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Abstract— There is an abundance of research dedicated to
understanding lithium-ion batteries at the cell-level. However,
the cell-level models or estimation algorithms cannot be directly
applied to battery modules or packs that are composed of
tens to hundreds or thousands of cells. Pack or module-level
modeling and estimation must take into consideration the
temperature distribution, manufacturing-induced parameter
(impedance, capacity) variances, pack topology (electrical in-
terconnections), and thermal interactions between cells. In this
work, we motivate the need for pack or module-level modeling
by showing that the aging dynamics of a cell is influenced by
the adjacent cells it is interacting with, both, electrically and
thermally. The characteristic time-scale of the vital dynamics
of an interconnected cell, consisting of a high-fidelity coupled
electrochemical-thermal-aging model, are studied to reveal a
three-time scale behavior. This distinct behavior is explored via
singular perturbation theory to derive a reduced-order aging
model for an interconnected cell that is shown to depend on
the thermal gradient in a serially interconnected module.

I. INTRODUCTION

Large-scale systems composed of numerous individual
components tend to lose modularity, wherein, the behavior
of the entire system cannot be predicted based solely on
the behavior of a constituting individual component [1].
Further, with the inclusion of faults or aging in the individual
components, the complexity in predicting the behavior of the
system increases. High energy density battery packs used
in HEVs and EVs are large-scale complex interconnected
systems made up of numerous individual cells interconnected
to each other to satisfy the desired power and energy re-
quirements. Modularity is assumed in the case of large-scale
interconnected battery packs, in the sense that the behavior
of the battery pack is extrapolated based on the behavior
of an individual cell. This approach assumes homogeneity
between cells, in terms of parameters, temperature and aging
characteristics. However, instances reported in the literature
suggest that modularity cannot be guaranteed in battery
modules or packs. In summary,

1) Cell-to-cell manufacturing variances have a diverse
effect on the aging characteristics of cells, and by
extension will effect the overall behavior of the pack
[2],

2) Thermal gradient experienced by a battery module or
pack alters the aging trends of each cell, and hence the
pack’s health is limited by the most aged cell [3],
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3) Inhomogeneity in aging characteristics between cells
will create a thermal gradient in the module/pack [4],
and

4) Battery pack ages faster than an individual cell sub-
jected to the same operating conditions [5].

From the literature surveyed, it is understood that in battery
modules/packs, initial manufacturing variances, uneven tem-
perature distribution, differences in the aging characteristics
of cells will cause aging at dissimilar rates in each cell
due to the interconnected nature of a battery pack. This
motivates the need to develop comprehensive modeling tools
to understand the dynamics at the module or pack-level,
rather than at the cell-level.

To that end, this work intends to show that in an inter-
connected setting, the aging dynamics of a cell is interlinked
to the thermal gradient in the module, which is implicitly
dependent on the degradation of the neighboring cells it is
thermally and electrically interacting with. The cell dynamics
are separated based on fast and slow dynamics by identify-
ing the characteristic time scale of the dynamics. Singular
perturbation theory is utilized to derive a reduced-order
aging model that reveals the dependence on the neighboring
cells. Similar work, using singular perturbation theory, was
proposed in [6], [7], [8]. However, the singular perturbation
approach used in these papers was at the cell-level. Further,
a comprehensive way of discerning the characteristic time
scales of the cell dynamics was missing.

The remainder of this article is organized as follows:
Section II-A details the Doyle-Fuller-Newman (DFN) battery
model, thermal and aging model. Section II-B describes
a thermal model for a cell in a module by incorporating
the heat transfer between its neighboring cells. Section III
quantifies the characteristic time scale of the electrochemical,
thermal, and aging Partial differential equations (PDEs) to
formulate a three-time scale singular perturbation problem.
Section IV derives the reduced-order aging model for an
interconnected cell, by approximating the fast and semi-
slow dynamics, that implicitly depends on the degradation
of the neighboring cells. Finally, Section VI summarizes the
conclusions and proposes future research direction.

II. MODELING

The modeling section is divided into two parts. The first
part describes the cell-level dynamics of a lithium-ion cell.
The second part presents the modeling equation required to
describe the thermal interaction between cells in a module.

