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Abstract— This paper elaborates upon the limitations of
using volume-averaged macroscale electrochemical models for
lithium-ion batteries, such as the Pseudo-two-Dimensional
(P2D) model [1]. To address some of these limitations, an
enhanced electrochemical modeling framework that is devel-
oped using the homogenization technique is presented in this
work. The mass and charge transport equations of the new
modeling framework are derived by multiple-scale asymptotic
expansion of the pore-scale Poisson-Nernst-Planck (PNP) equa-
tions [2]. The effective diffusion and conductivity coefficients
of the homogenized model are determined by formulating
and solving a closure variable in the electrode microstructure.
This paper demonstrates the methodology to calculate the
effective transport parameters using the closure approach.
We compare the closure-based effective parameters with the
effective parameters obtained by using the Bruggeman theory.
The Bruggeman approach relies on a simplified approximation
of the pore-scale parameters to determine effective values using
only porosity. Results indicate that the Bruggeman approach
underpredicts the effective transport parameters. This could
critically influence model predictive ability, particularly for high
C-rates and temperatures of battery operation.

NOMENCLATURE

aj Electrode specific surface area [m2m−3]
cs,j Pore-scale electrode concentration [molm−3]
cs,surfElectrode surface concentration [molm−3]
cs,max Electrode saturation concentration [molm−3]
c̄s,j Average electrode concentration [molm−3]
c̄e,j Average electrolyte concentration [molm−3]
φ̄s,j Average electrode potential [V ]
φ̄e,j Average electrolyte potential [V ]
ηe,j Electrolyte volume fraction [−]
ε Scale separation parameter [−]
K∗ Dimensionless effective reaction rate constant [−]
Deff

s,j Effective electrode diffusion tensor [m2s−1]
Keff

s,j Effective electrode conductivity tensor [S−1m−1]
Deff

e,j Effective electrolyte diffusion tensor [m2s−1]
Keff

e,j Effective electrolyte conductivity tensor [S−1m−1]
JLi,j Intercalation current density [Am−3]
kj Interface reaction rate constant [Ammol−1]
U0 Electrode open-circuit porential [V ]
λ A function of the activity coefficient [−]
t+ Transference number [−]
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F Faraday’s constant [Asmol−1]
R Universal gas constant [Jmol−1K−1]
T Temperature [K]

I. INTRODUCTION

Comprehensive understanding of the behavior of lithium-
ion battery has remained a complex problem over decades.
The challenge of this task is given by the nonlinearity of
battery transport processes and heterogeneities that span
across multiple length scales (atomic to system). Enhanced
computational capabilities in recent years have been instru-
mental in the development of multiscale approaches to model
the electrochemistry of lithium-ion batteries [3]. Pore-scale
models incorporate microstructural details, but their compu-
tational intensity has led to the development of relatively
simpler and efficient macroscale models [4]. For multiscale
modeling of porous media, two approaches have been used
to develop macroscale models from pore-scale governing
equations: volume averaging [5] and homogenization [6].

In the volume-averaging technique, the variable of interest
is first averaged over a representative elementary volume
(REV) [5]. The REV is assumed to be a continuum rep-
resentation of the underlying porous media. The pore-scale
governing equations are then averaged in the REV so that
they co-exist everywhere in the porous medium. Despite its
implementation, the underlying approximations that form the
basis of this approach have not been fully justified [5].

The homogenization technique uses asymptotic expansion
of variables to determine the effective formulation of the gov-
erning equations as the pore-scale asymptotically approaches
to zero [6]. This technique is more rigorous than volume-
averaging, and is considered a multiscale modeling approach
because it retains coupling between the pore-scale and the
macroscale. The advantage of using homogenization over
volume-averaging is that the resulting closure variables for
effective transport parameters in the homogenized model are
obtained by detailed numerical modeling of the electrode
architecture, rather than using analytical approaches based
on simplified assumptions [6].

