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Abstract— The Doyle-Fuller-Newman (DFN) model is gener-
ally considered the modeling standard to assess the worthiness
of reduced-order electrochemical models. An aspect of such
a macroscale model which has often been overlooked is that
they are approximate representations of pore-scale transport
dynamics and their predictive ability is hence susceptible to
certain operating conditions. In this paper, we identify battery
operating conditions that lead to loss of accuracy and root mean
square error as high as 83.9 mV in the voltage prediction of
the DFN model, and interpret our observations using a phase
diagram analysis. Under the same scenarios, we simulate the
performance of a full-homogenized macroscale (FHM) model
developed by applying multiple-scale expansions to the Poisson-
Nernst-Planck (PNP) transport equations. The performance of
both models is assessed against experiments conducted on 18650
cylindrical lithium-ion cells. Results infer that the DFN model
fails to predict battery voltage accurately towards the end of
discharge at temperatures higher than 40◦C. The FHM model
accurately predicts measured battery terminal voltage with less
than 22 mV RMS error for the evaluated conditions.

NOMENCLATURE

ηe Electrolyte volume fraction [−]
ηs Active material volume fraction [−]
φ̄s Averaged electrode phase potential [V ]
φ̄e Averaged electrolyte phase potential [V ]
a Electrode specific surface area [m−1]
Acell Electrode cross-sectional area [m2]
cs DFN model electrode concentration [molm−3]
cs,max Electrode saturation concentration [molm−3]
cs,surf Electrode surface concentration in the DFN

model [molm−3]
c̄e Electrolyte average concentration [molm−3]
c̄s Electrode average concentration in the FHM model

[molm−3]
De Pore-scale electrolyte diffusion coefficient [m2s−1]
Deff
e,j Effective electrolyte diffusion coefficient [m2s−1]

Ds DFN model active material diffusion [m2s−1]
Deff
s Effective electrode diffusion coefficient in the FHM

model [m2s−1]
F Faraday constant [V sΩ−1mol−1]
Iapp Applied current [A]
JLi Intercalation current density [A/m3]
k Reaction rate in the DFN model [Am2.5mol−1.5]
k∗ Reaction rate in the FHM model [A/mol]
Ke Pore-scale electrolyte conductivity [S−1m−1]
Keff
e Effective electrolyte conductivity [S−1m−1]
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Keff
s Effective electrode conductivity [S−1m−1]

Ln Thickness of the anode [m]
Lp Thickness of the cathode [m]
Ls Thickness of the separator [m]
r Radial coordinate direction [m]
R Universal gas constant [Jmol−1K−1]
Rc Contact resistance at the current collectors [Ω]
t+ Transference number [−]
T Cell temperature [K]
x Cartesian coordinate direction [m]
xn,init Initial anode stoichiometric coefficient [−]
xp,init Initial cathode stoichiometric coefficient [−]

I. INTRODUCTION

The transportation sector has witnessed many technologi-
cal advancements in recent years to enhance fuel efficiency
and reduce vehicular emissions [1]. Among these technolo-
gies, electrification of the vehicle powertrain has been widely
implemented in the automotive industry. Lithium-ion bat-
teries, electrochemical energy storage devices, are the most
preferred technology today for electric and hybrid propulsion
systems. Despite the decreasing cost of lithium ion battery
packs over the years [2], growth of the global electric vehicle
market has been slower than initially predicted [3].

Lithium-ion battery packs used in automotive applications
today are oversized and underutilized to meet vehicle life
expectancy. This conservative strategy has resulted in heavier
and expensive battery systems. The transition to large scale
applications has been hampered by the relative lack of under-
standing of scaling effects, which impact battery performance
and electrochemical and mechanical responses [4].

