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ABSTRACT
Estimating the remaining useful life of lithium-ion batteries

is crucial for their application as energy storage devices in sta-
tionary and automotive applications. It is therefore important to
understand battery degradation based on chemistry, usage pat-
terns, and operating environment. Different degradation mecha-
nisms that affect performance and durability of lithium-ion bat-
teries have been identified over the past decades. Amongst them,
the solid-electrolyte interface (SEI) layer growth has been ob-
served to be the most influential cause of capacity fading. In this
paper, we introduce for the very first time, a framework that eval-
uates the predictive ability of physics-based macroscopic models
in capturing battery dynamics as function of their state-of-health
(SoH). Using data from accelerated aging experiments, we iden-
tify the applicability conditions of classical electrochemical mod-
els. This analysis is performed using a phase diagram approach
that involves parameters controlling the micro-scale dynamics
inside the lithium-ion cell.

Introduction
A comprehensive understanding of the dynamic perfor-

mance of lithium-ion batteries over the duration of its useful
life still remains a significant challenge today. Non-linearity of
the transport processes within the battery system, coupled with
physicochemical heterogeneities over a multiplicity of length
scales makes this task very complex [1]. As batteries age, their

performance degrades due to capacity and power fading. Ca-
pacity fade is referred to the loss of cyclable lithium ions as a
result of electrode degradation caused by the reversible transfer
of lithium ions during battery operation [2]. This leads to loss of
energy storage capacity in the electrodes. Lithium-ion batteries
age differently as a consequence of their operating patterns. This
utilization behavior will greatly determine the amount of capac-
ity fading due to cyclic aging, and the eventual end of life of the
battery [3].

Among the different aging mechanisms, the growth of the
SEI layer has been observed to significantly impact battery ca-
pacity [4]. Many studies have identified this growth at the an-
ode based on galvanostatic [5, 6] and dynamic operating condi-
tions [7]. During cycling, the SEI layer forms between the anode
and electrolyte. Initially, this layer acts as a protective barrier,
allowing lithium ion transfer while keeping the electrolyte sepa-
rated physically from the anode. The continued growth that oc-
curs during cycling will increase the resistive layer and remove
active lithium from the cycling system. Gradually, this leads to
diminishing energy and power capacity of the battery.

The SEI layer growth can be coupled with existing bat-
tery macroscopic models to simulate capacity fade occurring
throughout the cell. The rate of the side reactions and the
growth of the SEI layer are dependent on the local overpoten-
tials and internal concentrations. These factors directly depend
on the battery operating conditions (state-of-charge (SoC), tem-
perature, and C-rate). While this approach has been widely im-
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plemented [8–10], the ability of models in predicting battery dy-
namic performance is something that has not been explored. This
is important for the development of advanced algorithms in bat-
tery management system (BMS) applications.

In our previous work [11], a homogenized electrochemi-
cal model was developed to describe mass and charge trans-
port in lithium-ion batteries. The upscaling methodology en-
ables the quantification of lithium transport mechanisms using
phase diagrams in the electrode and electrolyte. Our subsequent
work [12] examined the temperature-influenced dynamics of dif-
ferent lithium-ion battery cathodes. This study determined the
range of applicability of classical macroscopic models [13], and
identified temperature and C-rate of operation as critical param-
eters that govern the internal transport processes. The outcome
of this analysis elucidates the need for multi-scale models for
operating conditions where macroscopic models are invalidated.

The novel contribution of this paper is evaluating the ability
of macroscopic models in predicting the performance of lithium-
ion battery cells as function of their state-of-health (SoH). In
the next section, we summarize the applicability conditions of
macroscale transport equations in the electrolyte. In the subse-
quent section, we present the methodology to determine dimen-
sionless micro-scale transport parameters as a function of aging.
In the penultimate section, we investigate the effect of SEI layer
growth on the applicability conditions of macroscale transport
models in the electrolyte. An analytical study of moderate and
aggressive battery galvanostatic discharge as a function of the
battery SoH is presented. The final section summarizes the con-
clusion of this work and the direction of future research.