The most commonly used macroscale electrochemical
model to predict battery dynamics was developed by Doyle
et . al . using the volume averaging technique [1], [5]. It is
also called the pseudo two-dimensional (P2D) model be-
cause: a) it assumes spherical particles and resolves electrode
mass transport in spherical coordinates, and b) it resolves
electrode charge transport and electrolyte transport in 1-
D cartesian coordinates. There are multiple limitations of
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the P2D model in terms of: a) C-rate, b) temperature of
operation, and c) prediction of the remaining useful life. Case
study analyses presented in [7] identified that electrolyte
mass transport limitations lead to diffusion limited regimes
at high C-rates and invalidates classical macroscopic models.
The study of temperature-influenced behavior of different
battery electrodes in [8] revealed that classical macroscopic
models may fail to predict battery dynamics beyond critical
operating temperature conditions. Different studies [2], [4],
[9] have reported that the P2D model is not robust enough
to predict battery dynamics and failure mechanisms over the
entire battery life.

These limitations have a critical impact on the accuracy of
state-of-charge (SoC) and state-of-health (SoH) estimation.
Simplified [10] and reduced-order models [11] for control-
oriented applications are developed from the P2D model;
hence their predictive ability at best is limited to the accuracy
of the P2D model. In addition, model-based control strate-
gies [12] to maintain a safe envelope of battery operation
would clearly limit their threshold of application to only
those conditions for which the underlying model is accurate.
This may restrict the battery to only low C-rates of discharge
and moderate temperatures of operation.

A major factor contributing to the limitations of the P2D
model is the use of the Bruggeman theory to calculate
effective diffusion and conductivity coefficients without con-
sidering the underlying microstructure [13]. Our motivation
to pursue this research is to address some of the limitations
of volume-averaged macroscale models using a homogenized
macroscale modeling framework. In this paper, we elaborate
upon the approach to determine the effective transport pa-
rameters of the mass and charge transport equations of the
homogenized model. These effective transport parameters,
determined using electrode microstructural information, are
compared with the effective parameters of the P2D model.
The P2D model effective parameters are obtained using the
Bruggeman theory. We discuss the factors that are critical
to obtain higher model-predictive ability, particularly for
aggressive battery operating conditions.

This paper is structured as follows: In Section II, we con-
duct a comparative analysis of the new class of homogeneous
macroscopic model equations with the classical P2D model,
and emphasize upon the factors that indicate better predictive
ability of the homogenized model over its volume averaged
counterpart. In Section III, we emphasize the importance of
the closure variable for determining effective transport pa-
rameters. In IV, we present the methodology to calculate the
effective diffusion and conductivity tensors using the com-
putational fluid dynamics (CFD) solver OpenFOAM [14].
Section V summarizes the conclusions of this work.

II. HOMOGENIZED EQUATIONS AND COMPARATIVE
ANALYSIS

In this section, we discuss similarities and differences
between the mass and charge transport governing equations
of the P2D model, obtained from [15], and the homogenized
model proposed in this work. The homogenization approach

considers the porous medium of the lithium-ion battery to
be composed of spatially periodic unit cells Y . Each unit
cell consists of multiple active electrode particles that are
surrounded by the electrolyte. The electrode and electrolyte
phases are separated by an interface where the reaction mech-
anism takes place. For a detailed description and derivation
of the homogenized model equations, we refer the reader
to [7]. Table I presents the transport equations of the P2D
model and the homogenized model, and the intercalation
current density.

A. Mass transport in the electrode

Fick’s law of diffusion is used to define the governing
equation for electrode mass transport. The P2D model as-
sumes spherical particle shape for electrode concentration
dynamics. The electrode concentration is represented as cs,j
to denote that it is a pore-scale quantity. On the other
hand, the homogenized electrode mass transport equation is
derived from Fick’s law of diffusion without making any
assumption about the particle shape. The concentration term
of the homogenized model is a quantity that is averaged over
the unit cell.