Safe, efficient battery utilization for large-scale applica-
tions is possible using a sophisticated battery management
system (BMS). To optimize performance and prolong battery
useful life, accurate estimation of battery state-of-charge
(SoC) and prediction of the battery state-of-health (SoH)
is required [5]. This depends on the mathematical models
describing lithium transport and the precision with which
their parameters are measured, estimated, or identified [6].
Advanced electrochemical modeling and estimation of bat-
tery internal states are vital to push batteries to operate at
their physically permissible limits [7].

Lithium-ion batteries involve highly non-linear transport
processes at multiple length scales [8]. As such, ion transport
can also be modeled on a multiplicity of length scales.
Models characterizing battery behavior at the smaller length
scales capture battery behavior better because they rely
on fundamental first principles to describe the transport
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Electrode Mass Transport Equation
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Electrode Charge Transport Equation
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Electrolyte Charge Transport Equation
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Intercalation Current Density

JLi,j(x, t) = ajkj

√
cs,surf,j ·

(
cs,max,j − cs,surf,j

)
·
√
c̄e,j(x, t) · 2 sinh

[
0.5F
RT

(
φ̄s,j − φ̄e,j − U0,j

)]
, j = (n, p)

JLi,s(x, t) = 0

JLi,j(x, t) = k∗j ·
√
c̄e,j · c̄s,j ·

(
1− c̄s,j

cs,max,j

)
·2 sinh

(
F

2RT

[
φ̄s,j − φ̄e,j − U0,j

])
, j = (n, p)

JLi,s(x, t) = 0 , because the separator does not

contain any active particles

TABLE I: Transport equations of the DFN and FHM models to describe lithium-ion transport dynamics.

processes. Lithium-ion transport can be captured at the
microscopic length scales using robust pore-scale models.
However, their computational intensity renders them imprac-
tical as a predictive tool at the system level. Macroscopic
models, which are approximate representations of the pore-
scale physics, are particularly appealing for control and
estimation strategies.

The electrochemical models used today have been derived
from the work of Doyle et . al . [9]. Since its development,
the DFN model has been accepted with limited criticism
and debate as the most reliable physics-based modeling
tool lithium-ion batteries. Its limitations in predicting bat-
tery dynamics at operating conditions characterized by high
discharge rates and operating temperatures, and most im-
portantly, aging, has not been adequately addressed. This is
attributed to the fact that the battery operating regimes that
lead to violation of the approximations and constraints that
facilitated the development of the DFN model have not been
well documented in published literature.

Some of the underlying assumptions of the DFN model
are summarized in [10], [11]. The most critical among
them concerns the particle geometry. Experimental investiga-
tions [12] have proven that practical battery electrodes have
non-spherical particle shapes which exhibit polydispersity.
Moreover, the effective transport properties are obtained
using an empirical relation that depends only on the elec-
trolyte volume fraction. However, electrode topology and
morphology play a significant role in influencing these ef-

fective properties [13]. Such limitations may be significantly
amplified in the single particle models [14], [15].

As a result, the performance of such control-oriented
models may not accurately reflect real-world battery response
even though their performance is accurate with respect to the
DFN model. Thus far, research efforts have not completely
tackled the problem of identifying the right conditions of
operation of the models that are being utilized. Unless this
is addressed, lack of awareness of model utilization may lead
to its implementation for the wrong applications.

This discussion in no manner intends to undermine pre-
vious modeling contributions. The DFN model has been
invaluable in the development of model-based strategies for
estimation, control, and diagnostics. Rather, in the quest of
understanding how to design and utilize batteries effectively,
this section serves to highlight specific attributes that are
missing in macroscale transport models, and motivates the
work presented in this paper.

This paper is structured as follows: Section II summarizes
the numerical implementation of the DFN and the FHM
models. Section III describes the parameter identification
approach for the DFN and FHM models. The particle swarm
optimization (PSO) algorithm is used for the identification
studies conducted in this work. Section IV discusses the
outcome of the identification studies. Section V summarizes
the conclusions of this work.
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Fig. 1: DFN and FHM model variables. As shown in (a), cs is resolved in a pseudo radial direction in the electrodes, and
the other variables are resolved in the x direction. The variables of the FHM model, shown in (b), are resolved along x.

