithmically for each state, as described in
(28), and solved in a coupled manner with all remaining
dynamics.

Solid Phase Diffusion - Given the vector of discretized
electrode states

cs,j =


cs,j,1
cs,j,2

...
cs,j,Nr,j


Nr,j x 1

cs,j ∈ RNr,j , cs,j,Nr,j = csurfs,j

(20)

then the electrodes’ state-space system is given by

ċs,j = αs,jAs,jcs,j + βs,jBs,j [u− gs,j ] , (21)

where u = Iapp,

αs,j =
Ds,j

∆r2
j

, βs,j =


1

ALjFas,j∆rj
if j = n

−1

ALjFas,j∆rj
if j = p

, (22)

and

gs,j(c
surf
s,j , csurfsolv , Tc,u, Lsei) =

{
as,nLnAis if j = n

0 if j = p
.

(23)

is an aging-related non-linear input term which depends on
multiple states across all dynamics of a given cell.

Electrolyte Diffusion - For each domain j, given the vector
of discretized electrolyte states

ce,j =


ce,j,1
ce,j,2

...
cs,j,Nx,j


Nx,j x 1

ce,j ∈ RNx,j (24)

then the state-space system for the electrolyte dynamics is
given by

ċe = Aece + βeBeu, where βe =

(
1− t+0

)
ALjF

, (25)

ce =

ce,nce,s
ce,p


Nel x 1

and Nel =
∑
j

Nx,j

SEI Layer Growth- The scalar Lsei aging state is given by

L̇sei = βseigs,n (26)

where βsei =
−Msei

2Fρseias,nLnA

and gs,n is given by (23).
Solvent Diffusion- Given the discretized solvent diffusion

state vector

csolv =


csolv,1
csolv,2

...
csolv,Nsei


Nsei x 1

csolv ∈ RNsei , csolv,1 = csurfsolv

(27)

then the solvent diffusion state-space system is written as

ċsolv = fsolv (csolv, Lsei, gs,n) such that (28)

ċsolv =



2αsolv(csolv,2 − csolv,1)+

βsolv

(
is
F
− dLsei

dt
csolv,1

)
if i = 1

αsolv (csolv,i+1 − 2csolv,i + csolv,i−1) +

γsolv (csolv,i+1 − csolv,i−1) if 1<i<Nsei
0 if i = Nsei

with αsolv =
Dsolv

(Lsei∆ξ)
2 , γsolv =

(
ξ − 1

2Lsei∆ξ

dLsei
dt

)
,

βsolv =

(
2

Lsei∆ξ
+

1

Dsolv

dLsei
dt

)
.

The output voltage equation is written as

Vcell =Up(c
surf
s,p ) + ηp(c

surf
s,p , cavge,p , Tc, u)− Un(csurfs,n )−

ηn(csurfs,n , cavge,n , Tc, u) + ∆Φe − u (Rl +Rel +Rsei) .
(29)

V. PACK-LEVEL STATE-SPACE FORMULATION

State-space matrices for each cell can be compiled into
block-diagonal matrices representing the solid and liquid
concentration states, as well as the aging (e.g., SEI) and
thermal dynamics of the battery pack, as seen in Table
III. Solvent diffusion dynamics at the pack level, on the
other hand, is expressed by the implicit nonlinear function
F packsolv . State vectors and input variables for each cell can
be similarly concatenated, allowing all states across the
module to be calculated en masse. The critical pack-level
feature is in the thermal dynamics, that introduce the direct
interconnection between adjacent cells in the battery pack.
As seen in Table III, Apacktherm relates surface temperature
states, Ts, for adjacent cells, thus representing cell-to-cell



TABLE II: State-Space Coefficient Matrices for Discretized Diffusion Governing Equations
Solid Electrode Diffusion Matrices

As,j =


−2 2 0 0 . . . 0 0
1/2 −2 3/2 0 . . . 0 0
0 2/3 −2 4/3 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . 2 −2


Nr,j x Nr,j

Bs,j =



0
0
0

...(
2 +

2

Nr − 1

)


Nr,j x 1

Electrolyte Diffusion Matrices

Ae =


−Deff

e,1/2
Deff
e,1/2

0 . . . 0 0

Deff
e,1/2

−
(
Deff
e,1/2

+Deff
e,3/2

)
Deff
e,3/2

. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Deff
e,Nel−3/2

−Deff
e,Nel−3/2


Nel x Nel

Be =

 (1)Nx,n x 1

(0)Nx,s x 1

(−1)Nx,p x 1



heat transfer. Pack-level dynamics for series-connected packs
can be summarized in compact form as