In the P2D model, the term Ds,j represents the pore-scale
diffusion coefficient, whereas in the homogenized equation,
Deff

s,j represents the effective diffusion tensor. It is obtained
by resolving a closure variable, χs(y), in the electrode phase
of the unit cell. The electrode closure variable has zero mean,
⟨χs⟩ = 0, and is determined by resolving the following
system of equations [7]:

∇y · [Ds,j(∇yχ
s + I)] = 0, y ∈ S,

ns · [Ds,j(∇yχ
s + I)] = 0, y ∈ Γ. (1)

y is a fast space variable in the unit cell Y , y ∈ Y , and
is defined as y = ε−1x, where x is the variable in the
macroscale domain [7]. ns is a unit normal vector, I is the
identity matrix, S represents the electrode domain of the unit
cell, and Γ represents the interface separating the electrode
and electrolyte phases in the unit cell. Ds,j is the pore-scale
electrode diffusion coefficient and is assumed to be constant,
whereas Deff

s,j is obtained by taking the volume average of
the term Ds,j(I+∇yχs) in the electrode of the unit cell.

In the P2D model, the pore-scale electrode mass transport
equation is used in conjunction with macroscale equations of
transport in the electrolyte phase. The justification for this
combined implementation of equations at different length
scales has not been adequately addressed. On the other hand,
the homogenization technique provides a good framework to
demonstrate that the electrode phase is always subjected to
mass transport limitations. In [7], the applicability conditions
in the electrode phase revealed a lack of scale-separation
between the pore and macro scales for different cathode
materials. Due to the slow dynamics of lithium diffusion
in the electrodes, the continuum description was invalidated.
In such cases, either full pore-scale or fully coupled micro-
macroscopic equations of mass transport are necessary for
accurate modeling of active material transport.
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P2D Model Homogenized Model
Electrode Mass Transport Equation

∂cs,j(x,r,t)
∂t = Ds,j

r2

(
r2 ∂cs,j(x,r,t)

∂r

)
, j = (n, p) ∂c̄s,j

∂t = ∇ ·
[
Deff

s,j ∇c̄s,j
]
− 1

F JLi,j , j = (n, p)

Electrolyte Mass Transport Equation

ηe,j
∂c̄e,j(x,t)

∂t = ∂
∂x

(
Deff

e,j
∂c̄e,j(x,t)

∂x

)

+ (1−t+)
F JLi,j(x, t), j = (n, s, p)

ηe,j
∂c̄e,j
∂t = ∇ ·

[{
Deff

e,j +
RTλt2+
F 2c̄e,j

Keff
e,j

}
∇c̄e,j

]

+ 1
F JLi,j , j = (n, s, p)

Electrode Charge Transport Equation

Keff
s,j

∂2φ̄s,j(x,t)
∂x2 = JLi,j(x, t), j = (n, p) ∇ ·

[
Keff

s,j ∇φ̄s,j

]
= JLi,j , j = (n, p)

Electrolyte Charge Transport Equation

−Keff
e,j

∂2φ̄e,j(x,t)
∂x2 − 2Keff

e,j (x,t)RT (1−t+)

F
∂2lnc̄e,j

∂x2

= JLi,j(x, t), j = (n, s, p)

∇ ·
[{

RTλt+
F c̄e,j

Keff
e,j

}
∇c̄e,j +Keff

e,j ∇φ̄e,j

]

= −JLi,j , j = (n, s, p)

Intercalation Current Density

JLi,j(x, t) = ajkj
√
cs,surf,j ·

(
cs,max,j − cs,surf,j

)

·
√
c̄e,j(x, t) · 2 sinh

[
0.5F
RT

(
φ̄s,j − φ̄e,j − U0,j

)]
, j = (n, p)

JLi,s(x, t) = 0

JLi,j =
ε−1
j K∗

| ηe,j

Lj
· kj ·

√
c̄e,j · c̄s,j ·

(
1− c̄s,j

cs,max,j

)

· sinh
(

F
2RT

[
φ̄s,j − φ̄e,j − U0,j

])
, j = (n, p)

JLi,s = 0 , because the separator does not
contain any active particles

TABLE I: Transport equations of the homogenized model to describe lithium-ion transport dynamics.