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-00-8 ©2019 EUCA 2380



A. Cell Governing Equations

In this work, a lithium-ion cell model is described by
a coupled electrochemical-thermal-aging model. The DFN
model, also known as the Pseudo two-dimensional (P2D)
model, is used to represent the nonlinear transport mecha-
nisms in the solid and electrolyte phase of the battery through
a system of partial differential algebraic equations. The gov-
erning electrochemical dynamics are tabulated in Table I. The
thermal model, given in (9) in Table I, describes the radially
varying temperature profile via a one-dimensional cylindrical
heat PDE. The thermal model assumes that the surface tem-
perature remains uniform throughout the surface and the heat
is uniformly generated in radial direction. Next, a diffusion-
limited aging model, described by (10) to (14) in Table
I, representing the growth of Solid Electrolyte Interphase
(SEI) layer on the anode is considered. Further, the empirical
relationship of the Open Circuit Potential with respect to the
solid surface concentration and the temperature-dependency
of transport parameters are borrowed from the literature [9].

B. Module Governing Equations

The governing equations in Table I describe the cell-level
dynamics, however, it is important to incorporate the modi-
fications brought about by connecting the cell to a network
of other cells. Cells packed closely together in a module
thermally interact with each other [7], [3]. The heat transfer
through conduction between the surface of neighboring cells
must be incorporated while modeling a module or pack-level
interconnected cell network. This conductive heat transfer is
accommodated into the boundary condition of the thermal
PDE given in (9). The general equation describing the
radial temperature profile remains the same, but a modified
boundary condition taking into account the effect of heat
transfer between cells is included. Here, a thermal model of
a cell i, connected in series with cells i − 1 and i + 1, as
shown in Fig. 1, is given by

1

α

∂Ti
∂t

=
∂2Ti
∂r2c

+
1

rc

∂Ti
∂rc

+
Qi
kcell

, (15)

with the following Neumann boundary conditions

∂Ti
∂rc

∣∣∣
rc=0

= 0 (16)

∂Ti
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= −hAcell
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− hmAcell
2kcell

(Ti − Ti+1) ,

where hm is the heat transfer coefficient between cells in a
module.

III. TIME SCALE ANALYSIS

It is understood that the cell dynamics evolve at multiple
time scales [6], [7], [8]. However, the attempts at showing
this multi-time scale behavior have been preliminary [6],
[7] or via simulation [8]. Instead, in this paper, a formal
method for examining the multi-time scale behavior of cell
dynamics is investigated. The dynamics under study are the

Fig. 1. A representation of the simulated battery module with three cells
i− 1, i, and i+ 1 connected in series.

electrochemcial, thermal, and aging dynamics described by
their respective PDEs in (1), (15), and (10), respectively.
The respective PDEs are non-dimensionalized and their
characteristic time scales are extracted in terms of actual
physical transport parameters. The benefit of identifying
the multi-time scale behavior is to make use of singular
perturbation theory to help derive a reduced order model. By
obtaining a reduced order model, the faster dynamics need
not be solved numerically, instead its approximate quasi-
steady state solutions can be used to solve the ”slow” model
that approximates the system behavior reasonably well. To
that end, the identification of time scales is used to formulate
the battery dynamics into a standard singular perturbation
format.

Consider the PDEs in (1), (15), and (10). Normalizing
the respective PDEs with respect to their length scale by
introducing the following non-dimensional parameters

r̄ =
r

Rn
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, (17)

gives the following PDEs
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Selecting a time scale given by τ =
t

tsei
, where tsei is

the characteristic time scale of the aging dynamics, and
substituting into the above equations gives
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Indicating the characteristic time scale of the electrochemical
and thermal dynamics as tc and tθ, respectively, and defining
the characteristic time scales for each PDE as follows

tc =
R2
n

Ds,n
, tθ =

R2
c

α
, tsei =

R2
n

Dsolv
, (18)
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TABLE I
ELECTROCHEMICAL-THERMAL-AGING DYNAMICS OF A LITHIUM-ION CELL

Electrochemical dynamics [10], [11]

Mass conservation
in solid phase

∂cs,j

∂t
=
Ds,j

r2
∂

∂r

[
r2
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]
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∣∣∣
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= 0
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Mass conservation
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∂
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e
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∂x
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F
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)∣∣∣
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(
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)∣∣∣
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(
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(
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Charge conservation
in solid phase

∂
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(
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∂Φs
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)
− as,jiint,j = 0 (3)

∂Φs

∂x

∣∣∣
x=Ln
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∂Φs
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∣∣∣
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= 0 (4)