ċpacks,j = Apacks,j cpacks,j +Bpacks,j u−Gpacks,j

ċpacke = Apacke cpacke +Bpacke u

ċpacksolv = F packsolv

L̇
pack

sei = Gpacksei

Ṫ
pack

states = ApackthermT pack
states +Bpackthermu +GpackthermTamb

(30)

where

Gpacks,j = Gpacks,j

(
csurfs,j , csurfsolv , Tc,u, Lsei

)
,

F packsolv = F packsolv (csolv, Lsei, gs,n) ,

Gpacksei = Gpacksei

(
csurfs,j , csurfsolv , Tc,u, Lsei

)
.

Note that the solvent diffusion dynamic term F packsolv is a
nonlinear function of the states and input (through gs,n)
representing the algorithms described in (28) for each cell of
the pack. It is also worth noting that matrix prefactors such
as αs,j and βs,j vary between cells due to cell heterogeneity
of design parameters, as well as non-uniform aging and
temperature distribution, and are therefore not factored out
of the block diagonal matrices, as seen in Table III.

VI. SIMULATION RESULTS
Computational Time Study: In order to evaluate the com-

putational feasibility of this modeling framework, a series of
computational time studies were performed across a range
of discretization for a series-connected battery module of
variable sizes. Simulations were executed on an Intel i7-
6700 CPU with 4 processor cores @ 3.40 GHz and 8 GB
of RAM. Computational time was quantified using the built-
in MATLAB function ‘timeit.’ Two scenarios were tested:
discharge from SOC = 1 at constant 1C-rate for a fixed
nominal duration of 3600 seconds, as well as a dynamic
US06 Drive Cycle with a fixed duration of 2700 seconds. The
independent variables for each simulation condition were:
Ncells, Nr,n+Nr,p, and Nel + Nsei. The state-space system
was solved using built-in MATLAB solver ’ode15s’, which is
well-suited for stiff differential equations such as those con-
sidered here. The 1C discharge and US06 cycles for lowest

Fig. 1: Normalized computational time as a function of
electrode and electrolyte discretization for packs of varying
size

fidelity single cell took approximately 0.8 and 4.4 seconds,
respectively, with US06 requiring additional computational
time to meet ODE solver tolerances in response to the highly
variable input, Iapp. In Fig. 1, normalized computational time
tnormcomp is plotted, where tcomp at a given discretization and
pack size is scaled by the lowest-fidelity single cell run
time for 1C discharge scenario (obtained for Ncell = 1,
Nr,n = Nr,p = 5, Nel = 3 + 3 + 3, Nsei = 3) as seen
in the denominator of (31)

tnormcomp =
tcomp(Ncells, Nr,n +Nr,p, Nel +Nsei)

tcomp(1, 10, 12)
∣∣∣
Discharge

(31)

In terms of computational burden, changes in the number
of electrolyte states were found to have a greater impact
than equivalent magnitude changes in solid electrode states,
as seen in the significantly greater slope of tcompnorm against
Nel + Nsei than Nr,n + Nr,p in Fig. 1. This could have
important implications when optimizing discretization levels
to balance model accuracy with expediency. Overall, com-
putational time was found to increase at an exponential rate
with total number of states in battery pack.

Parameter Sensitivity Analysis: To exercise the model’s
predictive capabilities and explore the impact of cell het-
erogeneity, we conducted parameter sensitivity analyses on
pack-level performance for a 6-cell series-connected bat-
tery pack. In this study, battery design parameters related



TABLE III: Pack-level Block Diagonal Coefficient Matrices and Vectors
Solid Electrode Diffusion Matrices - Pack

Apacks,j =


(αs,jAs,j)

Cell 1

. . .
(αs,jAs,j)

Cell N


NcellsNr,j

x
NcellsNr,j

Bpacks,j =


(βs,jBs,j)

Cell 1

...
(βs,jBs,j)

Cell N
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Aging Matrix & Nonlinear Input Matrices
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to cell geometry and transport/kinetic processes are con-
sidered, as listed on the x-axes of Figs. 2a and 2b, re-
spectively. A single parameter was perturbed in each cell
by a random value from uniform probability distribution
unif (−10%, 10%) of the nominal value for geometrical
parameters or unif (−80%, 80%) for transport/kinetic pa-
rameters2, such that all cells had different values of the
targeted parameter. All other parameters were held at nom-
inal value, as identified in [20]. The perturbed pack was
simulated for a 1C discharge cycle, producing Vpack,θ(t) =∑Ncells
k=1 V Cell kcell,θ where θ represents the perturbed parameter

as listed in Figs. 2a and 2b. This procedure of random
perturbation and simulation was repeated 100 times for each
parameter in order to widely explore the possible combina-
tions of perturbation levels across the pack. Perturbed pack
results were compared to an unperturbed pack (i.e. nominal
parameter values for all cells) in terms of pack voltage,
Vpack,ref (t) =

