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Abstract— Accurate state estimation of Lithium-ion batteries
(LIBs) can enable improved hybrid and electric vehicles. A
Battery Management System (BMS) can use electrochemical
models in conjunction with Kalman filter approaches to es-
timate internal battery states from current and voltage mea-
surements. For Kalman filters, the process noise is assumed
to be Gaussian and independent across states, resulting in a
diagonal covariance matrix. To the best of our knowledge, these
assumptions have never been validated for battery dynamics,
nor has any detailed calculation of variance of each model
state been presented. This paper proposes a novel method for
quantifying process noise in electrochemical battery models that
can be generalized to other system applications. The method is
derived analytically by mapping a “true” high-fidelity model to
a reduced model and comparing differences in concentration
states. The electrochemical model used is an enhanced Single
Particle Model (eSPM), where parameters were experimentally
identified for a Li-NMC cell. An investigation of process
noise carried out using the proposed approach shows that the
covariance matrix is not diagonal and gaussian only in first
approximation (but only for the diagonal terms).

I. INTRODUCTION

Lithium-ion batteries (LIBs) have become ubiquitous in
portable electronics due to their high energy density, but
they remain a bottleneck in the development of hybrid
and electric vehicles [1]. An onboard Battery Management
System (BMS) takes current and voltage measurements and
run algorithms to estimate internal states such as state-
of-charge (SOC) and state-of-health (SOH) to ensure safe
operation and prolonged life [2].

Electrochemical LIB models are preferred to empirical
models as they embed physical information that cannot be
directly measured. The most commonly used electrochemical
model is the Doyle-Fuller-Newman (DFN) model, which
considers the pore-scale diffusion, reaction, and electromi-
gration of lithium particles [3]. It is derived via upscaling
Poisson-Nernst-Planck equations to capture particle dynam-
ics, and Butler-Volmer reaction kinetics are applied at the
solid-electrolyte interface (SEI) to determine the intercalation
flux. The drawback of the model is that it is governed by sets
of nonlinear coupled partial differential equations (PDEs),
which prohibits their real-time application.

A common simplification of electrochemical models is the
Single Particle Model (SPM) [4], which treats each electrode
as a single spherical particle and considers only the radial
diffusion within these particles. The electrolyte is considered
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constant in space and time, an assumption that is violated at
high C-rates of operation. To overcome this, the enhanced
Single Particle Model (eSPM) was developed [4], which
incorporates electrolyte dynamics for improved accuracy.

Plett introduced an extended Kalman filter (EKF) for LIB
state estimation using an equivalent circuit model [5]. EKFs
have also been applied to electrochemical models for SOC
estimation [6]. In all such applications, assumptions are
made, without verification, that process noise for each state is
(1) Gaussian and (2) independent and identically distributed.

Unfortunately, those assumptions are assumed as is with-
out any verification about their validity for the application
under study. Practically speaking, this results in having a
diagonal covariance matrix. This assumption, however, is in
general counterintuitive, as it implies that the states of a
dynamical system are mutually uncorrelated, which is not
always the case.

For example, in the eSPM, states are lithium concentra-
tions in specific regions of the electrode, and error can be
introduced by incorrectly estimating either diffusive transport
or intercalation flux. In the former case, over-calculating
diffusion from state A to state B would lead to an under-
estimate of state A concentration and an overestimate of
state B concentration, resulting in a negative correlation and
covariance value. On the other hand, incorrectly estimating
the intercalation flux into or out of the particle would
introduce error in the same direction for all states, resulting
in a positive covariance value. In either case, the error across
states is not independent, so the assumption of diagonal
covariance is not verified.

Correctly characterizing process noise is crucial for ac-
curate state estimation, as underestimating it will cause
overconfidence in the model and the state predictions could
diverge from the real values, but overestimating it will lead to
overfitting towards measurement noise. This paper explores
the validity of these assumptions made about process noise
for battery electrochemical dynamics by presenting an ana-
lytically derived mapping method .

This paper is organized as follows. Section II describes
the battery electrochemical model, the state-space formu-
lation, and parameter identification. Section III discusses
the observer design, including the novel mapping method
for characterizing noise and the EKF algorithm. Section IV
investigates the process noise on drive-cycle data using the
novel approach.



Fig. 1: Diagram detailing the eSPM. During discharge, lithium-ions diffuse
out of the anode and through the separator to the cathode.

