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Abstract— In this paper, we use an electrochemical degra-
dation model to characterize aging propagation in Lithium-
ion (Li-ion) battery cells. The three-time scale behavior of
individual cells is formally studied using a singular perturbation
theory approach. The resulting reduced aging battery model is
used to quantify the aggravated degradation occurring to each
cell, within an interconnected configuration, due to existing cell-
to-cell variation, in the form of an aging gradient. Simulation
results show the context-dependent aging propagation in the
case of four cells connected in series.

I. INTRODUCTION

Battery packs are composed of individual battery cells
(hundreds or thousands, [1], [2]) connected either in series
and/or parallel. Neither of the individual cells are created
equal, nor do they degrade equally upon usage. Production
tolerances, uneven temperature distribution, and differences
in the aging characteristics of cells, cause overstress in indi-
vidual cells that are connected in series, resulting in prema-
ture failure. The decreased life cycle decreases performance,
which in turn increases the risk of battery thermal runways
and fire explosions. The potential failure rate becomes higher
with interactions between the cells. For example, in a module
of interconnected cells, during charging cycles, any degraded
cell with a diminished capacity, upon reaching its full charge
may continue to charge until the rest of the cells in the
module reach their full charge. This overcharging of a single
cell will overheat the battery, yielding to thermal runways.

In earlier work, [3], [4], the problem of aging propagation
in interconnected systems for automotive batteries was for-
malized via a residual aging dynamics generator to monitor
the degradation among cells. Cell-to-cell variations in Li-ion
battery cells, not induced by aging but only by a statistical
parameter variation, were analyzed in [5] as a critical factor
in influencing the pack performance. In [6], preliminary
results show that cell-to-cell variation within a battery pack,
caused by differences in aging characteristics, propagates
among cells within the pack. In [6], it was shown that the
principle of modularity in predicting aging of a system from
its components is lost as aging furtively travels into the
system and retroactivity is observed. Retroactivity, studied
in synthetic biology, is a phenomenon that causes the char-
acteristics of a component to change upon interconnection,
[7], [8]. A concept similar to retroactivity, namely retroaction
law, is used in [9] to prove that the stress (or aging) that an
element undergoes depends on its environment and its own
damage through the retroaction law. In the context of battery
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packs, the presence of retroactivity may obviate modularity,
making it a challenge to accurately predict the battery pack
RUL (Remaining Useful Life) solely through component
dynamics.

In this work, we develop a framework to model aging
propagation through retroactivity in a series of intercon-
nected cells. An electrochemical model that incorporates
degradation parameters, in the form of SEI layer growth and
ohmic drop across electrolyte, is employed to describe the
dynamics of the battery, as opposed to an equivalent circuit
model in [3], [4], [6]. Additionally, a two-state thermal model
is utilized to predict the internal core temperature. The term
representing the source of heat in the thermal model takes
into consideration the electrochemical and aging processes.
The semi-empirical aging model, which is characterized in
terms of capacity fade and power fade, is directly correlated
to the physical properties in the cell. A singular perturbation
approach is used to single out the battery dynamics and
develop a reduced order model to understand the effect of
retroactivity on the degradation in interconnected cells.

The paper is structured as follows: Section II describes
the Li-ion battery cell model combining the electrochemical
dynamics, based on Single Particle Model (SPM), a two-state
thermal model, and an aging model. Section III discusses the
problem of aging in interconnected systems and provides
the motivation to study the phenomenon of “retroactivity”.
In addition, we discuss the singular perturbation approach
towards exploiting the three-time scale behavior of cell
dynamics to obtain a reduced order model. Section IV puts
forth the simulation results validating the framework of
aging propagation through interconnected cells. Section V
concludes the findings of the study, and lists any future work
that is to be carried out.

II. BATTERY CELL MODEL

In this work, a Li-ion cell is modeled by its coupled com-
bination of electrochemical, thermal, and aging dynamics.
The mathematical models representing these dynamics and
their mutual interdependence are described in this section.

