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Ahstract-This paper proposes a power management strategy 
for an hybrid electrical vehicle based on the Non-linear Model 
Predictive Control (NLMPC) that uses an equivalent consumption 
cost to control the state of charge of the battery. The predictive 

control is formulated as a repeated solution of a finite horizon 
minimum consumption problem which respects input and state 
constraints and vehicle dynamics also including the efficiency 
of the gear box. The reference speed and acceleration in the 

prediction step of NLMPC horizon is obtained by integrating 
forward the dynamic equations of the vehicle model with a 
fast semi-analytical method that does not use information about 
the past behaviour of the vehicle. The corresponding demanded 
torque is then optimally split between the two energy sources as 
solution of NLMPC and used in each instant for the definition 
of the power management strategy. The proposed NLMPC is 
tested on a simplified driver simulator of the hybrid vehicle 
and the on-line results are compared both with conventional 
Adaptive-Equivalent Consumption Minimisation Strategy (A
ECMS) strategies and with the global optimal strategy off-line 
computed that serves as benchmark. 

I. INTRODUCTION 

Modern society relies more and more on fossil fuel-based 
transportation for freely moving goods and people [11]. Shift
ing towards sustainable transportation could considerably re
duce oil consumption and carbon emission. Electrified vehicles 
come in the form of hybrid electric, plug-in hybrid and all
electric vehicles. Before a mass market production of only
electric vehicles (EVs) takes place, there are still challenges 
that need to be tackled such as range anxiety, high cost and 
long battery charging time. Hybrid Electric Vehicles (HEVs), 
on the other hand, overcome the cost and range issues of a pure 
EV still providing many advantages compared to traditional IC 
vehicle including fuel consumption and emmission reduction 
via regenerative braking and more efficient engine operation 
combined with better drivability. 
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HEV s can be classified, based on the configuration of the 
drivetrain, as series hybrid, parallel hybrid, power-split hybrid 
[9]. Regardless their drivetrain configuration, any HEV must 
be equipped with a supervisory controller that optimizes the 
power split among the vehicle actuators. Usually, the objective 
of the energy management strategy is to minimize fuel con
sumption and, possibly, emission over a driving cycle without 
compromising the vehicle performance. Several strategies have 
been proposed to solve this problem, both off-line and on
line. The off-line methods assume the knowledge of the entire 
driving cycle. These methods allow to compute a benchmark 
solution, i.e., the lowest achievable consumption, that can also 
be analyzed to design a suitable on-line strategy. In the on

line methods the power split decision is taken at each time 
step, during vehicle operation. Several methods have been 
proposed [16] where some of them are based on heuristic 
techniques, whereas others on minimisation of an appropriate 
instantaneous cost function. 

In the present, both an off-line and on-line energy man
agement strategy are proposed which are based on direct 

optimization approach via full discretisation (i.e. Non Linear 
Programming, NLP). Section II describes in details the model 
of the hybrid vehicle and its power-train. Section III defines the 
minimum consumption problem as an optimal control which 
is solved off-line over a standardised test using the Direct 
Method. The off-line solution is used as a benchmark and 
it is compared with the results of a proposed on-line solution 
(Section IV) based on Non Linear Model Predictive (NLMPC) 
scheme and the conventional Adaptive-ECMS strategies with 
feedback from State of Charge (SOC) [13]. 



II. HYBRID V EHICLE MODEL 

In this study, the vehicle longitudinal dynamics modeled 
neglects vehicle suspension dynamics and wheel slip [7] 
resulting in the following equation 

(I) 

where Tneq = (Tnv + Tn J ), Tnv vehicle mass and v (t) is the 
vehicle speed, Fa is the aerodynamic friction given by: 

(2) 

where cf is a constant that takes into account the density of the 
ambient air, the aerodynamic drag coefficient and the vehicle 
frontal area. G1'1'O represents the rolling friction, assumed 
constant. The traction force Ft is the force generated by the 
prime mover. Figure I shows a schematic representation of 
this relationship. Finally, the equivalent mass TnJ accounts for 
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Fig. 1. Schematic of hybrid vehicle powertrain[12] 

all rotating masses and is defined as follows: 

N 

rrLJ = L rrLJ,i 
i=1 

ifv(t) > 0 
ifv(t) < 0 

(3) 

where Ji, /i are respectively the i - th rotating mass moment 
of inertia and transmission ratio. It is worth noticing that the 
driveline efficiency T/g affects the equivalent mass in a different 
way during traction and braking. 