II. FINITE ELEMENT IMPLEMENTATION

A. DFN Model

The transport equations of the DFN and FHM models are
summarized in Table I. n, s, and p represent the anode,
separator, and cathode, respectively. A detailed comparison
analysis of the mass and charge transport equations of the
DFN and the FHM models is presented in [16]. The finite
element implementation of the DFN model was conducted
by Plett et. al [17].

As illustrated in Fig. 1, this is a pseudo two-dimensional
battery model since the electrode mass conservation equation
for cs is resolved in a pseudo radial direction, r, while the
remaining variables φ̄s, φ̄e, and c̄e are resolved along the
direction perpendicular to the current collectors, x. The non-
linear partial differential equations (PDEs) of the DFN model
are coupled through the intercalation current density. In
addition to this coupling, the electrolyte charge conservation
equation consists of both the electrolyte concentration and
potential variables.

B. FHM Model

The finite element implementation of the FHM model [18]
using COMSOL Multiphysics®facilitates the comparison
studies on the two macroscale models using the same compu-
tational platform. Taking into consideration that an unbiased
comparison must be made, the FHM model is developed in
a one-dimensional setting. The equations of the FHM model
are summarized in Table I.

Electrolyte diffusion and conductivity are represented by
concentration-dependent entities Deff

e and Keff
e , respec-

tively. It must be noted in the FHM model that both the
electrolyte mass and charge conservation equations consist
of the electrolyte concentration and potential variables.

C. General Remarks

The terminal voltage of the cell in the DFN and the FHM
models is evaluated using the expression:

V (t) = φ̄s,p(Lcell, t)− φ̄s,n(0, t)−Rc · Iapp(t), (1)

where Rc is the contact resistance at the current collectors.
This is the model-predicted voltage output that is compared

with the experimentally measured cell terminal voltage re-
sponse.

The open circuit potential curve for the graphite anode
and nickel manganese cobalt oxide (NMC) cathode were
obtained from [15]. Pore-scale electrolyte diffusion and
conductivity coefficients as a function of concentration and
temperature were obtained from [19]. Effective diffusion
and conductivity for the DFN model were obtained using
the Bruggeman approach [20], and by resolving the closure
problem for the FHM model [16].

III. MODEL PARAMETER IDENTIFICATION

This section elaborates upon the identification studies
conducted to determine the parameters of the DFN and the
FHM models using an integrated Matlab® and COMSOL
Multiphysics® co-simulation framework. For an elaborate
description of the development of the FHM model and the
parameter identification studies, the reader is referred to [21].

The parameters of both models were identified by selecting
a specific experimental data set and minimizing the error
between the measured voltage response and the model-
predicted voltage for the given current input. A total of 18
parameters of the DFN and FHM models were identified
using experimental data, with the vector of parameters being:

θDFN =
[
Ln Ls Lp Acell Ds,n Ds,p kn kp Rc

xn,init xp,init cs,max,n cs,max,p ηn ηp ηe,n ηe,s ηe,p
]T

(2)

for the DFN model and

θFHM =
[
Ln Ls Lp Acell D

eff
s,n Deff

s,p k∗n k
∗
p Rc

xn,init xp,init cs,max,n cs,max,n ηn ηp ηe,n ηe,s ηe,p
]T

(3)

for the FHM model. The vector of parameters for both
the models are identified using the PSO algorithm [22]. The
objective of the parameter identification study is to determine
the values of the 18 parameters by minimizing the cost
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Parameter DFN Model
Identified Value