∑Ncells
k=1 V Cell kcell,ref and energy, Epack,ref (t) =∫ t

0
Vpack,ref (τ)Iapp(τ)dτ . The V%RMS is the percentage

Root Mean Square (RMS) voltage change of perturbed
voltage, Vpack,θ, from the reference value, Vpack,ref ,

V%RMS =

√
1

tend

∫ tend

0

(Vpack,θ − Vpack,ref )2 dt
100tend∫ tend

0 Vpack,refdt
(32)

2Note that different perturbation levels were chosen for geometrical and
transport/kinetic parameters such that pack-level outcomes would fall within
a physically-meaningful range and on comparable orders of magnitude.

where tend is the time at which the limiting cell in either
pack reaches its cutoff voltage, and %∆E is the percentage
energy change given as

%∆E =
Epack,θ (tend,θ)− Epack,ref (tend,ref )

Epack,ref (tend,ref )
100 (33)

where tend,ref and tend,θ are the simulation end times for
the reference and perturbed cases, respectively.

Sensitivity analyses revealed that both the predicted pack
voltage and energy during discharge were most sensitive
to geometrical parameters such as εs,n, Ln, and A that af-
fect electrode capacity, particularly at the anode, as seen
in Fig. 2a. Likewise, for transport and kinetic parameters,
perturbations in Ds,nand kn result in the largest voltage
and energy deviations during discharge, as seen in Fig. 2b.
Throughout this section, average %-perturbation refers to the
sum of perturbation levels of each cell divided by the number
of cells3, while %-perturbation range refers to the difference
between maximum and minimum perturbation levels in a
pack 4. We notice significant asymmetries where positive

3
(

e.g.
3% + 3% + (−3%)

3
= +1%-average perturbation

)
4e.g. max [3%, 3%, (−3%)] − min [3%, 3%, (−3%)] = +6%-

perturbation range)



average perturbations of geometrical parameters across pack
result in greater V%RMS , while negative average perturba-
tions result in greater %∆E magnitude. Transport/kinetic
parameters, on the other hand, show a consistently higher
magnitude response for negative average perturbations. We
can gain insight into this behavior by analyzing the variation
of pack voltage profiles seen in Fig. 3a for a case study
of εs,n perturbations, with particular emphasis given to
marked Cases A, B and C. From Fig. 3a, we can see
that the capacity at which a pack reaches end-of-discharge
conditions varies widely, and is strongly dependent on the
direction of perturbation (i.e. negative/positive)5. Because
of the series connection modeled here, the battery pack is
limited by the lowest capacity component cell such that
any large magnitude negative perturbations in cell capacity
across the pack will have a significant and direct impact on
pack performance. This can be seen in Fig. 3b, where large
negative %∆Epack is seen to be insensitive to average %-
perturbation but highly correlated with large %-perturbation
range (see Case A). Packs with a wide range of perturbation
levels across cells are highly likely to have a cell with a
large magnitude negative perturbation, which causes such a
cell to limit overall pack performance. On the other hand,
Cases B and C show that positive %∆Epack tends to occur
only for packs with high average %-perturbation and narrow
%-perturbation ranges, which corresponds to a limiting cell
with a higher overall performance than in Case A. In terms
of V%RMS , we notice that the majority of voltage offset from
the reference profile occurs in the end-of-discharge region,
meaning that pack capacity variations also have an impact
here. From Fig. 3c, we can see that positive perturbation
Cases B and C belong to a distinct grouping separate from
the predominant trend. This distinct grouping consists en-
tirely of points with both high average %-perturbation and a
large %-perturbation range. This combination allows them to
sustain a higher voltage for a longer duration, which results
in a higher V%RMS than for negative average perturbations,
in which the duration over which V%RMS is calculated will
be limited by a low capacity cell. Overall, these results
can be interpreted not only as confirming the pack-level
effect of cell heterogeneity in design parameter values, but
also quantifying the potential prediction error introduced by
uncertainty in parameter estimates for modeling and BMS
applications.

