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Abstract— This work presents the first-ever control oriented
model to predict the thermal dynamics inside a ceria-coated
Gasoline Particulate Filter (GPF). By incorporating catalytic
reaction kinetics in addition to the carbon to CO2 oxidation
reactions, the proposed model predicts the internal GPF tem-
perature during nominal operation and regeneration events.
The model utilizes the GPF inlet exhaust gas temperature to
predict the internal GPF temperature. Parameter identification
and model validation are performed using data obtained from
experiments with a ceria-coated GPF installed on a vehicle using
a direct injection engine operated in a chassis dynamometer
laboratory. It is demonstrated in this work that the model
predicts ceria-coated GPF thermal dynamics for different initial
soot loadings and engine operating conditions within a root
mean square (RMS) error of 5%.

Nomenclature
AC,1 Pre-exponential factor for the endothermic ce-

ria reactions, [1/s]

AC,2 Pre-exponential factor for the exothermic ceria
reaction, [1/s]

AT Pre-exponential factor for the oxygen-initiated
carbon oxidation reactions, [1/s]

Cp,GPF Heat capacity of the GPF, [J/(kgK)]

Cp,g Heat capacity of the exhaust gas, [J/(kgK)]

EC,1
a Endothermic catalytic reactions activation en-

ergy, [J/mol]

EC,2
a Exothermic catalytic reaction activation en-

ergy, [J/mol]

ET
a Exothermic carbon oxidation reactions activa-

tion energy, [J/mol]

∆HC,1 Endothermic catalytic reactions enthalpy,
[J/mol]

∆HC,2 Exothermic catalytic reaction enthalpy,
[J/mol]

∆HT Exothermic carbon oxidation reactions en-
thalpy, [J/mol]

λ Air/fuel ratio, [−]

mC Mass of carbonaceous soot, [kg]

MC Carbon molar mass, [kg/mol]

ṁg Exhaust gas mass flow rate, [kg/s]
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mO2 Mass of oxygen, [kg]

MO2 Oxygen molar mass, [kg/mol]

ntot Combustion reaction total product moles,
[mol]

R Ideal gas constant, [J/(molK)]

RC,1 Endothermic ceria reaction rate, [mol/s]

RC,2 Exothermic ceria reaction rate, [mol/s]

RT Oxygen-initiated carbon oxidation reaction
rate, [mol/s]

ρGPF Filter density, [kg/m3]

ρO2 Density of oxygen, [kg/m3]

ρsoot Initial soot loading, [g/l]

Tinlet Measured temperature at the GPF inlet, [K]

Tmid Measured temperature at the mid-location of
the GPF, [K]

Tmod Model-predicted temperature at the mid-
location of the GPF, [K]

VGPF Total volume of Cordierite in the GPF, [m3]

Vtrap Filter trapping volume, [m3]

XCeO2
Volume fraction of ceria, [−]

XO2
Volume fraction of oxygen, [−]

I. INTRODUCTION

In recent years, the challenges associated with vehicu-
lar exhaust emissions have gained increasing prominence
due to the imposition of stringent regulations for reducing
greenhouse gases and particulate matter [1]. To meet current
and future regulation targets, different engine technologies
have been developed. Some of these new technologies are:
(a) vehicle electrification [2], (b) gasoline direct injection
(GDI) engines [3], (c) variable valve timing [4], (d) advanced
exhaust gas recirculation [5], (e) waste heat recovery from
Rankine cycle [6], and (f) selective catalytic reduction for
NOx [7].

GDI engines have become a preferred technology for
automotive manufacturers to increase fuel economy while
reducing greenhouse gas emissions [8]–[10]. However, the
main drawback of this technology could be partial mixing
of fuel and air for some combustion systems under certain
operating modes. As a result of partial mixing, for certain
systems under certain operating conditions, ultra-fine toxic



particulate matter could be released into the atmosphere,
which may lead to environmental hazards and health dis-
eases [11]–[13]. The Euro VI regulations emphasize the
need for tighter enforcement of current particulate matter
regulations from GDI engines. In this regard, the European
Union is tightening the particulate number standard for GDI
engines from 6× 1012 particles/km to 6× 1011 particles/km
in the year 2017 [4].