A. Internal Combustion Engine Model 

Owing to the faster chemical process dynamics of the 
internal combustion engine, a static map is used to predict fuel 
consumption based on engine torque and speed. The Willians 
line model is used to design an analytical engine model that 
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TABLE I 
VEHICLE PARAMETERS 

Value Units Description 

14 00 [kg] vehicle mass 
0. 3107 [m] wheel radius 

0.95 [-] transmission efficiency 
0.4 6 875 [kg/m] aerodynamic drag coefficient 

0.02 [N] rolling friction coefficient 
0.0226 [kgm2] EM moment of inertia 
0.159 8 [kgm2] ICE moment of inertia 

0.01 regularisation parameter 
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expresses the input power I1n as an affine function of the net 
(output) power Pout [16] : 

(4) 

where Pout = Te W is the mechanical power, while Pin = 
m f Hz is the fuel power, and where Ao can be interpreted 
as friction loss function, and Al the conversion efficiency of 
the machine; both the parameters are polynomial functions of 
shaft angular speed w. Given that the fuel lower heating value 
Hz is a constant parameter we can write the fuel consumption 
rate mf(w, Te) as 

mf = {Jot,t, aijWj (wTe)i if Te > 0 
(5) 

otherwise 

Hence the engine is operating when Te is greater than zero 
(i. e. the consumption is different than zero). Te is bounded as 
follows: 

TemiIl(W) s: Te s: T�"aX(w) (6) 

Temax (w) = {
oT�Ilax (w ) if Wid s: w s: wmax (7) 

otherwise 

where Wid represents the idle engine angular speed and wmax 
the engine maximum allowable angular speed. Moreover the 
clutch is considered open when the engine is operating and 
closed vice versa. 

Parameters ai,j of Eq. 5 are identified with a least-square 
method using experimental data (see Table II). In [15] it is 
shown that the approximation of the actual engine map points 
with the model used here is always less than 5%, and even 
smaller over high engine efficiency region. 

B. Torque split and Inertia 

From the driving cycle, the torque requested upstream the 
gear-box is given by 

ifv(t) 20 
v(th 

Q=--. (8) 

if v( t) < 0 Tw 

where Q is the angular acceleration upstream of the gear-box. 
The requested torque must also verify torque split balance 

equation: 

ifTe(t) > 0 
if Te(t) = 0 

(9) 

where w is the engine shaft angular speed and Je the inertia 
of the engine rotating masses that is added here since, when 
the engine is disengaged, its inertia cannot be computed in the 
total inertia of the vehicle TnJ. Tbr accounts for bearing losses 
as described in next subsection. Tb < 0 is the torque due to 
the braking systems computed upstream of the gear-box. 



TABLE II E. Battery 
PARAMETERS OF ICE MODEL OF EQUATION (5) AND BATTERY MODEL OF 

EQUATION (16) US ED IN S IMULATIONS .  The battery State of  Charge (SOC) is  a measure of  the 

ICE Battery 
Parameters Value Parameters Value 

aOO 0.0002928 ncells 60 
alO -1.64 6 .10-6 eo 3.4 09 3 
aOI 1.205 . 10-5 q 1.4127 
a20 3.4 62. 10-9 e2 -1.2567 
all 5.23 8 . 10-8 e3 0.57 
aQ2 - 7.192.10-23 ro 0.0023 

rl - 0.0007 
r2 0.0004 
Q 6.5 [AhJ 
Imax 
charge 1 30 [AJ 

C. Electric Motor 

The equation that models the electrical machine, both for 
motor and generator mode, is 