B. Mass transport in the electrolyte

The electrolyte phase lithium-ion transport equation is ob-
tained using the concentrated solution theory. The difference
between the P2D and the homogenized model equations can
be summarized as follows:

1) The P2D model considers the effect of only diffusion
in electrolyte mass balance and considers 1-D transport,
whereas the homogenized mass transport equation in the
electrolyte phase considers the effect of both diffusion
and electromigration in multiple dimensions.

2) The P2D model approximates effective diffusion and
conductivity coefficients based on the asymmetrical
Bruggeman effective-medium model [16], also known
as the Bruggeman theory. The effective diffusion coef-
ficient is mathematically represented in the P2D model
as [17]:

Deff
e,j = De,j · ηbrugge,j , (2)

where brugg is the Bruggeman exponent, and is typi-
cally considered to be equal to 1.5 for perfectly spher-
ical particles [17]. On the other hand, the effective
diffusion and conductivity coefficients of the homog-
enized model, Deff

e,j and Keff
e,j , are obtained by taking

the volume average of the terms De,j(I +∇yχe) and
Ke,j(I + ∇yχe) in the electrolyte phase of the unit
cell. De,j and Ke,j are the pore-scale diffusion and
conductivity coefficients respectively, and are assumed
constant. The electrolyte closure variable, χe(y), has
zero mean, ⟨χe⟩ = 0, and is defined as the solution to

the local pore-scale problem [7]:

∇y · (∇yχ
e + I) = 0, y ∈ B,

ne · (∇yχ
e + I) = 0, y ∈ Γ. (3)

In (3), B represents the electrode domain of the unit cell. The
Bruggeman approximation works well only for the case of
dilute electrolyte solutions. Du et . al . [13] report significant
deviation of the effective transport coefficients from the
Bruggeman approximation when experiments are compared
to pore-scale simulations of battery dynamics.

C. Charge transport in the electrode

The solid phase lithium-ion potential is obtained using
the charge conservation equation described by Ohm’s law,
and modeled as a 1-D transport equation in the P2D model.
The effective electrode conductivity in the P2D model is
expressed in terms of the electrode porosity as [17]:

Keff
s,j = Ks,j · ηbruggs,j , (4)

On the other hand, in the homogenized model, Keff
s,j is the

effective solid-phase conductivity parameter, obtained by the
taking the volume average of the term Ks,j(∇yχs + I)
in the electrode of the unit cell. Ks,j is the pore-scale
conductivity coefficient and is assumed to be constant. The
closure variable χs(y) is obtained by resolving the unit cell
problem [7]:

∇y · [Ks,j(∇yχ+ I)] = 0, y ∈ S,
ns · [Ks,j(∇yχ+ I)] = 0, y ∈ Γ. (5)
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Fig. 1: Schematic representation of a lithium-ion battery (left), the corresponding 3-D electrode microstructure (middle), and the representative unit cell
in which the closure variable is resolved (right).

D. Charge transport in the electrolyte
The equation for the electrolyte phase lithium-ion charge

transport is obtained by combining Kirchhoff’s law with
Ohm’s law, and is modeled as a 1-D transport equation
in the P2D model. The effective electrolyte conductivity
is mathematically represented using the Bruggeman theory
as [17]:

Keff
e,j = Ke,j · ηbrugge,j , (6)

where the Bruggeman coefficient is assumed to be equal
to 1.5 [17]. On the other hand, the effective electrolyte
conductivity Keff

e,j in (3) is obtained by resolving the closure
variable χe(y) in the electrolyte domain of the unit cell.

E. Remarks
1) The homogenization technique, represents pore-scale

quantities as an asymptotic series in powers of the scale
separation parameter ε1. On the other hand, the P2D
model approximates the pore-scale PNP equations such
that only the zeroth order terms of an asymptotic series
expansion are accounted for [2].

2) The P2D model has an order of accuracy of ε and
must rely on significantly small ratio of length scales
between the micro and macro media [2], while the
homogenization model has an accuracy of the order of
ε2 [7].

3) The P2D model accounts for only spherically shaped ac-
tive particle in the determination of the effective param-
eters. As evidenced by the scanning electron microscope
images of the structure of lithium cobalt oxide cathode
and graphite anode [17], the homogenized electrode
material balance equation is better suited for resolving
concentration dynamics in these electrodes.