Among the different strategies being pursued to effectively
reduce these hazardous particulate emissions, devices such
as Gasoline Particulate Filters (GPFs) are considered by
original equipment manufacturers as the most practically
adoptable and expediently deployed solution [14], [15]. GPFs
consist of a monolithic structure with a bundle of axially
parallel channels. These channels are alternatively plugged
at each end and force the exhaust gas to flow through
the porous walls. During this process, particulate matter is
trapped in the GPF pores and separated from the exhaust gas
constituents [16]. During vehicle operation, this particulate
matter accumulates over time inside the GPF. Oxidation
at elevated temperatures converts the trapped carbonaceous
matter into CO and CO2 gases, and reduces the trapped soot
mass and associated back pressure in the filter [17].

Mitigation of exhaust gas emissions has already been
pursued on diesel engines through diesel particulate filters
(DPFs), and results have shown substantial reduction in soot
mass and number at the tailpipe [18]–[20]. The charac-
teristic behavior of DPFs, such as filtration efficiency and
pressure drop, depend on parameters such as substrate cell
density, porosity, pore size, wall thickness, and washcoat
material [21]. However, gasoline exhaust properties and
soot particle characteristic diameters are very different from
those of diesel engines [3], making it inaccurate to apply
DPF technology directly to GDI engines without making
adjustments to the filter parameters.

A wealth of literature was published on DPFs, which
focused on experimental investigations and mathematical
model development ranging from lumped parameter strate-
gies [22] to comprehensive models that incorporate the soot
microstructure [23]. By contrast, very little information has
been made available on the mathematical modeling of GPF
physical dynamics. Nicolin et. al. [24] and Boger et. al. [25]
proposed reduced order models to investigate the thermal
dynamics in an uncoated GPF. Soot oxidation dynamics were
modeled by studying regeneration events inside the GPF.
Opitz et. al. [16] proposed a single channel model and
conducted experimental and simulation studies to investigate
the cold start behavior of a GPF. Liu et. al. [26] developed
a mathematical model to determine the backpressure and
filtration efficiency in metallic fibrous GPFs, and utilize this
information to optimize design characteristics such as filtra-
tion area, filter thickness, and minimum filter media volume.
A high fidelity 2-D physics-based model was developed to
characterize mass, energy, and momentum transport of the
exhaust gas inside an uncoated and clean GPF [27].

One challenge in characterizing GPF transport dynamics
is that the filtration and regeneration mechanisms which

continuously oxidize loaded soot have not been clearly
understood. An approach to address this challenge is to
install temperature sensors at different locations inside the
GPF. However, the high costs involved with installation,
data acquisition, monitoring, and maintenance makes this an
infeasible option for real-world applications. A more viable
approach is to develop mathematical models that incorporate
the mass and heat transfer dynamics to predict the internal
temperature dynamics in a GPF.

Recent advancements in GPF design have led to the
development of washcoated filters in which the monolithic
structure is coated with inorganic oxides or precious metals
such as platinum [28], [29]. Through experiments, such
devices have been shown to reduce NOx emissions by nearly
10% relative to uncoated GPFs [29]. Washcoated GPFs have
also demonstrated enhanced soot oxidation with respect to
their uncoated counterparts due to their inherent oxygen
storage capability [11], [30]. In addition, Lambert et. al. [31]
specify that the initial filtration efficiency of an uncoated
GPF can be improved by 20-30% by adding a catalyst
washcoat. Washcoated GPFs are expected to be increasingly
adopted in the future due to their ability to provide the
following enhancements with respect to uncoated GPFs:
(a) enhanced oxidation and reduction of gaseous emissions
which slip through the three-way catalyst (TWC), (b) re-
duced pressure drop, and (c) improved particulate number
filtration efficiency [32].