∂Φs
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∣∣∣
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Charge conservation
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∂2φe

∂x2
− κeffD

∂2 ln ce

∂x2
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∂Φe
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∣∣∣
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)
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∣∣∣
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− Φs

∣∣∣
x=0
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Thermal dynamics [12]

Heat balance
1

α

∂T

∂t
=
∂2T
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+

1

rc

∂T

∂rc
+
Qcell

kcell
(9)
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∂rc

∣∣∣
rc=0

= 0
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∂rc
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rc=Rc

= −
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Aging dynamics [13], [14], [15]

Mass conservation
in SEI

∂csolv

∂t
= Dsolv

∂2csolv

∂r2
−
dLsei

dt

∂csolv

∂r
, (10)

−Dsolv
∂csolv

∂r

∣∣∣
r=Rn

+
dLsei

dt
c∗solv =

is

F
(11)

SEI layer growth
dLsei

dt
= −

isMsei

2Fρsei
, (12)

Side reaction
current density

is = 2Fkf c
2
surf,ncsolv exp

[
−βF
RTc

(
Φs,n −

LseiIbatt

κsei

)]
(13)

Cell capacity loss
dQ

dt
= isALnas,n (14)

and assigning values to the ratio of the characteristic time
scales as

λ1 =
tc
tsei

, λ2 =
tθ
tc
, λ1λ2 =

tθ
tsei

, (19)

where λ1, λ2 are constant parameters that are obtained by
plugging values from the literature, leads to the following
inequality holding true: 0 < λ1λ2 < λ1 < 1. Substituting
the characteristic time scale of each PDE and then rewriting
in terms of λ1 and λ2 puts the dynamics in a standard three-
time scale singular perturbation format as follows

λ1λ2
∂Ti
∂τ

=
∂2Ti
∂r̄2c

+
1

r̄c

∂Ti
∂r̄c

+
R2
cQi
kcell

λ1
∂cs,n
∂τ

=
1

r̄2
∂

∂r̄

[
r̄2
∂cs,n
∂r̄

]
∂csolv
∂τ

=
∂2csolv
∂r̄2

− 1

Rn

dLsei
dτ

∂csolv
∂r̄

.

(20)

In the above formulation, the thermal dynamics are consid-
ered to be the fast dynamics, the concentration PDE is the

semi-slow dynamics, and the aging PDE represents the slow
dynamics, which is based on the values obtained for λ1 and
λ2.

IV. REDUCED ORDER MODEL
In the context of understanding the effect of thermal

gradient on the aging dynamics of an interconnected cell,
the three time scale behavior described in (20) is exploited
via singular perturbation theory to derive a ’slow’ reduced
order aging model where the fast and semi-slow dynamics
are approximated by their quasi steady state values.

The procedure to obtain the quasi steady-state solutions for
the fast and semi-slow dynamics is straight forward, however,
the theoretical work involved in deriving the solution is in-
volved and hence omitted from this manuscript. The detailed
theoretical proof work will feature in a forthcoming paper.
For the thermal dynamics, the procedure involves setting
λ1λ2 = 0 to obtain a quasi steady state solution at the
cell’s core (core temperature). The solution will be dependent
on the heat transfer between the cell and the environment,
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TABLE II
NOMENCLATURE

A Cell cross sectional area [m2] De Electrolyte phase diffusion [m2/s] Deff
e Effective electrolyte phase diffusion [m2/s]

Ds,j Solid phase diffusion [m2/s] Dsolv Solvent diffusion in SEI layer [m2/s] csolv Solvent concentration at the surface [mol/m3]

F Faraday’s constant [C/mol] Lj Domain thickness [m] Lsei SEI layer thickness [m]

Msei Molar mass of SEI layer [kg/mol] Rg Universal gas constant [J/mol-K] Rj Particle radius [m]

Rl Lumped resistance [Ω] Rsei SEI layer resistance [Ω] T Cell temperature [oC]

α Thermal diffusivity Uj Open circuit potential [V] V Cell terminal voltage [V]

as,j Specific interfacial surface area [m−1] ce Concentration in liquid phase [mol/m3] Rc Radius of a cylindrical 18650 cell [m]

cs,j Concentration in solid phase [mol/m3] Acell External cell surface area [m2] cs,j,surf Concentration at the surface [mol/m3]

cs,j,max Maximum electrode concentration [mol/m3] is Side reaction current density [A/m2] kj Reaction rate constant [m2.5/s-mol0.5]

x Cartesian coordinate along the cell’s thickness r Radial coordinate t+0 Transference number