(10) 

The power losses can be split into mechanical and electrical 
losses and have been modeled using equation 

(11) 

where k3 is the parameter linked to the Iron Loss [8] and kl 
is the parameter that describes the contribution of bearings 
losses [10]. It is assumed that k3 « k1, thus the Iron Loss 

contribution is neglected [6]. Therefore, equation (11) becomes 

(12) 

Then since the mechanical losses do not depend on the motor 
torque their contribution is always present in the drive-line. 
Therefore the parameter kl can be modelled as a constant 
torque ( Tbr = kl if w > 0 otherwise Tbr = 0) due to 
the friction force in the bearings which is added to Eq. 9. 
Thus power losses reduce to Ploss = k2 T;' . The torque T m 
exchanged with the prop-shaft is bounded between 

(13) 

D. Gear shift strategy 

The implemented gearbox is a five gear transmission and 
the total gear ratio I, considering the differential gear ratio 

If = 4.1, is I = Irlf' 
The gear switching strategy is 

• if w(t) > 350 up-shift 
• if w(t) < 150 down-shift 

Given the gear shifting strategy and the driving cycle, angular 
speed 0:, acceleration v(t) = a(t) and torque demanded Td 
are easily computed from Eq. (I) and Eq. (9). 
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residual capacity of a battery as the ratio between current h 
and total charge Q 

soc = -h/Q. (14) 

The battery can be modelled using a simple controlled voltage 
source in series with a resistance [17]. The current that flows 
in the battery is the solution of the equation Pb = E h -R I;: 

h = (E - JE2 -4RPb) /(2R) (15) 

where Pb is the battery power and the value of voltage source. 
E and the internal resistance R are given as polynomial 
function of SOC, as: 

E(SOC) = (eo + el SOC + e2 SOC2 + e3 SOC3) nc, (16) 

R(SOC) = (TO + Tl SOC + T2 SOC2) nc, (17) 

where eO,el,e2,e3 and TO,Tl,T2 are parameters (obtained exper
imentally) and nc represents the number of cells in the battery 
pack (see Tab. II). 

The battery power Pb is limited by minimum power pmin(soc) = _Imax (E + Rlmax) which depends on the b ch ' ch 
maximum charge current I::hax and the maximum power the 
battery can supply PbTIax(SOC) = E2/(4R). Therefore 

pmin(soc) < P. < pmax(soc). b - b - b (18) 

Starting from the definition of PbTIax we can re-define h as 

Pb 
h = . (19) JR(JPbmax + JPbmax -Pb) 

Combining Eqs. (14) and (19) the ditlerential equation that 
governs the battery SOC becomes 

SOC = _ Pb 
. JR( JPbnax + JPbnax -H) Q 

III. MINIMUM CONSUMPTION PROBLEM: OFF-LINE 

PROBLEM 

(20) 

The optimal minimum fuel consumption problem consists in 
finding the optimal selection of vehicle actuators, e.g., engine 
and electric motor, over specific driving cycle. Several driving 
cycles are available to test the energy management strategies; 
the Artemis Urban driving cycle is used in this work. For the 
sake of simplicity a quasi-static approach is used to solve the 
problem [7]. Under this assumption the number of the states 
and inputs of the model decreases making the problem easier 
to solve. 

The general optimisation problem is the following: 

min { J(u):= rT rhf(w, Te) dt} 
uEU Jo 
subject to : 

x(t) = f(x(t), u(t), t) 
b(x(O), x(T)) = 0 
c(x(t), u(t)) � 0 

(21) 



where x = SOC(t) . The input variable u(t) represent a 
measure of the torque split between the two power source 
(engine and motor) that can be defined in several ways. The 
SOC dynamics equation f is described by Eq. (20). Vector 
b lists the initial and final conditions: SOC(O) = 0.55 
and 0.55 < SOC(T) < 0.56 (charge sustaining mode). 

c(x(t), u(t)) represents the state and input constraints (Eqs. 
(6),(13),(9),(18),( 1 0» . Moreover 

0.6 
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o 100 200 300 400 500 600 
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Fig. 2. Evolution of the state of charge during the driving cycle: off-line 
0.4 < SOC(t) < 0.8. (22) solution. 