Compared to uncoated GPFs, washcoated GPFs have
demonstrated the ability to perform regeneration more ef-
ficiently at lower temperatures [33]. They have also been
experimentally observed to enhance soot oxidation, leading
to hotter temperatures than their uncoated counterparts [3].
These factors elucidate the need for a mathematical approach
that allows optimal utilization of washcoated GPFs by: (a)
determining the internal GPF temperature variation during
regeneration, and (b) accurately quantifying the amount of
soot oxidized during regeneration. The successful accom-
plishment of objective (a) will facilitate GPF operation
within safe limits of temperature and prolong its useful life.
Achieving objective (b) in addition to objective (a) will
enable control of the necessary regeneration duration. Thus
far, washcoated GPF models which characterize the thermal
and soot oxidation dynamics are lacking in the published
literature.

For the very first time, we propose a lumped parameter
model to characterize the thermal dynamics in a ceria-coated
GPF. In addition to oxygen-initiated soot oxidation reactions,
this model incorporates ceria-influenced catalytic reactions
to determine the overall exothermic heat during regeneration
events. The formulation of the reaction rate equations not
only allows the prediction of internal temperature, but also
the amount of soot oxidized as a function of time. An
additional benefit of the proposed model is understanding
how the active ceria sites are generated and consumed within
the GPF. A similar approach can be implemented for any
catalytic coating material. As a result, the amount of soot
oxidized can be quantified for each type of washcoat material



used in the GPF. This information can be very useful for
coated-GPF design purposes.

This paper is structured as follows: Section II presents
the lumped parameter model, reaction rates, thermal balance
equation, variation of carbon soot mass, and the mass balance
of available catalytic ceria sites during the operation of
the coated GPF. Section III presents the model parameter
identification approach using two different experimental data
sets. Section IV validates the performance of the lumped
parameter model using a third experimental data set with an
initial soot loading concentration and operating conditions
that are different from the identification data sets. Section V
summarizes the contributions of this work and the direction
of future research to enhance model predictiveness.

II. DYNAMIC TRANSPORT MODEL OF A CERIA-COATED
GPF

In this section, a lumped parameter model is presented
to characterize the thermal dynamics in a coated GPF.
The washcoat material used in the GPF is composed of
cerium (Ce), a catalytic element that is capable of enhancing
soot oxidation reactions inside the GPF. First, reaction rate
expressions are formulated for all regeneration reactions.
Using this information, the amount of heat released during
the regeneration event is quantified. By combining exhaust
gas convection heat transport and the conduction heat transfer
through the thermal inertia of the cordierite material, the
thermal dynamic equation is developed. The reaction rate
equations are also used to determine the soot mass dynamics
and the formation-consumption of active ceria sites. Accurate
information regarding the thermal dynamics inside a GPF is
important since GPF operation beyond certain critical inter-
nal temperatures can lead to ceramic substrate fracture and/or
damage to the washcoat. On the other hand, information
about the soot oxidation dynamics can help prevent filter
overloading and elevated back pressure.

The exothermic, oxygen-initiated, soot oxidation reactions,
introduced in [24], are:

C +O2 → CO2

C + 0.5O2 → CO

}
Exothermic (1)

To define the reaction rate expression for each of the above
exothermic reactions, the extent of partial oxidation that
produces CO, and the extent of complete oxidation that
produces CO2 must be explicitly known. It is challenging
to quantify these oxidation pathways individually due to the
difficulty in measuring the amount of CO produced as an
intermediate step towards ultimate CO2 production at the
GPF outlet. As a result, a unified reaction rate expression is
used to combine the effects of these two reactions. A similar
approach was implemented by Nicolin et. al. in [24] to
address the same issue. The reaction rate for (1) is formulated
in the form of an Arrhenius equation, and is expressed as:

RT = AT e−
ET

a
RT

mC

MC
XO2 (2)

The presence of cerium provides additional reaction path-
ways for carbon. Endothermic reactions occupy active ceria
(CeO2) sites in the catalytic coating, while consuming car-
bon molecules. This procedure is described by the following
chemical reactions [34]:

C + 4CeO2 → 2Ce2O3 + CO2

C + 2CeO2 → Ce2O3 + CO

}
Endothermic (3)

which lead to the lumped reaction kinetics of equation (4):

RC,1 = AC,1 e
−E

C,1
a
RT

mC

MC
XCeO2 (4)

Combining reaction kinetics for (1) and (3) into (2) and (4),
respectively, stiffens the response of the model, but also
removes additional uncertain parameters given by the in-
trinsic competition between the exothermic and endothermic
reactions for carbon. In contrast, the exothermic reaction in
equation (5) generates new free ceria sites, oxidizing Ce2O3

and producing CeO2 [34]:

Ce2O3 + 0.5O2 → 2CeO2

}
Exothermic (5)

which leads to the following reaction kinetics:

RC,2 = AC,2 e
−E

C,2
a
RT

XO2
ρO2

Vtrap
MO2

(1−XCeO2), (6)

where ρO2
is obtained using the ideal gas equation.

Lumping the gas and solid phases together, the thermal
dynamics inside the GPF are described as follows:

dTmod

dt
=

[ Exothermic︷ ︸︸ ︷
−∆HTRT −∆HC,2RC,2

Endothermic︷ ︸︸ ︷
−∆HC,1RC,1

− ṁg Cp,g(Tmod − Tinlet)
]

1

VGPF ρGPF Cp,GPF

(7)

where (−∆HT )RT and (−∆HC,2)RC,2 are the exother-
mic heat of the reactions (1) and (5) respectively, and
(−∆HC,1)RC,1 is the endothermic heat of the reaction (3).
The sign convention of equation (7) accounts for exother-
mic enthalpy of formations being negative and endothermic
enthalpy of formations being positive [35].

The enthalpy of formation of a substance, ∆Hf , represents
the amount of energy absorbed or released as the substance is
formed from its constituent elements [35]. When the control
volume is merely composed of these elements, exothermic
reactions release chemical energy from the control volume
as heat; hence ∆Hf is negative. The converse is true for
endothermic reactions. The dynamic equation for the GPF
lumped model represents the filter and not the specific
elemental molecules. So, heat leaving the molecular scale
control volume due to product formation is actually flowing
into the GPF material. This necessitates the need for the
negative signs in equation (7).

The soot mass oxidation dynamics are modeled under the
assumption of uniform deposition and concentration inside
the device [24]. Accordingly, the temporal dynamics of



carbon mass within the GPF can be modeled by:

dmC

dt
= −AT e−

ET
a

RT mC XO2

−AC,1 e
−E

C,1
a
RT mC XCeO2

(8)

Additionally, the formation-consumption of available ceria
sites for carbon interaction is modeled by:

dXCeO2

dt
= −AC,1 e

−E
C,1
a
RT

mC

ρsoot Vtrap
XCeO2

+AC,2 e
−E

C,2
a
RT XO2(1−XCeO2)

(9)

XCeO2
in equation (9) represents the volume fraction of

active ceria sites. The volume fraction of a constituent in
a medium is generally defined as the ratio of the volume
occupied by the constituent to the total volume occupied
by all the constituents. The soot oxidation reactions (1)
and (4), the soot mass dynamic equation (8), and the mass
fraction variation equation of available ceria sites (9), depend
on XO2

, the volume fraction of oxygen. Under nominal
operating conditions, where the air-fuel ratio, λ, is equal to
the stoichiometric value of 1.0, XO2 is equal to zero. This
assumes complete gasoline combustion and that the GPF is
located downstream of the TWC. During a GPF regeneration
event, the engine is forced to operate in lean conditions where
λ is greater than 1.0. This increases the concentration of
oxygen inside the GPF and consequently enables the reaction
pathways (1), (3), and (5). These reaction rates increase
with GPF temperature, leading to the accelerated oxidation
of the trapped particulate matter. XO2

is computed using
the measurements provided by a wide range lambda sensor
located upstream of the GPF, and simultaneously involving
the following combustion reaction [36]:

CaHb + λ

(
a+ b

4

)
(O2 + 3.773N2)→

aCO2 + b
2H2O + λ3.773

(
a+ b

4

)
N2 + (λ− 1)

(
a+ b

4

)
O2

(10)

The total number of moles of the products of the above
equation, which are also constituents of the exhaust gas, are:

ntot = a+
b

2
+ λ3.773

(
a+

b

4

)
+ (λ− 1)

(
a+

b

4

)
(11)

Considering CaHb = C8H18 (octane), the volume fraction
of oxygen is determined by the ratio of oxygen moles to the
total number of combustion product moles:

XO2 =
(λ− 1)(a+ b/4)

ntot
(12)

III. PARAMETER IDENTIFICATION STUDY

In order to identify the lumped parameter model proposed
in Section II, experimental measurements of GPF inlet
temperature, GPF brick temperature, and exhaust gas mass
flow rate are used. The sensor layout for temperature data
acquisition is shown in Figure 1. Type K thermocouples were
used to measure the GPF inlet (Tinlet) and mid-location

Fig. 1: GPF sensor layout: 2 thermocouples (Tinlet,Tmid) are used to
identify the lumped parameter model. Upstream the GPF, a wide-band λ
sensor measures the amount of oxygen going into the filter.

(Tmid) temperatures. Parameter identification is performed
by considering regeneration events that occur within the fil-
ter. A total of 11 parameters are identified using experimental
data, with the vector of parameters, θ, being:

θ = [AT AC,1 AC,2 E
T
a EC,1

a EC,2
a

∆HT ∆HC,1 ∆HC,2 Cp,GPF Cp,g]T (13)

The parameters are identified using the Particle Swarm
Optimization (PSO1) algorithm [39]. The objective of the
parameter identification study is to determine the element
values of the vector θ, such that the model output matches the
experimental measurement as closely as possible. Mathemat-
ically, this is defined using the thermal-based cost function:

J(θ) = (14)√√√√{ 1

N

N∑
i=1

(
Tmid(i)− Tmod(θ; i)

)2}
·

100 ·N∑N
i=1 Tmid(i)

where Tmid is the measured temperature at the mid-
location internally in the GPF, Tmod is the model-predicted
temperature that is a function of θ, N is the total number of
data samples, and i is the time index. The expression for the
cost function also represents the % root mean square (RMS)
error.

The parameter identification study was conducted using
two different experimental data sets that were characterized
by different initial soot loading concentrations, typically
expressed in units of g/l. In the experimental campaign, a
ceria-coated GPF was instrumented with thermocouples that
spanned the axial direction from inlet to outlet, and the radial
direction from centerline to exterior shell. Among these ther-
mocouples, the mid-location was chosen as a representation
of the internal temperature of the GPF. This selection was
made due to the strategic location of the thermocouple,
coupled with the fact that the lumped parameter model would
consider uniform behavior across the entire GPF. As such,
the center location would be a characteristic representation
of the behavior of the entire GPF device.

1PSO is a non-gradient based evolutionary computational approach based
on the social behavior of certain animal species [37]. It is designed to
achieve the global minumum for a designed objective/fitness function by
moving a population of possible solutions, constituting the swarm, through
a multi-dimensional solution hyperspace in an iterative fashion [38].



TABLE I: The range of variation of the parameter values during the
identification process.