FHM Model
Identified Value Average

Ln [m] 50.60e− 6 51.60e− 6 51.1e− 6

Ls [m] 31.0e− 6 24.9e− 6 28e− 6

Lp [m] 40.8e− 6 39.4e− 6 40.1e− 6

Acell [m2] 0.1058 0.1026 0.1042

xn,init [−] 0.7878 0.7748 0.7813

xp,init [−] 0.3507 0.3402 0.3455

cs,max,n [mol/m3] 29970 27611 28791

cs,max,p [mol/m3] 46264 47852 47058

ηs,n [−] 0.5813 0.6599 0.6206

ηs,p [−] 0.5729 0.5724 0.5727

ηe,n [−] 0.3037 0.2939 0.2988

ηe,s [−] 0.4320 0.3888 0.4104

ηe,p [−] 0.2841 0.3035 0.2938

TABLE II: The individually identified geometric and stoichiometric parameters of the DFN and FHM models, and their
average values.

function; representing the root mean square errors:

J(θk) =

√√√√{ 1

N

N∑
i=1

(
Vexp(i)− Vmod(θk; i)

)2
}
, (4)

k = {DFN,FHM}, where Vexp is the experimentally
measured voltage response of the lithium-ion cell, Vmod is
the model-predicted voltage that is a function of θk, N is
the total number of data samples, and i is the time index.

The PSO-based identification is initiated by providing an
initial guess for the elements of the vector θk. A suitable
initial guess and identification range for these elements
is determined based on values reported in literature [15]
and refined for each parameter. The radius of the active
particles in the anode and cathode were kept constant at a
value of 5 µm for both the models. The model parameter
identification approach is implemented as follows:

1) Step 1: The parameter identification study is initiated
with a swarm population size of 200 and 10 generations.
The termination criteria is 2200 iterations.

2) Step 2: θk is identified for both models using 2A con-
stant current capacity test in discharge experimental data
conducted at 23◦C. The anode and cathode conductivity
coefficients, obtained from [23], were kept constant
since prior studies [24] observed that they had no impact
on the model-predicted response. Their values were
unchanged in the identification studies.

3) Step 3: The geometric and stoichiometric parameters
identified for the DFN and FHM models were averaged
to enable unbiased simulations and identification stud-
ies. The averaged values of these 13 parameters are used
in both the models, and are summarized in Table II.

4) Step 4: The 13 averaged parameters are invariant to

temperature, and are kept fixed for the subsequent
identification studies. Since the averaging of parameters
compromises the predictability of both the models, the
identification study in Step 1 is repeated to optimize
the remaining 5 parameters: the two electrode diffusion
coefficients, the two reaction rate constants, and the
contact resistance.

5) Step 5: In subsequent studies, only the aforementioned
5 parameters are identified as a function of temperature
using 2A constant current discharge experimental data
sets. The data sets for the identification studies reported
in this paper were obtained from experiments at cell
temperatures of 23◦C, 40◦C, and 45◦C. The same cost
function is utilized in all the identification studies.

The parameter identification studies were conducted on
a Dell Precision T5810 desktop computer with 32.0 GB
random access memory and Intel(R) Xeon(R) CPU E5-
1650 v3 3.50 GHz processor. The parameter identification
study using the FHM model and 23◦C data took 65, 048
s to complete, while the DFN model identification study
using the 23◦C data took 86, 709 s to complete. The longer
simulation time per iteration of the DFN model is attributed
to the resolution of the model variables in two computational
domains (radial and linear).

IV. RESULTS AND DISCUSSION

The performance of the DFN and FHM models for the
identification studies conducted using 23◦C, 40◦C, and 45◦C
data sets is presented in Fig. 2. It must be noted that the five
temperature-dependent parameters, which were individually
identified for both the models, were kept separate and no
further averaging of these parameters was performed while
assessing model performance. Both the models predict bat-
tery behavior within an RMS error of 22 mV at 23◦C. At
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2A constant current discharge at 40°C 2A constant current discharge at 45°C2A constant current discharge at 23°C

Fig. 2: Performance of the two models. The FHM model RMS error at 23◦C, 40◦C, and 45◦C is respectively 21.6 mV, 21
mV, and 19 mV. The DFN model RMS error at these temperatures is respectively 22 mV, 75.8 mV, and 83.9 mV.
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Graphite Anode

Fig. 3: Electrolyte phase diagram for the graphite anode. The data points represent (α,β) values calculated for the DFN and
FHM models. At temperatures higher than 40◦C, the DFN model data points move outside the applicability regime.

higher temperatures of battery operation, there is a loss of
accuracy in the DFN model towards the end of discharge.
On the other hand, the FHM model predicts cell dynamics
accurately until the end of the discharge curve.