Φj Potential [V] εj Active volume fraction of solid phase εe,j Porosity

εj,f Active volume fraction of filler/binder κ Electrolyte conductivity [S/m ] κsei SEI layer ionic conductivity [S/m]

κeff Effective electrolyte conductivity [S/m] ηj Overpotential [V] kcell Thermal conductivity

Tc Core Temperature [oC] r Radial co-ordinate for active particle rc Radial co-ordinate for 18650 cell

h Heat transfer co-efficent ρsei SEI layer density [kg/m3] Subscript j Refers to anode, separator, or cathode

the internal heat generated, and the heat transfer between
the cell and its neighboring cells, which enters the steady
state equation through the Neumann boundary condition at
the surface of the cell. For the electrochemical dynamics,
setting λ1 = 0 and applying the theory of averaging [16]
gives the quasi steady state solution, which will be used in
the slow reduced-order model. For ease of explanation, we
denote the quasi-steady state values of core temperature and
concentration dynamics of cell i as T̄c,i and c̄s,n. Note that
the quasi steady state solutions can be written in general
form as {

T̄i = f
(
T̄i, T̄i−1, T̄i+1, Tamb, Ibatt

)
c̄s,n = g

(
c̄s,n, T̄i, Ibatt

) (21)

This leads to the following aging model equations, which
we refer to as the reduced-order model.

∂csolv
∂τ

=
∂2csolv
∂r̄2

− 1

Rn

dLsei
dτ

∂csolv
∂r̄

.

dLsei
dτ

= − isMseitsei
2Fρsei

is = 2Fkf c̄
2
surf,ncsolv

exp

[
−βF
RT̄c,i

(
Φs,n − LseiIbatt

κsei

)] (22)

The quasi steady-state solution for the fast and semi-slow
dynamics embedded within the side reaction current density
is,i equation enters the aging PDE through its boundary
condition. It is evident that the aging dynamics are now
dependent on the temperature difference between cells or
the thermal inhomogeneity between cells. This model can
be used to quantify the effect thermal gradient on the aging
dynamics of a particular interconnected cell. Further, in
future work, this model will be used to develop strategies
that can be used to attenuate the effect of thermal gradient on

aging dynamics of an interconnected cell, through efficient
thermal control or cell balancing control.

V. RESULTS

A. Experimental Results

The experimental setup consists of Arbin BT2000 battery
testing system, environmental chamber, and peltier junctions
for temperature controlled cell testing, and current and volt-
age data acquisition. Cylindrical Nickel Manganese Cobalt
(NMC) lithium-ion cells of 2Ah capacity are subjected to
predetermined input current profiles and the resulting cell
voltage is logged for the model identification procedure.

The DFN battery model parameters are identified ex-
perimentally by minimizing the error between the model
voltage and the measured voltage data. A global optimization
algorithm (particle swarm) is utilized to identify the DFN
model parameters. For the identification procedure, a 2A
(1C-rate) constant discharge current profile is used. The
identified model’s voltage response is compared against the
experimentally measured cell voltage as shown in Fig. 2.
To validate the performance of the identified battery model
against a different current profile, a real-world US06 drive
cycle is used. The current profile is generated for a hybrid
electric vehicle and scaled for a single cell. The input current
profile and the voltage comparison result is presented in
Fig. 3. The RMS voltage error between the model and
measured voltage is as low as 9.2mV.

B. Simulation Results

A module of three cells connected in series is considered
for the simulation studies, as shown in Fig. 1. The electro-
chemical dynamics of each cell in the module is described
by the experimentally validated DFN model in Section V-A.
Each cell also contains a thermal and aging model, described
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Fig. 3. DFN model validation against experimental data for the US06
current profile.

in Section II-A, whose parameters are borrowed from the
literature. The thermal interactions between the cells in the
module is described by the model in Section II-B. Together,
this constitutes a high-fidelity model of a battery module
with three cells in series. This model is considered to be the
baseline model, and shall be used in validating the reduced-
order aging model derived via singular perturbation theory.
Upon satisfactory validation, the reduced-order aging model
will be used to understand the effect of a thermal gradient
on the aging of cells in an interconnected framework.