Parameter Identification Range
AT [1e5, 3e8]
AC,1 [10, 3e4]
AC,2 [10, 3e4]
ET

a [135e3, 165e3]
EC,1

a [90e3, 110e3]
EC,2

a [72e3, 88e3]
∆HT [−302.4e3,−226.8e3]
∆HC,1 [255.84e3, 351.78e3]
∆HC,2 [−457.44e3,−343.08e3]
Cp,GPF [112, 1344]
Cp,g [100, 1200]

Prior to data acquisition, soot accumulation experiments
were performed by operating a vehicle with the instrumented
GPF installed downstream of a TWC for extended periods of
time. Specific operating regimes were designed for expedient
accumulation of soot within the GPF without elevating ex-
haust temperatures above the activation threshold of the GPF
reactions. Based on engine operating conditions, the exhaust
gas mass flow, and the backpressure across the GPF that
was measured using a differential pressure sensor, particulate
mass accumulation inside the GPF was determined. Several
accumulation experiments were conducted to produce dif-
ferent initial soot loading concentrations within the coated-
GPF. The identification study presented in this section used
two experimental data sets: one with an initial soot loading
concentration of 0.5 g/l, and the other with an initial soot
loading concentration of 2.15 g/l.

For each data set, a series of regeneration events were
conducted in succession to oxidize the soot (carbon) partic-
ulate matter. Successive regeneration events were initiated
at increasingly elevated GPF inlet temperatures to facilitate
further oxidation of the trapped particulate matter as the
GPF soot loading diminished. For the identification study,
the first regeneration events conducted on the coated-GPF for
initial soot loading concentrations of 0.5 g/l and 2.15 g/l
were utilized, as the absolute concentration of soot within
the GPF is explicitly known. This is an important input for
the lumped parameter model in order to characterize the
thermal dynamics. Since these experiments did not involve
data acquisition pertaining to the amount of soot oxidized,
it is appropriate to select the first regeneration event where
the initial amount of soot has been clearly determined from
the accumulation experiment.

The elements of the vector θ comprise pre-exponential
factors, activation energies, and reaction enthalpies
for (1), (3), and (5). The initial guesses for the pre-
exponential factors and the activation energies are based on
the work on Konstantas [34]. The reaction enthalpies are
explicitly calculated for the three reaction pathways using
the thermodynamic enthalpies of formation of the reactants
and products, the values for which were obtained from [40].
The initial values for cordierite and exhaust gas specific heat

capacities were obtained from [41] and [35], respectively.
The parameter identification study was conducted using

the PSO algorithm [39], with a population size of 200 and
2,000 total generations. The termination criteria was defined
as either 2,000 completed generations (or) the completion
of 1,000 successive generations without any improvement in
the cost function. Table I lists the range of the identification
space for the elements of the parameter vector θ. Specifica-
tion of such large identification ranges accounts for a loss
in the physical meaning of the lumped model parameters
due to the inherent assumption of uniform GPF transport
dynamics throughout the medium. It must be noted that
since the equations presented in (1) and (3) are lumped,
the initial values for their corresponding reaction enthalpies,
∆HC,1 and ∆HC,2, are obtained by taking the average of
the reaction enthalpy of each individual reaction shown in (1)
and (3), respectively. At the sponsor’s request, the identified
values of the model parameters have remained proprietary.

The results of the parameter identification study using
the 0.5 g/l and 2.15 g/l experimental data sets are pre-
sented in Figure 2. Domain 1 represents pre-regeneration
temperature dynamics, Domain 2 represents temperature
dynamics during the onset and completion of regeneration,
and Domain 3 represents post-regeneration temperature
dynamics. The RMS error for the identification results using
the 0.5 g/l and the 2.15 g/l data sets are respectively 1.53%
and 1.76%. The next section presents model validation over
a third experimental data set and a discussion on the poten-
tial implications of the control-oriented model presented in
Section II.

IV. MODEL VALIDATION

The identified parameters from the two different exper-
imental data sets depend on the initial soot loading con-
centration. In order to validate the model, the experimental
data set for the first regeneration event of a coated-GPF with
an initial soot loading concentration of 1.0 g/l was chosen.
This particular data set was selected because the initial soot
mass inside the GPF was between the initial soot mass
values for the data sets used for parameter identification. The
model parameter values used for validation were obtained
by taking the average of the parameter values from the
identification results using the 0.5 g/l and 2.15 g/l data
sets. The validation results are presented in Figure 3. In
addition to the initial soot loading, temperature effects are
also predominant across the GPF and influence the model
parameters. Current research is investigating the development
of a linear parameter-varying (LPV) model, which would
incorporate the dependency of both initial soot loading and
temperature to provide linearly interpolated values of the
model parameters for different operating conditions.