II. LITHIUM-ION BATTERY MODEL

A. Enhanced Single Particle Model (eSPM)

The eSPM [4] is an electrochemical LIB model derived
by simplifying the DFN model [3]. As shown in Figure 1,
it approximates each electrode as a single spherical particle
and considers lithium diffusion across the electrolyte. Solid
phase lithium concentration, cs,j , is governed by Fick’s Law,
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where j = (n, p) denotes anode or cathode. Electrolyte
concentration, ce, is resolved by:
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where F is Faraday’s constant and zj = −1 in the anode, 0
in the separator, and 1 in the cathode to describe relationship
between input current, defined as positive during discharge,
and intercalation flux direction. The effective diffusion coef-
ficient, Deff

e,j , is found using the Bruggeman relationship [7],
Deff
e,j = Deε

1.5
e,j .

The PDEs describing the eSPM are reduced to a set
of Ordinary Differential Equations (ODEs) by using the
Finite Difference Method (FDM). The electrode particles
are discretized radially into Nr hollow spherical shells.
The electrolyte, which spans the entire cell, is discretized
into Nx nodes, which are equally-spaced rectangular prisms
between the current collectors. The model thus has 2Nr+Nx
states, where each state represents a lithium concentration
(mol/m3) in a fixed volume. The FDM discretization is
shown in Figure 2. This discretization method of the elec-
trolyte results in two states that include the intersection of
an electrode and the separator. For these states, domain-
dependent parameters, such as εe,j , are linearly interpolated
based on the relative volumes in each domain.

The predicted output voltage, V (t) of the eSPM depends
on the open circuit voltage, Voc, the electrode overpotentials,

(a) (b)

Fig. 2: Discretization of (a) electrode into Nr spherical shells of thickness
∆rj and (b) electrolyte into Nx rectangular prisms of width ∆x.

ηj , the electrolyte voltage drop, Ve, and the voltage across
the contact resistance, RcI , as follows,

V (t)=Voc,p(θp)-Voc,n(θn)+ηp(t)-ηn(t)+Ve(t)-RcI(t). (5)

The Voc of the anode and cathode are derived empirically
and are given by [4]

Voc,n(θn) = 0.15+0.85e–61.8 θn+0.38e–666 θn (6a)

–e(39.4 θn–41.9)–0.031 tan–1(25.6 θn–4.1)

–0.0094 tan–1(32.5 θn–15.7),

Voc,p(θp) =–11 θ4p + 24 θ3p–17 θ2p + 2.6 θp + 4.6, (6b)

where θj = css,j/cs,max,j is the surface stoichiometric
coefficient. The electrode overpotentials, ηj , are given by
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F
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)
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where Rg is the ideal gas constant, T is cell temperature,
and aj is the specific interfacial surface area. The exchange
current density, i0,j is equal to:

i0,j(t) = kj

√
css,j(t)ce,0(t)[cs,max,j − css,j(t)] (8)

where css,j is the surface concentration in the outermost
electrode shell. The electrolyte voltage (Ve) is equal to

Ve(t)= − Ln+2Ls+Lp

2AcellK
eff
e
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2RgT

F
(1–t+0 ) ln
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where c±e (t) is the electrolyte concentration at the positive
and negative current collectors. The effective conductivity,
Keff
e , is determined from the Bruggeman relation, Keff

e =
Keε̄

1.5
e , where ε̄e is the average porosity in the cell.

B. State-space Formulation

The eSPM model is discretized using the FDM and put
into state-space representation:ẋnẋp

ẋe

 =

As,n 0 0
0 As,p 0
0 0 Ae

xnxp
xe

+

Bs,nBs,p
Be

u, (10a)

y = h(xn, xp, xe, u), (10b)

where the input, u, is current, I(t). The output, y, is voltage,
V (t), and h(xn, xp, xe, u) is the RHS Equation 5, and the
state vectors, xn, xp, and xe represent the lithium concen-
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Parameter Anode Separator Cathode