A. Solution Method: NLP 

The optimal control problem Eq. (21) may be solved at 
least with three different families of methods [2]. In [10] it 
was solved with an indirect method. Here a direct method 
is used with full discretisation. Therefore the speed v and 
the acceleration a of the vehicle are assumed to be constant 
over each time step h of the test cycle as well as the 
angle 0: of the road slope and thus computed with a finite 
difference approximation Uk represents the finite difference 
approximation of function f(t) evaluated at tk = kh): 

(23) 

The force Ft acting on the wheels to drive the vehicle can 
be directly computed (considering the road slope always zero) 
inverting the model Eq. (I) : 

- _ 1 -2 Fk+l/2 = rneq ak+,/2 + "2 Pa Aj Cd Vk+'/2 + Cr rnv g .  ( 24) 

The angular speed Wk+1f2, the angular acceleration O:k and 
the torque Td,k+1f2 upstream the gear-box can be computed 
knowing the efficiency Tlg and the gear-ratio Ik+'/2 of the 
gear box during each interval. The input of the problem 
becomes the vector u = [Te(t), Tm(t), Tb(t)]T . Under these 
assumptions the optimal control problem in Eq. (21) can be 
written as the Non-Linear Programming (NLP) problem 

N 
. " . ( Te,k-'/2 ) 

mm J(z) = � rn(wk_l/2' Te,k-'/2) tanh 
E 

h, 
k=l 

( 25) 

subjected to the following system of non-linear equations 
hk(Z) = 0: 

hk(z) = Te,k+'/2 + Tm,k+'/2 + Tb,k+'/2 - Td,k+'/2 ( Te,k+'/2 ) 
- Tbear,k+'/2 - O:k+'/2 Je tanh 

E 
' 

h () + h,k+'/2(Tm,k+'/2) 
h (26) k+N Z = Xk+l - Xk 

Q ' 

which represents the torque split of Eq. (9) and the battery 
SOC dynamics (represented by the variable Xk) which is 
discretised using the forward Euler approximation (Eq. ( 14)). 
The value of h,k+'/2 is computed as a function of T m,k+'/2 
using Eqs. (10) and (19). The reader may note that the switch 
conditions in Eqs. (5) and (9) have been approximated by 
the hyperbolic tangent function in order to create continuous 
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and differentiable functions. The problem is completed by the 
following inequalities 9k(Z) 20: 

gk(Z) = Pb,k+'/2 + I�hax (E(Xk) + R(Xk) lci,ax) 2 0, 
E(Xk)2 

gk+N(Z) = -Pb,k+'/2 + 4R(Xk) 20, (27) 

and the following constraints on the state and inputs variables: 

° :::; Te,k+'/2 :::; T;nax(Wk+'/2)' (28) 

T:::in(Wk+'/2) :::; Tm,k+'/2 :::; T:::ax(Wk+'/2)' (29) 

Tb,k+'/2 < 0, (30) 

0.4 < Xk < 0.8, (31) 

0.55 < XN < 0.56, (32) 

and initial condition Xo = 0.55. The unknowns of the problem 
is the vector z E IR 4N + 1 

z = {xo, . . .  , XN, Te,l/2' . . .  , Te,N-l/2' 
Tm,'/2' . . .  , Tm,N-l/2' Tb,'/2' . . .  , Tb,N-'/2}' (33) 

The reader may note that, in principle, Te could be computed 
from the algebraic equation of Eq (26) but since the relation 
is non linear it is better to leave the algebraic equation in the 
optimisation problem. 