The RMS error for the model validation using the 1.0 g/l
data set is 4.03%. The validation results indicate satisfactory
accuracy of the model-predicted thermal dynamics with
respect to the experimentally observed temperature dynamics
in Domain 1 and Domain 3. The discrepancy observed
in Domain 2 may be attributed to the limitations of using



𝐷𝑜𝑚𝑎𝑖𝑛 1 𝐷𝑜𝑚𝑎𝑖𝑛 3

𝐷𝑜𝑚𝑎𝑖𝑛 2

𝐷𝑜𝑚𝑎𝑖𝑛 1 𝐷𝑜𝑚𝑎𝑖𝑛 3

𝐷𝑜𝑚𝑎𝑖𝑛 2

Fig. 2: Results of the parameter identification study comparing the measured and model-predicted GPF mid-location internal temperature variation. The
RMS error for the identification results using the 0.5 g/l and 2.15 g/l data sets are respectively 1.53% and 1.76%.

𝐷𝑜𝑚𝑎𝑖𝑛 1 𝐷𝑜𝑚𝑎𝑖𝑛 3

𝐷𝑜𝑚𝑎𝑖𝑛 2

Fig. 3: Model validation results comparing the measured and model-
predicted GPF mid-location internal temperature during the first regen-
eration event of a coated-GPF with an initial soot loading of 1.0 g/l. The
RMS error from the validation results of the model is 4.03%.

a lumped parameter model, which assumes a uniformly
even dispersion of soot throughout the filter and a single
filter temperature. In reality, the response of mid GPF
temperature sensor is impacted by heat emanating from soot
reactions in other areas either by transport or by conduction
through the cordierite. A lumped parameter model is unable
to account for spatial distribution due to its assumption
of uniform dynamics throughout the GPF. Despite these
discrepancies, the maximum mid-location experimental and
model-predicted temperature values based for the 1.0 g/l
data set are respectively 1056 K and 1050 K. The maximum
mid-location temperature predicted by the model was within
an error of 0.57% of the measured maximum mid-location
temperature.

These validation results have strong implications for two
reasons: (a) the model utilizes only the GPF inlet temperature
to predict internal thermal dynamics, eliminating the need for
expensive and high-maintenance internal GPF temperature

sensors during vehicle operation, and (b) the health of the
GPF washcoat and cordierite substrate are sensitive to high
internal temperatures. Exposing the coated GPF to aggressive
conditions may result in performance degradation, as well
as material disintegration and failure [24]. To address this
critical issue, the model can be used to develop On-Board
Diagnostic (OBD) strategies to determine the onset temper-
ature and the duration for which regeneration events must
be performed. By successful implementation of such model-
based control strategies, critical internal GPF temperatures
can be avoided during nominal operation.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a control-oriented model to predict
the thermal response of a ceria-coated GPF during nominal
operation and regeneration events. The model incorporated
oxygen- and ceria-initiated soot oxidation reactions, and both
the heat generated inside the coated GPF during regeneration
and the heat carried away by the exhaust gases. A thermal-
based cost function was developed to identify the model
parameters by minimizing the RMS error between the model-
predicted GPF thermal response and the experimentally
measured temperature at the axial center of the coated GPF.

Parameter identification studies were conducted using ex-
perimental data on two different initial soot loading con-
centrations. The model was validated for a third data set
whose initial soot loading concentration was between those
used for identification. Results indicate that the model is
suitable for predicting internal temperature dynamics for
ceria-coated GPFs. Current and future work will focus on
the following aspects to enhance model predictability: a)
experimental work to quantitatively measure soot oxidation
dynamics in addition to thermal data acquisition, b) reducing
the number of identified parameters by determining exhaust
gas and cordierite properties using experimental data, and c)
improving the parameter identification study by incorporat-
ing soot oxidation dynamics in the cost function.
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