4) The homogenization technique provides a more robust
approach to determine the effective transport parameters
when the analytical expressions, such as the Bruggeman
relationship, are invalidated.

1The scale separation parameter ε is defined as the ratio of the character-
istic length scale l of the unit cell Y , and the characteristic length scale L
of the porous electrode: ε ≡ l

L . For porous battery electrodes, L is typically
of the order of the thickness of the electrode under consideration. [7]

III. SIGNIFICANCE OF THE CLOSURE VARIABLE

The effective diffusion and conductivity parameters of the
homogenized model are resolved by a multiscale approach
where a pore-scale closure problem is solved at the unit cell
of the electrodes. This approach allows the incorporation
of the microstructural grain distribution in order to estimate
the effective parameters. Garcia et . al . [18] and Tartakovsky
et . al . [19] have demonstrated the impact of the underlying
electrode morphology on the performance of electrochemical
energy storage devices and elucidate the need for optimizing
their geometrical configuration. The topology of the porous
electrodes is critical for the estimation of their effective
material transport properties. The advantage of the closure
variable is its ability to assess material performance for
different topological structures on the pore-scale. Such in-
formation cannot be captured by standard techniques such
as the Bruggeman approximation.

IV. SOLUTION OF THE CLOSURE PROBLEM AND
DETERMINATION OF THE EFFECTIVE PARAMETERS

The closure variable accounts of the impact of the pore-
scale structure and can be determined using offline calcu-
lations. As a result, the closure problem can be resolved
as a pre-processing step and the effective parameter values
can be directly used in the homogenized model equations.
Numerical simulation for the closure problem is performed
in a cubic unit cell containing spherical active particles using
the computational fluid dynamics solver OpenFOAM [14].

Fig. 1 shows the schematic representation of a lithium-
ion battery. In this study, we select spherical active particles
to make a direct comparison with the effective parameter
values using Bruggeman theory. The cubic unit cell of the
electrode is of dimensions

{
10.94µm, 10.94µm, 10.94µm

}
,

consists of spherical particles of radius 5µm with centers at
each corner of the unit cell, and a spherical particle at the
center of the unit cell. This geometrical configuration results
in an electrolyte volume fraction of 0.4. Since the closure
variable χe(y) is solved in the fast variable y, the size of
the unit cell is

{
1,1,1

}
. The dimensions of the spherical

particles within the unit cell are also normalized, and they
have a dimensionless radius of 0.46. Fig. 1 also illustrates
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Fig. 2: Schematic representation of the mesh used to solve for closure variable (left). The 2-D (middle) and 3-D (right) plots represent the magnitude of
the resolved closure variable. The porosity of the unit cell considered in this study is equal to 0.40.

the spherical particle configuration in the unit cell and the
domain of the electrolyte in a representative unit cell of the
electrode.

The closure variable, χe(y), defined in (3), is solved in
the electrolyte domain through laplacianFoam . The mesh
in which the finite volume analysis is performed is prepared
with snappyHexMesh , with standard sets of parameters, and
is shown in Fig. 2. The discretized equations are solved
using standard linear solvers. The boundary conditions for
the closure problem are implemented through the extension
groovyBC of the OpenFOAM library swak4Foam . The
boundary condition for the closure variable is imposed at
the interface separating the spherical active particles and the
electrolyte. Fig. 2, represents the distribution of the resolved
closure variable in the electrolyte domain. The superficial
average values of the x-, y-, and z-components of χe(y) are
respectively 6.43e− 6, 6.40e− 6, and 6.38e− 6. The results
obtained are consistent with the definition of the closure
variable, since they satisfy the zero mean criteria, ⟨χe⟩ = 0,
with a numerical accuracy in the unit cell.