Thickness, L [µ m] 52.97 20.78 37.74
Particle radius, R [µm] 8.624 8.872
Electrode plate area, Acell [m2] 0.1005
Active material volume fraction, εs 0.6078 0.5615
Porosity (electrolyte phase volume fraction), εe 0.3235 0.4945 0.3518
Maximum solid phase concentration, cs,max [mol/m3] 35,154 59,650
Stoichiometry at 0% SOC, θ0% 0.0711 0.9256
Stoichiometry at 100% SOC, θ100% 0.7125 0.3486
Average electrolyte concentration, c̄e [mol/m3] 1,025
Kinetic reaction rate, k [A m2.5 / mol1.5] 1.298e−6 4.610e−6

Li+ transference number, t+0 0.3512
Solid phase Li diffusion coefficient, Ds [m2/s] 1.426e−13 1.236e−13

Electrolyte phase Li+ diffusion coefficient, De [m2/s] 1.632e−10

Electrolyte conductivity, Ke [S/m] 3.841
Contact resistance, Rc [Ω] 3.039e−5

TABLE I: Experimentally identified parameters for the eSPM model on a Li-NMC cell using MATLAB Genetic Algorithm.

trations in the anode, cathode, and electrolyte respectively:
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The state and input matrices are computed as
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Domain-depended coefficients such as εe,j will vary by row
in Ae and Be, which correspond to a specific rectangular
prisms of the electrolyte as depicted in Figure 2b.

C. Parameter Identification

The eSPM model was parameterized experimentally using
a constant 1C-rate discharge input profile. The data was
taken using a 2Ah 3.6V Li-NMC cell. A genetic algorithm in
MATLAB was used to identify 25 eSPM parameters, which

are given in Table I. Experimental data was also taken for
two drive-cycle datasets, US06 and UDDS. The root-mean-
squared error (RMSE) with respect to measured voltage
for these parameters was found to be 9.7mV (0.26%) and
13.9mV (0.35%) for the US06 and UDDS respectively.

III. OBSERVER DESIGN

A. Observability

The observer uses voltage measurements taken at discrete
time intervals to update the state estimate. Electrochemical-
based estimators for LIBs suffer from weak observability
when estimating lithium concentrations in both electrodes
and the electrolyte concurrently [8]. This is because the
output voltage is measured as the difference between two
electrode potentials, which are each nonlinear functions
of concentration (Equation 6), so the voltage in a single
electrode is not discernible. To circumvent this issue, the
number of lithium moles is assumed to be conserved, which
establishes algebraic relationships between concentration
fluxes entering and leaving each domain [6]. These assumed
relationships are invalid under battery aging, as lithium ions
get consumed by side reactions resulting in SEI layer growth
or lithium plating [9].

In this work, the observer resolves only the cathode
concentration states. Therefore, the state-space model, which
is now in discrete-time formulation, reduces to

xp,k = Akxp,k−1 +Bkuk + wk, (13a)
yk = hk(xp,k, uk) + vk. (13b)

where k is the time step, and wk and vk are the process and
measurement noise respectively, which will be discussed in
Section III-B. Ak and Bk are determined by:

Ak = ∆tkAs,p + I, (14a)
Bk = ∆tkBs,p, (14b)

where I is the identity matrix and ∆tk is the length of
time interval. The anode concentration is computed by the
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following relationship [6]:

θn,k − θn,0%
θn,100% − θn,0%

=
θp,k − θp,0%

θp,100% − θp,0%
. (15)

For the electrolyte, Equation 9 shows that only current
collector concentrations are needed, which are at the first
and last discretization nodes. This is done by assuming that
the deviation from the average electrolyte concentration in
these regions is equal to the lithium that entered or left the
electrode in this node at each time step:

c±e,k = c̄e ∓
uk

FAcellajLj

∆tk
∆x

. (16)

The stability of this term is ensured as Von Neumann stability
analysis requires that ∆t decreases with ∆x2 for the FDM.

The voltage function, hk(xp, u) in Equation 13 now only
depends on xp because xn and xe are defined as functions
of xp through Equations 15 and 16. Although electrolyte
diffusion is not explicitly resolved, electrolyte dynamics are
considered during Equation 9, so this formulation is still an
observable eSPM. Finally, the SOC is determined from the
cathode concentration:

SOC =

cs,bulk,p

cs,max,p
− θ0%,p

θ100%,p − θ0%,p
. (17)

B. Noise Quantification

Kalman filter implementation requires that both process
and measurement noises are Gaussian. In Equation 13 the
process noise, wk, is defined as the uncertainty that is
introduced by the model, and the measurement noise, vk,
is the uncertainty from the sensor readings at time step
k. While measurement noise is straightforward and well-
defined when sensor readings are available, process noise
is difficult to quantify, yet the large body of literature in
the field simply assumes Gaussian and uncorrelated process
noise states without provided justification.