Applicability conditions of lithium transport in the
electrolyte

The pore-scale transport mechanisms of lithium in the
electrolyte are heterogeneous reaction, ion diffusion, and ion
electro-migration. A time-scale is associated with each of these
mechanisms: t̂R for reaction, t̂De for diffusion, and t̂Me for
electro-migration. We identify dimensionless transport num-
bers, Damköhler Dae and Péclet Pee, as parameters that con-
trol lithium-ion transport processes. We refer the reader to [11]
for the derivation and elaborate explanation of these parameters.
They are defined as the ratio of time scales of lithium transport
processes [11]:

Dae =
t̂De

t̂R
=

Lk
FDe = ε

β , Pee =
t̂De

t̂Me

=
RT Ke

DeF2cs
max,n

= ε
−α .

(1)

In (1), ε is the ratio of characteristic length scales of the pore-
scale and macroscale domains, L is the macroscopic length scale,
k the electrochemical reaction rate constant, F Faraday’s con-
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FIGURE 1: Phase diagram specifying the range of applica-
bility of macroscopic mass and charge transport equations of
lithium-ions in the electrolyte. This figure has been reproduced
from [11].

stant, R the universal gas constant, T temperature, and cs
max,n the

maximum lithium storage concentration in the active particle. De

and Ke are the characteristic values of interdiffusion and electric
conductivity in the electrolyte. Parameters α and β determine
the system behavior in the electrolyte phase.

Upon homogenization [11], rigorous upscaling of the pore-
scale mass and charge transport equation is achieved. It is guar-
anteed that pore-scale lithium-ion transport in the electrolyte is
accurately represented by macroscopic equations within errors of
order ε2, provided the following conditions are satisfied:

(a) Dae < 1⇐⇒ β > 0 ,
(b) Pee < 1⇐⇒ α < 0, and
(c) Dae/Pee < 1⇐⇒ α +β > 0.

Figure 2 schematically represent these conditions in the form of
a phase diagram. The shaded portion of the phase diagram (in
blue) represents the region where the three constraints are sat-
isfied, which allows the decoupling of the pore-scale and the
macroscale equations of lithium transport. Constraints (a) to (c)
require that both interface reaction and electro-migration have
slower dynamics compared to electrolyte diffusion. This guar-
antees uniform distribution of lithium-ions at the pore-scale. In
diffusion-limited regimes (for instance, at high C-rates of oper-
ation), the system is not well-mixed and concentration gradients
form at the pore-scale. The predictive ability of continuum scale
models can no longer be guaranteed when this occurs. In the
subsequent sections, we investigate the effect of aging based on
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SEI layer growth to determine if mass transport limitations occur
in the electrolyte lithium transport.

Micro-scale transport parameters as a function of ag-
ing

The capacity fade study in our approach is based upon has
been developed in [14]. The evolution of the SEI layer at the an-
ode surface in [14] is based on solvent diffusion and single par-
ticle approximation [15]. A lumped parameter approach is used
to describe the variation in the negative electrode porosity. No
active material deformation is considered, and the loss of cyclic
lithium ions is the main capacity loss mechanism. Assuming the
loss of battery capacity Q is exclusively due to the loss of cy-
clable Li-ions in the negative electrode due to the side reaction
after de-lithiation, then [14]

dQ
dt

= Sn · is, (2)

where Sn is the electroactive surface area of the negative elec-
trode and is is the current density of the side-reaction leading to
the formation of the SEI layer. Sn is related to the geometrical
parameters of the electrode as [14]

Sn = 3 ·ηs,n ·δn ·A/Rs,n. (3)

In (3), ηs,n is the anode porosity, δn is the thickness of the anode,
A is the anode cross-sectional area, and Rs,n is the radius of the
anode active particle. The growth rate of the SEI layer can be
expressed using the current density of the SEI layer side-reaction
current, [14]

δSEI

dt
=− is

2F
· MSEI

ρSEI
, (4)

with MSEI the molar mass of the SEI layer, ρSEI the density of
the SEI layer. Combining (2), (3), and (4), we postulate an ex-
pression for the SEI layer as a function of time as

δSEI,t = δSEI,0 +
MSEI

2 ·F ·Sn ·ρSEI
· (Q0−Qt) (5)

where δSEI,0 and Q0 are the initial SEI layer thickness and capac-
ity, and δSEI,t and Qt are the SEI layer thickness and capacity at
a later time t > 0. (5) is postulated based on the knowledge of the
initial SEI layer thickness. In most cases, as indicated in [14],
this value is estimated. The battery capacity is determined by

considering that the anode provides all the cyclic lithium ions
that travel across the electrolyte to the cathode. Assuming dis-
charge conditions, Qt is expressed in terms of the discharge cur-
rent, Idischarge, and the time at the beginning and end of discharge,
t0 and t f , respectively as follows,