An electrolyte phase diagram analysis was conducted
to assess the validity of the applicability constraints of
macroscale models in predicting cell behavior. The phase dia-
gram approach was initially proposed by Battiato et . al . [25]
to identify the conditions under which effective advection-
dispersion-reaction equations provide an accurate description
of the micro-scale transport processes. Introduced for the
first time for lithium-ion batteries in [18], it is a powerful
tool with the ability to indicate battery operating conditions
under which the error in macroscale model predictiveness is
bounded with respect to its pore-scale counterpart. The phase
diagram implementation for different electrodes in a certain
range of battery operating temperatures is detailed in [26],
and an assessment of the veracity of macroscale models for
batteries subject to capacity fading using the phase diagram
is elaborated in [27].

Electrolyte diffusion and conductivity values were ob-

tained as a function of temperature from [19]. They were
evaluated at the initial electrolyte lithium concentration of
1200 [mol/m3] for both models. The dimensionless Péclet
and Damkhöler numbers, Pee and Dae, are computed for the
graphite anode. The values of the phase diagram parameters
(α,β) for the DFN and FHM models are plotted for three cell
temperatures: 23◦C, 40◦C, and 45◦C, as shown in Fig. 3.

It can be observed from the phase diagram that the points
(α,β) of the DFN model violate the applicability constraint
(α + β ≥ 0) at temperatures of 40◦C and beyond. Under
the same conditions, the points (α,β) of the FHM model
stay within the blue shaded region since they satisfy all the
applicability constraints. When data points (α,β) fall out of
the applicability regime (defined by the blue shaded region),
macroscale modeling electrolyte equation error is no longer
bounded.

The loss in the predictability of the DFN model at 40◦C
and 45◦C, as observed from Fig. 2, can be attributed to a
violation of the constraints that enable successful upscaling
of the macroscale transport equations. At higher operating
temperatures, the dominance of reaction transport leads to the
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formation of diffusion-limited regimes. Under these circum-
stances, the system is no longer well-mixed, and macroscopic
transport models can become invalidated and incapable of
capturing pore-scale dynamics.

V. CONCLUSION

Accurate prediction of battery behavior across a wide
range of operating temperatures and current rates of charge
or discharge is dependent on a reliable description of battery
internal transport processes. One of the major contributions
of this paper is the identification of operating conditions un-
der which the assumptions and approximations that facilitate
the use of the DFN macroscale model are violated, leading
to a loss of model predictability.

The results from the finite element implementation of
the DFN model and the FHM model developed in [18] is
presented in this paper. The performance of both the models
were assessed using data from experimental measurements
on 18650 cylindrical lithium-ion cells composed of NMC
cathode and graphite anode. A cost function was designed
to minimize the error between experimentally measured and
model-predicted voltage response of the cell. The same
geometric and stoichiometric parameters were used in both
the models, and 5 temperature-dependent parameters were
individually identified for both the models using constant
current discharge experimental data sets.

The results of the identification studies and the phase
diagram analysis indicate that the DFN model, which pre-
dicts battery dynamics well at 23◦C, fails to replicate the
same at temperatures greater than 40◦C. This implies that
significant caution must be exercised while implementing
the DFN and its reduced-order formulations for applications
where the battery operates over a wide range of SoC. A major
contribution of this paper is the development and validation
of the enhanced predictability of the FHM model, which can
be used to develop advanced physics-based control strategies
for BMS applications.
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