1) Reduced-order model validation: Prior to making use
of the reduced-order aging model it must be validated against
the full order model. For this case, a simulation current
profile containing a train of discharge and charge currents
is cycled for 30 days, within a state of charge window of
30 - 80%. Also, there is no thermal gradient induced in
the module, meaning that all cells are starting at the same
temperature of 30oC, while the ambient temperature is set
at 45oC. The growth of the SEI layer thickness of cell i
simulated via the model of the battery module is logged

0 5 10 15 20 25

Time [days]

0

10

20

30

40

50
SEI thickness growth

Full order

Reduced-order

Fig. 4. Validation of full-order SEI layer growth model with the derived
reduced-order SEI model.

and plotted in Fig. 4, indicated by Full-order in the legend.
Whereas, the SEI layer thickness growth in the reduced-
order model derived by substituting the quasi-steady state
values of the fast and semi-slow variables, as given in (22)
is plotted in Fig. 4. The derived model does not lose its
accuracy when compared to the full-order model. However,
it is worth noting that this may not be valid as the battery ages
or under different operating conditions and current profiles.
A detailed study understanding the validity and limitations
of using this reduced-order model will be investigated in the
future.

2) Effect of thermal gradient on aging of interconnected
cell: Having shown that the reduced-order aging model
is capable of predicting the SEI layer growth accurately,
under the specified operating conditions, we intend use this
low complexity model to investigate the effect of gradients
(thermal, aging, or cell-to-cell parameter variances) on the
aging dynamics of cells in an interconnected module. In this
work, we limit our study to show that a thermal gradient
in a module, will cause increased rate of growth of the SEI
layer in cells, and hence, higher capacity loss, which would
eventually lead to a faster overall aging of the pack.

To that end, a conservative thermal gradient is induced
manually, such that the cell i − 1 operates at a temperature
of 0.8oC higher than cell i, and the cell i+ 1 operates at a
temperature of 1oC higher than cell i. The input current and
ambient temperature conditions are maintained the same as
the simulation in Section V-B.1.

The SEI layer thickness growth of cell i in the absence
of a thermal gradient is denoted as Case 1. The SEI layer
thickness growth of cell i in the presence of a thermal
gradient is denoted as Case 2. The comparison of the SEI
layer growth for both cases, as shown in Fig. 5, indicates
the effect of thermal gradient on the increase in the rate
of growth of the SEI layer in cell i. The SEI layer growth
is translated into tangible terms, such as capacity loss, and
plotted in Fig. 6. The same trend is noticed in the capacity
loss plot, showing that the capacity of cell i fades faster when
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Fig. 5. Comparison of SEI layer thickness growth of cell i (connected in
series with cells i− 1 and i+ 1) for the case with no thermal gradient in
a module (Case 1) and with a thermal gradient (Case 2).
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Fig. 6. Comparison of capacity of cell i (connected in series with cells
i−1 and i+ 1) for the case with no thermal gradient in a module (Case 1)
and with a thermal gradient (Case 2). A capacity loss of 0.09% is observed
due to the thermal gradient.

the module has a thermal gradient, as opposed to when there
is no thermal gradient. A capacity loss of 0.09% is observed
due to the induced thermal gradient. Note that the thermal
gradient is low in value and the simulation time period is
short. As the battery ages, the capacity loss of cell i in Case
2 will deviate further away from the Case 1, making the pack
age faster.

VI. CONCLUSION

This paper addresses the issue of understanding the effect
on aging dynamics of a cell in a module due to a ther-
mal gradient. To that end, a high-fidelity battery module
is developed for simulations, consisting of a DFN model
describing the electrochemical dynamics, a thermal model,
and a diffusion-limited SEI layer aging model. In addition,
the thermal interactions between cells in a module are incor-
porated. The three-time scale behavior in battery dynamics is

characterized based on PDE-based time-scale analysis. This
behavior is used to derive a reduced-order aging model for
an interconnected cell in a module via singular perturbation
theory, which is validated against a full-order model of a cell
in a battery module. Further, the effect in the rate of SEI
layer growth or capacity fade is presented in the presence
of a thermal gradient in the module, thereby motivating the
need for detailed study of the dependence of aging dynamics
on battery module-based gradients.

Future work includes utilizing the reduced-order aging
model to develop detailed understanding of the effect of cell-
to-cell manufacturing variances, aging gradients, electrical
topology, on the aging dynamics of a cell in a module.
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