VII. CONCLUSION

In this paper, a comprehensive modeling framework for
battery packs composed of interconnected LIB cells is pre-
sented which is computationally tractable and scalable to a
battery pack with numerous cells in series. The framework
employs physics-based coupled electrochemical, thermal,
and aging models to describe each cell’s behavior, and more-
over, accounts for thermal interactions in a pack. The cell-
level model is further extended to pack-level by expressing

5εs,n has a proportional relationship with cell capacity in this modeling
framework

the pack-level dynamics in a compact state-space form that
can be scaled to larger packs. The pack sensitivity to model
parameter perturbation is investigated, revealing the strong
impact of cell heterogeneity on pack performance.
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[3] T. Baumhöfer, M. Brühl, S. Rothgang, and D. U. Sauer, “Production
caused variation in capacity aging trend and correlation to initial cell
performance,” Journal of Power Sources, 2014.

[4] A. Cordoba-Arenas, S. Onori, G. Rizzoni, and G. Fan, “Aging prop-
agation in interconnected systems with an application to advanced
automotive battery packs,” in 7th IFAC Symposium on Advances in
Automotive Control, 2013, pp. 703–716.

[5] A. Pozzi, M. Torchio, and D. M. Raimondo, “Film growth minimiza-
tion in a li-ion cell: a pseudo two dimensional model-based optimal
charging approach,” in 2018 ECC. IEEE, 2018.

[6] F. Altaf, B. Egardt, and L. J. Mårdh, “Load management of modular
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(a) Geometrical parameters ranked by sensitivity (b) Transport and kinetic parameters ranked by sensitivity

Fig. 2: Pack sensitivity in terms of maximum %RMS change in Pack Voltage and maximum %∆ in Pack Energy resulting from
negative/positive average random perturbation of 6-cell series-connected pack compared to unperturbed reference pack during 1C Discharge.
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Fig. 3: a) Pack voltage profiles in response to randomly perturbed anode active material volume fraction εs,n across pack in
comparison with unperturbed reference pack. (b) %∆E sensitivity to εs,n (c) V%RMS sensitivity to εs,n. Cases A, B and C
are marked for perturbed packs with the maximum magnitude V%RMS and %∆Epack for negative (A) and positive (B,C)
average %-perturbation levels across pack. Case A has the largest magnitude change in both metrics, while Case B and C
have maximum magnitude changes in V%RMS and %∆Epack, respectively.

TABLE IV: Nomenclature

Cs,j Concentration in solid phase [mol/m3] Ce Concentration in electrolyte phase [mol/m3] csolv Solvent concentration [mol/m3]

Q Cell Capacity [Ah] Ibatt Applied current [A] Φe Electrolyte Potential [V]

Φs,n Anode Surface Potential [V] ηj Overpotential [V] ı0,j Exchange Current Density [A/m2]

Uj Open circuit potential (electrode) [V] Voc Open circuit potential (cell) [V] is Side reaction current density [A/m2]

Ds,j Solid phase diffusion [m2/s] Rs,j Particle radius [m] as,j Specific interfacial surface area [m−1]

A Cell cross sectional area [m2] Lj Domain thickness [m] F Faraday’s constant [C/mol]

εe,j Electrolyte Porosity De Electrolyte phase diffusion [m2/s] t+0 Transference number

cmax
s,j Maximum electrode concentration [mol/m3] κe,j Electrolyte conductivity [S/m] κD Diffusional conductivity [S/m]

kj Intercalation rate constant [m2.5/s-mol0.5] Rl Lumped contact resistance [Ω] Rg Universal gas constant [J/mol-K]

εs,j Active volume fraction of solid phase εf,j Active volume fraction of filler/binder Dsolv Solvent diffusion coefficient in SEI layer [m2/s]

εsei SEI Layer porosity ρsei SEI layer density [kg/m3] κsei SEI layer ionic conductivity [S/m]

csolv Solvent concentration [mol/m3] Msei Molar mass of SEI layer [kg/mol] Us Solvent reduction potential [V]

kf Solvent Reduction rate constant [mol−2s−1] β Side Reaction charge transfer coefficient Cs Heat Capacity of cell surface [J/K]

Cc Heat Capacity of cell core [J/K] Rc Conductive resistance - core/surface [K/W] Ru Convective resistance - surface/surroundings [K/W]

Rm Cell-to-cell heat transfer resistance [K/W] Tamb Ambient temperature [K] Nr,j Number of radial discretization points

Nx,j Number of cartesian discretization points Nel Total number of electrolyte discretization points Nsei Number of SEI layer discretization points