B. Numerical results: NLP solution 

The NLP problem (Eq. (25) - (33») is solved in MatIab using 
IPOPT [18]. The results shown in Fig. 4 show that the ICE 
is on for 6.3% of the total driving cycle time and gives more 
than the demanded torque for 88.4% of the time (i.e. when 
charging the battery). The electric motor/generator torque Tm 
is different than zero for 100% of the total driving cycle 
time. Finally braking torque Tb is zero for 99.7% of the total 
driving cycle time since the generator is able to provide almost 
always the braking torque necessary to decelerate the vehicle 
(because of type of test adopted). As expected the engine 
works at the maximum torque allowed when is on because 
the efficiency increases with the torque (Figure 3). It is worth 
pointing out that the electric motor is the main torque source, 
both in acceleration and in deceleration. The power needed to 
recharge the battery is mainly provided during braking by the 
electric motor; the remaining power comes from the engine 
(that works at the maximum efficiency point) and adsorbed 
by the electric motor in generator mode. Therefore the key 
factor in the hybrid electric vehicle is the regenerative braking 



which allows to recover part of the kinetic energy accumulated 
in acceleration. 

The same problem was also solved using the Dynamic 
Programming (DP) with the DPM solver (with Boundary Line 
Method) [4] for comparison. It turned out that DPM is accurate 
as NLP (a fuel consumption of 66 .6 [g]) but at the price of more 
computational effort (DP took 27s versus 7s for NLP). On the 
other hand NLP needs a suitable first guess that is difficult 
to be generated for the whole driving cycle but it is easier 
for a smaller problem. Moreover the Dynamic Programming 
function DPM works with limited number of state variables 
and it does not allow to define an objective function that 
depends on the final state. This result makes the indirect 
method interesting for real-time control strategies, in particular 
for the model predictive control as it is explained in the next 
section. 

100 

80 
S 
� 

60 (J) 
g, ;..., 
� 40 

20 

0 

0.3 

0.2 

0.1 

150 

o On-line 
* Off-line 

035 

200 250 300 350 400 450 
Angular speed [rad/s] 

Fig. 3. Distribution of engine torque values during the driving cycle. 
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Fig. 4. Top plot shows the speed profile of the Artemis Urban cycle used in 
the simulation. The lower plot shows the solution of the energy management. 
Electric motor torque T m is split between assistive (positive) and recharge 
(negative) torque. TCE torque Te is also shown. All the torques have been 
normalised with respect to the requested torque Td. Finally. the state of charge 
has been superimposed. 
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IV. ON-LINE NLMPC MINIMUM CONSUMPTION 

PROBLEM 

The solution of the minimum fuel consumption problem 
treated in the section III makes it possible to estimate the 
optimal energy management strategy to achieve the minimum 
fuel consumption during a predefined driving cycle. To achieve 
this results it uses the a-priori knowledge of the driving cycle 
speed trace which is not available in real time case. Therefore 
real-time control strategy can rely on instantaneous speed only 
yielding only a local optimal real-time management. 

In the past fifteen years many studies have investigated 
various methods for the real-time control of hybrid elec
tric vehicle power-train in order to achieve a sub-optimal 
solution of the minimum fuel consumption problem [14]. 
Two of these real-time methods have been recognised as 
suitable for the implementation in commercial vehicles ECUs: 
Heuristic methods and the Adaptive Equivalent Consumption 

Minimisation Strategy (A-ECMS) [16]. The A-ECMS consists 
in the minimisation at each time step of an appropriately 
defined instantaneous cost function. Usually the cost function 
is derived from the Hamiltonian function of the optimal control 
problem solved with Minimum Principle of Pontryagin: 

H(x , u , t) = Pruel(U , t) + s(t)Pech(X , u , t) .  (34) 

Pruel(U , t) and Pech(x , u , t) take into account the power pro
vided by the engine and by the electric motor: The equivalence 
factor s(t) is initialised starting from the off-line results and 
corrected with a feedback on the battery SOC. We propose to 
solve on-line the problem Eq. (21) with the same approach 
used for the off-line problem within a NLMPC scheme on a 
short horizon where the the future speed profile is estimated 
for a short horizon. The proposed method is then compared 
with the A-ECMS one. 