Qt =
∫ t f

t0
Idischarge ·dt (6)

Qt can be expressed in terms of the maximum lithium-ion con-
centration in the anode, cs

max,n,t , as [14]

Qt = ηs,n · zn · cs
max,n,t ·A ·Ln ·F ·

(
x100%,n− x0%,n

)
. (7)

In (7), zn is the anode valence number, x100%,n is the stoichio-
metric coefficient at 100% SoC, and x0%,n is the stoichiometric
coefficient at 0% SoC. The value of cs

max,n,t as a function of aging
can be determined by equating the cell capacity from the assess-
ment tests in the expression for Qt .

The effective electrolyte conductivity, Ke f f
e,n , decreases due

to cell aging according to the following relationship, due to the
growth of the SEI layer thickness at the outer surface of the anode
active material, [14]

Ke f f
e,n = Ke ·

{
1−η f ,n−ηs,n

(
1+

3δSEI,t

Rs,n

)}1.5

(8)

In the above expression, η f ,n is the porosity of the filler material
in the anode, and Ke is the electrolyte conductivity in the mi-
croscale. The power factor of 1.5 is obtained by incorporating
the Bruggeman relationship to determine the effective (macro-
scopic) conductivity in the electrolyte as a function of its micro-
scopic counterpart [14]. We postulate an expression for the mi-
croscopic electrolyte conductivity Ke

ag, in which the aging effect
is incorporated using the relationship below

Ke f f
e,n = Ke

ag · (ηe,n)
1.5 (9)

To the best of our knowledge, no description has been reported
in literature on the impact of SEI layer growth on pore-scale pa-
rameters. Since their impact on effective transport parameters
has been described in [14], we incorporate this information in
our postulated expression (9). Combining (8) and (9),

Ke
ag =

Ke

(ηe,n)1.5 ·
{

1−η f ,n−ηs,n

(
1+

3δSEI,t

Rs,n

)}1.5

. (10)
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Similarly, a parameter De
ag is postulated for the electrolyte diffu-

sion as a function of aging. The effective electrolyte diffusivity
of lithium ions in the anode, De f f

e,n , decreases due to cell aging
as: [14]

De f f
e,n = De ·

{
1−η f ,n−ηs,n

(
1+

3δSEI,t

Rs,n

)}1.5

. (11)

Therefore, the microscopic electrolyte diffusion De
ag which in-

corporates the effect of the SEI layer growth (aging) is

De
ag =

De

(ηe,n)1.5 ·
{

1−η f ,n−ηs,n

(
1+

3δSEI,t

Rs,n

)}1.5

. (12)

For isothermal macroscopic models which do not incorporate ag-
ing effects, we define the microscopic transport parameters in
which the effect of aging is incorporated, as shown above us-
ing (10) and (12). We can now define the Damköhler and Péclet
numbers below, respectively, in the electrolyte as a function of
the aging parameters

Dae =
Lk

FDe
ag

=
Lk

FDe ·
(ηe,n)

1.5{
1−η f ,n−ηs,n

(
1+ 3δSEI,t

Rs,n

)}1.5 ,

(13)

Pee =
RT Ke

ag

De
agF2cs

max,n,t
=

RT Ke

DeF2cs
max,n,t

. (14)

In the next section, we analyze the impact of the SEI layer growth
on the dimensionless transport parameters and their influence on
the applicability conditions.

Battery dynamics as a function of aging
The phase diagram analysis has been until now [11, 12] im-

plemented to study the robustness of macroscopic models at a
given state of health. This study focuses on evaluating the ability
of macroscopic models to predict the behavior of battery cells as
they age. Data for this study is obtained from [16]. Accelerated
aging experimental tests were conducted on lithium-ion pouch
cells of blended cathodes NMC-LMO (nickel-manganese-cobalt
oxide-lithium manganese dioxide). Intermittent cell characteri-
zation tests (capacity test in discharge, and hybrid power pulse
characterization (HPPC)) were conducted to assess the energy
and power capability of these cells as a function of their SoH.
We use data from these capacity tests for our analysis.