In this paper, we present a method to characterize the
nature of the process error. The process noise indicates how
trustworthy the equations used to represent the system are
with respect to the real dynamics. This is usually very hard
to asses, and it is often the case to treat the process noise
covariance matrix as a tuning parameter to adjust the gain
of the Kalman filter.

We consider the process noise as the difference between
the high fidelity state vector and the dynamics predicted
by the reduced model at each time step. For example, a
reduced eSPM with fewer discretizations truncates dynamics
and introduces error. In doing so, both the unmodeled
dynamics and stochastic noise are being lumped together,
with input dependence on the estimation algorithm being a
major drawback.

In the proposed method, process noise for a reduced model
with N states is quantified by first running a “true”, high-
fidelity model with M = PN states, with P > 1 defined as
an integer, resulting in a vector xhfk ∈ RM for each time step.

The linear transformation g : RM → RN is then defined by:

xredk = g(xhfk ) = Gxhfk , (18)

where G ∈ RN×M is given by:

G=


〈V hf

1 〉
〈V red

1 〉 . . . 〈V hf
P 〉

〈V red
1 〉 0 . . . 0

...
. . .

...

0 . . . 0
〈V hf

M-P+1〉
〈V red

N 〉 . . . 〈V hf
M 〉

〈V red
N 〉

 ,
(19)

where 〈V hfi 〉 and 〈V redi 〉 represent the volumes of the
ith spherical shell in the high fidelity and reduced model,
respectively. Thus, building the matrix G can be thought of
as a 3 step process: First, each state (mol/m3) in the high-
fidelity model is multiplied by its respective volume. Second,
each set of P elements are summed together, resulting in N
values with units of mol. Third, each element is divided
by the volume of the shells in the reduced model (or
equivalently, the sum of P high-fidelity shell volumes) to
obtain N concentration states to be compared against the
reduced model. This process is necessary in LIB applica-
tions because concentrations in mol/m3 cannot be summed
without accounting for volume. If the volume of the shells
were uniform, the nonzero entries of G would be 1/P .

The motivation for this is that each set of P states in the
high-fidelity model represents the same volume element as a
single state in the reduced model and thus can be combined
together using the transformation, g, into one state. This step,
which we call “mapping”, results in new vector, xredk ∈ RN
that represents the “true” state for the reduced model at
each time step. Then, process noise at each time step is the
truncation error that would be introduced by the reduced
model and Q is the covariance of the noise over time:

wk = g(xhfk )− [Akx
red
k–1 +Bkuk], (20a)

Q = cov(w), (20b)

where Ak ∈ RN×N & Bk ∈ RN represent the reduced
model. A flowchart detailing this process in shown in Fig-
ure 3.

Fig. 3: Flowchart describing process noise quantification at time step k.

C. Extended Kalman Filter

An a priori estimate of the state, x−p,k, voltage, V −k , and
covariance, P−k , are computed as follows,

x−p,k = Akxp,k−1 +Bkuk, V −k = h(x−p,k, uk), (21a)

P−k = AkPk−1A
T
k +Q. (21b)
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The innovation, ek, is computed by taking the difference of
the measured voltage, V expk , and the a priori estimate:

ek = V expk − V −k . (22)

The linearized output matrix and Kalman gain, Kk, are
given by:

Hk =
∂h

∂x
(x−p,k, uk), (23a)

Kk = P−k H
T
k (HkP

−
k H

T
k +R)−1, (23b)

where R is the variance of the measurement noise. The state
vector, voltage, and covariance matrix estimates are then
updated using the Kalman gain and innovation:

xp,k = x−p,k +Kkek, Vk = h(xp,k, uk), (24a)

Pk = (I −KkHk)P−k . (24b)

IV. RESULTS AND DISCUSSION

A. Process Noise Characterization

The method presented for quantifying process error was
applied using an eSPM (Equation 10) with M = 30 cathode
states as the high-fidelity model and an observable eSPM
(Equation 13) with N = 3 cathode shells as the reduced
model (P = 10). The cathode states from the high-fidelity
model were then compared with the reduced model using
Equation 20 to quantify the process noise. The input profile
used for calibrating the noise is the US06 drive cycle. A
correlation plot for all states is shown in Figure 4. State 1
is defined as the innermost shell of the reduced model and
State 3 is the outermost.