A. Model Predictive Control 

The on-line control here presented is formulated as a 
repeated solution of a finite horizon optimal control problem 
with respect to system dynamics, input and state constraints[3]. 
For each tk sampling period of the ECU and for the positive 
demanded power, the following sequence is repeated over the 
predicted horizon tp: 

• Generation of the estimated future trajectory (i.e. speed 
profile and demanded torque). 

• Minimisation of the fuel consumption starting with cur
rent state of charge. 

• Application of the power split strategy considering the 
first instant of the estimated trajectory. 

The generation of the estimated future speed of the vehicle 
o ( T) is carried out integrating the differential equation that 
describes the vehicle dynamics from tk to tk + tp; 

0(T) = a - Cl 0(T)2, 0(0) = V(tk) (35) 

where V(tk) is the speed of the vehicle in the instant tk' The 
solution is computed analytically, as described in [5], assuming 
that the power-train will provide a constant torque Tk (the 



torque requested at the instant tk) throughout the predicted 
horizon. The parameters a and Cl are defined, considering a 
positive value of Tk as 

a 
= ( (Tk -Tbear) ,(tk) rig _ Crro ) 

, 
Twmtot mtot 

Cf Cl = -- , (36) 
mtot 

where ,(tk) represents the gear ratio at the instant tb rig the 
gear-box efficiency, Tbear the motor bearings friction torque, 
Crro the force due to the rolling resistance of tyres and Cf 
the parameter related to the air friction of the vehicle; mtot 
represents the total mass of the vehicle considering the inertia 
of the components connected to the power-train in the instant 
tk. The problem is simplified decreasing the number of the 
input variables to one, i.e. u = Te, since it is solved only 
if a positive power is demanded. Based on the assumption 
above the minimum fuel consumption problem Eq. (21) was 
modified adding a Mayer term 8(x(tp)) to push the final state 
of charge towards a desirable value: 

(37) 

8 (x( T ) , T ) represents the equivalent consumption as a func
tion of the difference between the final state of charge and 
the desirable Xdes. The idea is to define the fuel consumption 
that brings the state of charge from x(tp) to Xdes considering 
the vehicle travelling at constant speed v(tp) . This leads to a 
definition of an equivalent consumption that depends only on 
the final state of charge x(tp) assuming that the ICE works 
at the maximum torque, that is when it is more efficient 
as suggested by off-line results. The equivalent consumption 
is computed assuming that the battery parameters Rand E 
are constant and equal to R(tp) and E(tp); this is possible 
since the variation of the battery parameters is small when a 
small variation of SOC occurs. Under these assumptions the 
expression of the equivalent consumption become 

where rn(T�TlaX,w(tp)) represents the fuel flows when the 
engine works at angular speed w(tp) and torque T�Tlax. h,eq 
represents the constant current that flows in the battery when 
a constant torque Temax is adsorbed by the generator. In order 
to remain close to the desirable state of charge it has been 
considered the absolute value of (Xdes - x(tp)) approximated 
with the following function 

(39) 

to make it differentiable - the smaller 5 the better the ap
proximation. The NLMPC is solved subdividing the predicted 
horizon tp in N small time intervals of length h = tpj N, 
applying the quasi-static approach already discussed in sec
tion III-A. 
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The first guess of the minimisation problem is the key factor 
of the problem solution and it has been defined in the following 
way (to avoid in-feasibilities): 

{ Tfirst . (T Tmax ) e,k-I/2 
= 

mIn d,k-I/2' e,k-I/2 ' 
Tfirst T Tfirst m,k-I/2 

= d,k-I/2 - e,k-l/2' 
k = 1, ... ,N 
k = 1, ... ,N (40) 

and the state of charge xrrst is computed by integrating the 
model equation of the battery. Then the first guess becomes 
Z = {xfirst Tfirst} o . '  ' e . 

During braking T m can be computed as the maximum 
allowed (considering the minimum motor torque T::;in and the 
minimum battery power PbTlin) without solving the NLMPC 
problem. 