In this paper, we make the following assumptions:

1. The effect of the relaxation phase of the pulse train event
on the growth of the SEI layer is negligible compared to the
positive and negative pulse events during cyclic aging.

2. The assessment tests conducted for cell characterization
have minimal impact on the SEI layer growth compared to
the accelerated aging experiment.

3. The SEI layer is formed only at the anode during charg-
ing/discharging events, and is assumed to uniformly grow
at the outer surface of the active anode particle.

The target application for the lithium-ion pouch cells analyzed in
this study is plug-in hybrid electric vehicles (PHEVs), which op-
erate under charge-depleting (CD) and charge-sustaining modes
(CS). The power demand of the CD and CS micro-cycles de-
scribed in [16] indicates that the pouch-cell under investigation
operates in discharge mode between C-rates of 1 and 10. We
conduct a phase diagram analysis for two current rates of gal-
vanostatic discharge of the pouch cell: 1 C-rate (moderate) and
10 C-rate (high). The galvanostatic discharge is considered to
begin with a battery SoC of 100%. This analysis is used to eval-
uate model predictability when the cell is tested at two different
health conditions: 100% SoH (fresh) and 86% SoH (aged).

Model parameters used to assess the veracity of macroscale
models as a function of the pouch cell SoH were obtained
from [17–19]. This analysis investigates the impact of C-rate
of operation, temperature, and SoH on the micro-scale transport
parameters (k, De, and Ke). The reaction rate constant at room
temperature (Tre f = 298K) is determined from the current de-
mand Iapp using the expression

Iapp = 2 · kre f ·

√
ĉe

ε ĉs
ε

(
1− ĉs

ε

cs
max

)
· sinh[F(φ̂ s

ε − φ̂
e
ε −Û)/2RTre f ],

(15)

where ce
ε and cs

ε represent the concentration of lithium-ion in the
electrolyte and active particles, respectively. The stoichiometric
coefficient x is used to determine the value of cs

ε from the cell
SoC and cs

max. We set the value of ce
ε as 1,000 mol/m3. The pa-

rameters φ s
ε , φ e

ε , and Û are respectively the electrode potential,
electrolyte potential, and the open-circuit potential. The parame-
ter (φ̂ s

ε− φ̂ e
ε −Û) is also known as the overpotential, whose value

is taken as 100mV [19] for this analysis. The scale separation
parameter ε =

2Rs,n
L is the ratio of the anode particle diameter

(25µm) and anode thickness (162µm).
In order to determine Dae as a function of aging, k must be

determined as cs
max,n,t decreases with the SEI layer growth. As-

suming galvanostatic discharge at the anode, we can determine
the anode reaction rate constant kre f ,n. Table (1) presents the val-
ues of kre f ,n determined as a function of the C-rate of discharge
and cs

max,n,t . Table (2) summarizes the results of the capacity
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TABLE 2: Lithium-ion pouch cell parameters determined from capacity fading analysis.

Ah-throughput [kAh] Qt [Ah] SoH [%] δSEI,t [m] cs
max,n,t [mol/m3] De

ag [m2/s] Ke
ag [Ω−1m−1]

0 14.98 100 0 31,833 2e-10 0.56

3.1 14.36 95.9 2.09e-7 30,516 1.83e-10 0.51

4.7 14.27 95.3 2.40e-7 30,325 1.8e-10 0.51

8.5 13.96 93.2 3.44e-7 29,666 1.72e-10 0.48

12.8 13.87 92.6 3.75e-7 29,475 1.7e-10 0.48

17.5 13.34 89.1 5.53e-7 28,349 1.56e-10 0.44

21 13.13 87.7 6.24e-7 27,903 1.5e-10 0.42

21.3 12.94 86.4 6.88e-7 27,499 1.46e-10 0.41

TABLE 3: Variation of the electrolyte phase diagram parameters for different C-rate and temperature, as a function of their SoH.