The pore-scale diffusion coefficient, De,j , and the pore-
scale conductivity coefficient, Ke,j , are assumed to be con-
stant. As a result, the effective diffusion tensor, Deff

e,j and
the effective conductivity tensor, Keff

e,j , can be determined by
computing the superficial average of the tensor (I+∇yχe).
The superficial average of this tensor results in the following
matrix:

⎡

⎢⎣
0.299 −6.63e− 10 −3.62e− 7

−4.34e− 10 0.299 −1.36e− 10

−2.87e− 7 3e− 10 0.299

⎤

⎥⎦ (7)

The tensor in (7) is essentially diagonal, with negligible
off-diagonal components. We also note that the tensor is
isotropic, due to the symmetric nature of the unit cell in
which the closure variable was resolved. As a result, the
tensor can be expressed as 0.299 I, where I is the identity
matrix. We compare the effective diffusion and conductiv-
ity parameters obtained from the closure variable with the
parameter values obtained using the Bruggeman theory. The
values of the parameters, De,p = 3.94e − 11 m2s−1, and
Ke,p = 0.192 S−1m−1 are obtained from literature [20]. The
effective transport parameters is obtained by the product of

the pore-scale transport coefficients with the tensor 0.299 I:

Deff
e,j =

(
0.299 · 3.94e− 11

)
I m2s−1

= 1.18e− 11 I m2s−1,

Keff
e,j =

(
0.299 · 0.192

)
I S−1m−1

= 0.060 I S−1m−1 (8)

The effective transport parameters determined by the
Bruggeman theory are obtained by using equations (2)
and (4) respectively:

Deff
e,j = 3.94e− 11 · (0.4)1.5 = 0.99e− 11 m2s−1,

Keff
e,j = 0.192 · (0.4)1.5 = 0.048 S−1m−1 (9)

Comparison with an isotropic diagonal element of the
closure-based effective parameters indicates that the Brugge-
man theory underpredicts the effective parameter values in
the electrolyte medium. This can be observed by comparing
the results shown in (8) and (9). This analysis can be
extended in a similar manner to determine the effective trans-
port parameters in the anode and the separator. The closure
problem was resolved for the following values of porosity:
{0.30, 0.40, 0.48, 0.56, 0.62} using a unit cell configuration
similar to that shown in Fig. 1. In each case, the values
of effective diffusion and conductivity were calculated for
the closure and the Bruggeman approach. The results of this
study are summarized in Fig. 3, where the diagonal element
of the effective parameter from the closure approach and
the effective parameter value from the Bruggeman approach
are plotted as a function of the porosity. Both approaches
indicate that the effective transport parameters increase with
porosity, with the closure-based approach resulting in higher
effective parameter values. The results indicate that the
geometry of the unit cell strongly influences the effective
transport parameters. For the spherical particle geometry,
which is one of the simplest structures that can be considered,
the Bruggeman theory still underpredicted the effective pa-
rameter values by about 20% for a unit cell porosity of 0.40.
Such influence of the electrode geometry on the effective
parameters could be even more pronounced for complex non-
spherical active particles.
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Fig. 3: Comparison of the effective electrolyte diffusion (left) and effective electrolyte conductivity (right) calculated using the closure and the Bruggeman
approach. Effective transport properties increase with porosity, and higher effective parameter values are obtained using the closure approach.

V. CONCLUSIONS

In this paper, we presented a new class of macroscopic
mass and charge transport equations for lithium-ion battery
dynamics, which were rigorously derived using the homoge-
nization technique. We presented a detailed comparison anal-
ysis of our model equations with respect to the extensively
used P2D model, outlining factors that indicate a higher
predictive ability of the proposed model. For the very first
time, a finite volume approach is presented using Open-
FOAM to resolve the unit-cell closure problem for porous
battery electrodes. The closure variable results are integrated
in the homogenized model equations through the effective
transport parameters. We envision these results to have the
following implications to the battery system community: a)
the closure-approach will enable more accurate modeling
capability of lithium-ion transport in non-spherical active
particle electrodes, thanks to the solution of the closure
problem, and b) the proposed enhanced modeling framework
will provide benefits from a performance standpoint through
accurate prediction of battery dynamics for higher C-rates
of operation, wider envelope of operating temperature condi-
tions, and cycle life aging. Ultimately, this work will pave the
way for developing strategies to prolong battery life through
accurate modeling and control.
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