B. Simulation Environment 

The energy management control scheme has been tested 
using a simulator of the vehicle longitudinal dynamics and 
designing a driver model that controls the accelerator pedal 
in order to generate a desired speed as described in [1] 
(see Figure 5). The driver model generates a pedal position 

Fig. 5. Longitudinal Dynamics Simulator with driver model in the loop 

signal based on the difference between desired (i. e. selected 
speed profile) and actual speed. The pedal position is then 
transformed into a demanded torque Uc which is then used in 
Eq. (35) to predict the future speed in the prediction horizon 
tp and then to solve the problem Eq. (37). 

V. RESULT DISCUSSION AND COMPARISON W ITH 

A-ECMS STRATEGY 

The optimal control was computed over a predicted horizon 
of length 18 and subdivided in time steps of length 0.18 and it 
was tested for the Artemis Urban driving cycle. The resulting 
fuel consumption has been compared with a second simulation, 
where the vehicle is equipped with only the engine (Table 
III). The simulation considers zero fuel consumption when the 
angular speed of the engine shaft is less than the idle speed 
and when the vehicle speed is zero. Moreover the vehicle mass 
is assumed to be the same of the hybrid vehicle. From the 

Power-train 

Only ICE 
Hybrid (with NLMPC) 
Hybrid (with A-ECMS) 

TABLE III 
SIMULATION RESULTS. 

Fuel cons. Mean fuel cons. 
[I] [kmll] 

0.30 14.88 
0.12 36.35 
0.14 32.20 

SOC end 

0.55 
0.54 
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Fig. 6. Evolution of the SOC; comparison between NLMPC and A-ECMS 
results. 

results obtained we observe that the state of charge (Figure 6) 
remains close to the desirable one and the final one is equal 
to the initial with a fuel consumption reduction of about 60 % 
with respect to a conventional vehicle (Table III). Additionally, 
unlikely the result of the off-line problem, the engine torque 
values are distributed all over the engine map (see Figure 3) 
because the minimum consumption problem over the predicted 
horizon always tries to recharge the battery when the SOC 
is different than the desirable one. It is worth noting that the 
direct method works fine for the real-time control strategy with 
the implemented first guess. The result is still far from the 
off-line minimum consumption problem which is unreachable 
since a prefect knowledge of the future is not possible (except 
for autonomous vehicle). The key factor of the NLMPC is the 
Mayer's term which can be defined in many ways depending 
on the desired behaviour of the battery. Moreover without 
a model of the past behaviour of the vehicle only a short 
prediction horizon is computable. 

Finally the result of the NLMPC method has been compared 
with the A-ECMS one. The proposed method gives a better 
result with respect to the A-ECMS applied with the chosen 
parameters (see Table III). Since the A-ECMS strategy de
pends on some parameters that have to be manually tuned, a 
comparison of the two method from the point of view of the 
saved fuel is not easy. The interesting result of the comparison 
is the fact that the NLMPC method gives a result close to the 
A-ECMS one without the need of user-defined parameters. 

V I. CONC LUSIONS 

The paper has proposed a power management strategy 
based on the NLMPC paradigm that, off-line, performs better 
than Dynamic Programming using less computational time. 
The minimum fuel problem is formulated as a Non Linear 
Programming problem with a detailed model of the hybrid 
vehicle power train. The same model and approach has been 
applied for real time solution of energy management problem 
using a suitable first guess and adding a mayer term which 
is an equivalent consumption to control the variation of the 
battery SOC in the Predicted Horizon. The method can easily 
account for road slope and information from driver's route and 
in priciple can produce similar result than off-line calculation 
for autonomous vehicle (where speed is known in advance). 

Several improvements are still possible such as a new 
definition fo the Mayer term to fully exploit the potential of 
the battery which still tends to be close to the desired value. By 
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observing Figure 6 we can notice that the SOC tends to remain 
close to the desired one. Moreover the minimum consumption 
problem in the NLMPC has been solved only by using a quasi
static approach: a future improvement could be the definition 
of the problem taking into account the dynamics of the vehicle 
(dynamic approach). 
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