SoH [%] C-rate [1/h] ε [-] k [A·m·mol−1] T [K] De
ag [m2sec−1] Ke

ag [Ω−1m−1] Dae [-] Pee [-] α [-] β [-]

100 1 0.154 1.94e-4 298 2e-10 0.56 1.63e-3 2.34e-2 -2.01 3.44

100 1 0.154 2.39e-4 300 2.14e-10 0.61 1.88e-3 2.40e-2 -2.00 3.36

100 1 0.154 2.95e-4 302 2.28e-10 0.66 2.17e-3 2.45e-2 -1.98 3.28

100 1 0.154 3.62e-4 304 2.42e-10 0.71 2.51e-3 2.50e-2 -1.97 3.20

100 1 0.154 4.43e-4 306 2.56e-10 0.76 2.90e-3 2.55e-2 -1.96 3.13

86.4 1 0.154 2.09e-4 298 1.45e-10 0.406 2.41e-3 2.71e-2 -1.93 3.22

86.4 1 0.154 2.57e-4 300 1.59e-10 0.456 2.72e-3 2.79e-2 -1.91 3.16

86.4 1 0.154 3.17e-4 302 1.73e-10 0.506 3.08e-3 2.87e-2 -1.90 3.10

86.4 1 0.154 3.89e-4 304 1.87e-10 0.556 3.49e-3 2.94e-2 -1.89 3.03

86.4 1 0.154 4.76e-4 306 2.01e-10 0.606 3.98e-3 3.00e-2 -1.88 2.96

100 10 0.154 1.94e-3 298 2e-10 0.56 1.63e-2 2.34e-2 -2.01 2.20

100 10 0.154 3.26e-3 303 2.35e-10 0.685 2.33e-2 2.48e-2 -1.98 2.01

100 10 0.154 8.79e-3 313 3.04e-10 0.93 4.86e-2 2.69e-2 -1.94 1.62

100 10 0.154 2.23e-2 323 3.73e-10 1.17 1e-1 2.84e-2 -1.91 1.23

100 10 0.154 5.35e-2 333 4.42e-10 1.42 2.03e-1 3e-2 -1.88 0.85

86.4 10 0.154 2.08e-3 298 1.45e-10 0.406 2.41e-2 2.71e-2 -1.93 1.99

86.4 10 0.154 3.51e-3 303 1.80e-10 0.53 3.27e-2 2.90e-2 -1.90 1.83

86.4 10 0.154 9.46e-3 313 2.49e-10 0.77 6.38e-2 3.14e-2 -1.85 1.47

86.4 10 0.154 2.40e-2 323 3.19e-10 1.02 1.26e-1 3.35e-2 -1.82 1.11

86.4 10 0.154 5.76e-2 333 3.88e-10 1.26 2.49e-1 3.51e-2 -1.79 0.74

fading analysis performed on the lithium-ion pouch cell. Using
this information, we determine the variation of the phase diagram
parameters (α ,β ) for galvanostatic discharge at 1 C-rate and 10
C-rate for a fresh pouch-cell (SoH = 100%) and an aged pouch-

cell (SoH = 86%). Based on prior experimental data [19–22] and
assuming the discharge to begin at an initial cell temperature of
298K, we estimate the temperature increase to be respectively
298K to 306K for 1 C-rate discharge and 298K to 333K for 10
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FIGURE 2: Variation with temperature of dimensionless parameters α and β for galvanostatic discharge at 1 and 10 C-rates, with the
performance evaluated at 100% and 86% SoH.

TABLE 1: Reference reaction rate constant kre f ,n in terms of the
applied current Iapp as a function of its SoH and C-rate.

SoH [%] cs
max,n,t [mol/m3] C-rate [1/h] Iapp [A/m2] kre f ,n [A·m/mol]

100 31,833 1 2.84 1.94e-4

86.4 27,499 1 2.84 2.09e-4

100 31,833 10 28.4 1.94e-3

86.4 27,499 10 28.4 2.08e-3

C-rate discharge.
The electrochemical transport parameters k, De, and Ke also

vary as a function of temperature. For the reaction rate constant,
we can express k(T ) using the Arrhenius relationship [23]:

k(T ) = kre f · exp
[Ear

R

( 1
Tre f
− 1

T

)]
. (16)

Ear is the electrode reaction rate activation energy, and we set it
to a value of 78.24 kJ/mol [24]. To the best of our knowledge,
no analytical dependence has been reported in literature. We im-
plement instead a curve fitting procedure based on Figures 13
and 14 in [25] to determine De(T ) and Ke(T ). This method has
earlier been succesfully implemented in [12].