The first common assumption when quantifying process
noise for electrochemical LIB models is that the noise is
zero-mean Gaussian, meaning that the model has no tendency
to either over predict or under predict concentration states.
To examine the validity of this assumption, histograms of the
process noise for each state are shown along the diagonal
plots of Figure 4. For each histogram, a z-test demonstrated
that the noise was 27.4%, 80.0%, and 97.0% Gaussian for
States 1-3, respectively. Clear, the inner shell error is not very
Gaussian, but the outer states with the significantly higher
variance can be considered roughly Gaussian, especially for
the state with the highest variance.

The next common assumption is that process noise for
each state is mutually uncorrelated. Figure 4 demonstrates
that this assumption is invalid, as all states showed a positive
correlation with each other. This means that when the model
overestimates lithium concentration in one shell, it is likely
to overestimate lithium concentration in all other shells. The
full covariance matrix was found to be:

Q = 1e–2

0.32 0.10 0.08
0.10 1.42 0.62
0.08 0.62 40.8

 . (25)

This covariance matrix and the correlation coefficients, R
in Figure 4, demonstrate that the off-diagonal elements,
especially those for adjacent and outer shells, need to be
considered. This pattern, which is found for all N and P ,

can be explained by intercalation flux uncertainties being the
dominant source of model error. When the flux is incorrectly
computed, error is introduced in the outermost state and
propagates inward, resulting in positive correlations for all
states.

B. Implementation in EKF

The EKF with process noise covariance matrix quantified
as presented in this paper, Qf , is applied to a UDDS drive
cycle, and compared with an EKF where process noise
is diagonal,Qd, as is often assumed. The two covariance
matrices are thus:

Qf = αfQ, (26a)
Qd = αdI, (26b)

where Q is the matrix given by Equation 25 and I is the
identity matrix. Each matrix is tuned with one fitting param-
eter, αf and αq , respectively, that is found by minimizing
the SOC root mean square error (RMSE) on the US06 data.
The RMSE is computed by:

RMSE =

√√√√ 1

Nt

Nt∑
k=1

(SOCk − SOCcck )2 (27)

where Nt is the number of time steps in the input pro-
file. SOCcc is the state-of-charge calculated from Coulomb
counting,

SOCcck = SOCcck−1 −
ηI(t)dt

3600Qnom
, (28)

where Qnom is the nominal capacity of the cell and η is the
Coulombic efficiency which is quantified as a function of
C-rate by [10].

A primary function for the EKF in LIBs is to overcome
initialization uncertainty, so the model was initialized with
3% SOC error to observe how each filter corrected the state.
The voltage result for both filters is shown in Figure 5. The
SOC RMSE is calculated to be 1.07% when using Qf and
1.26% when using Qd, showing very close performance.

V. CONCLUSIONS

This paper proposed an analytically-derived mapping
method for quantifying process error (comprised of model
uncertainty and process noise) in electrochemical LIB mod-
els. The eSPM model was first parameterized using ex-
perimental data from a 2 Ah 3.6 V Li-NMC cell, and a
closed loop observer for the eSPM was formulated. Using
the novel method for quantifying process error, it was shown
that error in each state is roughly Gaussian, a sufficient
condition that is often made but never verified. However,
the assumption of uncorrelated process noise states, i.e a
diagonal covariance matrix, was shown to be invalid, as all
error states had a positive correlation. This was tested over
the UDDS drive cycle and suggests that intercalation flux
is the dominant source of model uncertainty for the data
provided, as miscalculating it will cause all states within the
particle to be off in the same direction. The covariance matrix
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Fig. 4: Correlation plot of the process noise in each state. The mean, variance and z-test score are given for each state. The correlation coefficient, R,
and covariance for each pair of states is given as well. Process noise for all states is positively correlated.

,
Fig. 5: Voltage profiles for both filters.

quantified using the proposed method overcame initialization
uncertainty quicker and generally slightly outperformed the
model which used a conventional diagonal covariance matrix.
The method proposed in this work is not limited to LIB
applications, as the idea of quantifying process error by
”mapping” a high-fidelity model so that it can be compared
to a reduced one can be used in other engineering applica-
tions.
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