Based on the parameter values reported above and the

methodology described earlier, we compute the temperature de-
pendent trajectory of the phase diagram coefficients (α ,β ) at dif-
ferent temperature intervals that are characteristic of the C-rate
of operation and the cell SoH. The variation of parameters α

and β as a function of the operating conditions are presented in
Table (3). This variation is also schematically represented in Fig-
ure 2.

At a 1 C-rate, moderate increase in temperature during the
discharge event results in a minor change in the parameter α

compared to β . This is due to the faster rate of increase in reac-
tion kinetics compared to the enhanced electrolyte diffusion and
conductivity. The effect of cell operation at different SoH can be
clearly observed in both parameters, as lower SoH pushes the pa-
rameter values closer to the boundary of the applicability regime
(indicated by the dotted lines in figure 2). In both cases, the data
points satisfy the constraints over the range of temperature in-
crease. Hence macroscale transport models would be capable of
capturing pore-scale dynamics accurately.

During 10 C-rate of discharge, significant increase in bat-
tery internal temperature leads to an accelerated decrease in β .
The effect of increasing k dominates any increase in parameters
De and Ke. The condition α + β > 0 is violated shortly after
discharge begins. This is because fast reaction kinetic lead to
the formation of diffusion-limited regimes. Such poorly mixed
conditions leads to the lack of scale separation between the pore-
scale and macroscale domains. Operating aged cells under ag-
gressive conditions of discharge has a significant effect on the
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trajectory of (α ,β ). The data points for aged cell tend to violate
the conditions of homogenizability faster, as shown in figure 2.
Lower SoH battery operation lead the points closer to the limit-
ing boundaries and invalidate macroscale models.

The proposed theory suggests that the predictive ability of
macroscale models degrade as the battery SoH decreases over
time. This is consistent with previous experimental/numerical
studies, and can be explained by variation of the parameters Dae
and Pee as a function of aging using the applicability conditions:

1. The Péclet number Pee increases with aging due to the de-
crease in battery capacity Qt , which leads to a decrease in
cs

max,n,t .
2. The Damkhöler number Dae increases with aging due to the

decrease in De
ag, which is the result of the SEI formation

side-reaction.
3. The ratio of the Damkhöler and Péclet number, Dae/Pee,

increases with aging and is directly proportional to the ratio
cs

max,n,t{
1−η f ,n−ηs,n

(
1+ 3δSEI

Rs,n

)}1.5 .

In addition, decreasing cs
max,n,t leads to an increase in the rate

constant kre f ,n for the same current demand as the cell ages. As
explained in [15], the applied current determines the total cur-
rent density at the negative electrode. The total current density is
a sum of the intercalation and the side-reaction current densities.
As the growth of the SEI layer depletes cyclable lithium ions and
increases the unwanted side-reaction dynamics, the intercalation
current density must compensate for these losses in order to meet
the current demand. As a result, we observe increase in the inter-
calation side-reaction kinetics. The successful implementation of
the phase diagram approach can identify when classical macro-
scopic models may fail to accurately capture battery dynamics
with respect to degradation.

Conclusions
Understanding the predictive ability of macroscale lithium-

ion battery models is essential for the design of algorithms to
prolong battery life. This becomes even more crucial as the bat-
teries age over time, and control algorithms must be modified
according to the evolution of battery dynamics. The core con-
tribution of this paper was to develop a framework that provides
insight as to how well physics-based models today may perform
throughout the useful life of a battery.

We performed an aging analysis to determine the dimension-
less Damkhöler and Péclet numbers in the electrolyte phase as a
function of operating conditions and aging. This study incor-
porated the impact of SEI layer growth on the surface of anode
active particles. The phase diagram analysis helps in understand-
ing the ability of macroscale models to capture battery dynamics
under different operating conditions and SoH.

We infer that the predictive ability of macroscale models de-
grades with battery aging due to the side-reaction dynamics that
affects pore-scale transport. The applicability conditions pro-
vide a quantitative framework to identify the onset of mass trans-
port limitations as the battery SoH decreases over time. Under
such circumstances, modeling efforts must be focused on the im-
plementation of coupled micro-macro models, which can offer
better fidelity due to their ability to inherently incorporate mi-
crostructural electrode details.

Future studies will focus on the numerical simulation of
macroscale models to validate the analytical results presented in
this work. In addition to the SEI layer growth, we will assess the
impact of other aging mechanisms such as lithium plating and
lithium dendrite formation on pore-scale dynamics, and extend
the scope of this research work.
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