A. Electrochemical Dynamics

A SPM of the cell is used in this work. A SPM is a
reduced order electrochemical model that approximates the
electrode as a single spherical particle. The SPM is simplified
by assuming uniform concentration gradient in the electrolyte
phase, neglecting the diffusion dynamics therein. This results
in two Partial Differential Equations (PDE) characterizing the



conservation of mass in the solid phase, given by Fick’s law
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with the Neumann boundary conditions at the center and the
surface of the spherical particle as
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where j ∈ [p,n] represents the positive or negative electrode,
cs,j is the lithium concentration in the solid phase of the
respective electrode, Ds,j is the diffusion coefficient, t is
the temporal coordinate, r is the radial coordinate, Rj is the
radius of the spherical particle, Ibatt is the input current,
F is the Faradays constant, as,j is the specific interfacial
surface area, A is the cross sectional area of the cell, and Lj
is the thickness of the electrode. The above PDEs are solved
by radially discretizing them into a system of Ordinary
Differential Equations (ODEs) using the Finite Difference
Method (FDM) [10].

The electrochemical battery parameters are considered to
be dependent on the cell’s core temperature, Tc. In the lit-
erature, the diffusion coefficient (Ds,j) and the reaction rate
constant (kj) have an Arrhenius dependence on temperature
given by

ψ(Tc) = ψref · exp
[
Ea,ψ
Rg

(
1

Tc,ref
− 1

Tc

)]
(2)

where ψ stands for Ds,j and kj , Ea,ψ is the activation energy
associated with the diffusion and reaction rate, respectively,
Rg is the universal gas constant, Tc,ref is the reference core
temperature, and Tc is the cell’s operating core temperature.
In addition, the open circuit potential (Uj) is approximated
as a function of the surface concentration of the spherical
particle (cs,j,surf ) and the core temperature by Taylor’s
expansion [11]

Uj(cs,j,surf , Tc) = Uj(cs,j,surf , Tc,ref ) +
∂Uj
∂Tc

(Tc−Tc,ref )

(3)
The electrochemical dynamics is coupled to the aging

dynamics through the inclusion of a model describing the
side reaction that leads to the growth of the Solid Electrolyte
Interphase (SEI) layer on the negative electrode. The SEI
layer is formed due to solvent reduction on the surface of
the active material that consumes cyclable lithium ions in the
process [12]. The rate at which the SEI layer grows is given
by

dLSEI
dt

= − is ·MSEI

2 · F · ρSEI
(4)

where is is the side reaction current density, MSEI is the
molar mass of the SEI layer, and ρSEI is the SEI layer
density.

The equations for overpotential (ηj) at the negative and
positive electrode, with the inclusion of the potential drop
across the SEI layer, are written as [13]

ηn = φs,n − φe,n − Un −
Ibatt · LSEI

as,n ·A · Ln ·KSEI

ηp = φs,p − φe,p − Up (5)

where the last term in the overpotential equation of the
negative electrode represents the potential drop due to the
SEI layer, and will be referred to as Ibatt ·RSEI henceforth
(where RSEI = LSEI

as,n·A·Ln·KSEI
). In the above equation, φs,j

and φe,j are the solid phase potential and the electrolyte
potential at the respective electrodes, LSEI is the thickness
of the SEI layer, and KSEI is the ionic conductivity in the
SEI layer. The equation for the terminal voltage of the battery
is then given by

V = φs,p − φs,n (6)
= ηp − ηn + Up − Un + φe,p − φe,n − Ibatt ·RSEI

where the term φe,p − φe,n represents the potential drop
across the electrolyte and can be represented as Ibatt · Re,
where Re is referred to as the electrolyte resistance. The
electrolyte resistance increases with aging, due to (a) reduced
ionic conductivity in the electrolyte phase, and (b) increased
SEI layer growth resulting in reduced porosity in the elec-
trolyte phase of the negative electrode [13]. The rise in the
electrolyte resistance over aging is assumed to be the primary
reason for the rise in internal impedance of the cell.

The resulting equation for the terminal voltage of the
battery is rewritten as

V = ηp(cs,p,surf , Tc)− ηn(cs,n,surf , Tc) +

Up(cs,p,surf , Tc)− Un(cs,n,surf , Tc)−
IbattRe − IbattRSEI (7)

The bulk concentration for the radially discretized elec-
trode is computed using the volume averaging technique

cs,j,bulk =
1

4
3πN

3

N∑
k=1

4πk2cs,j,k (8)

where N is the number of grid points obtained through FDM.
The bulk concentration is normalized to obtain the bulk
SOC, SOCbulk, which varies between the two stoichiometric
values θj,100% and θj,0%, corresponding to the fully charged
and discharged conditions for each electrode, through the
relation [10]

SOCbulk =
cs,j,bulk/cs,j,max − θj,0%
|θj,100% − θj,0%|

(9)

Taking the derivative of (8) (and (9)) with respect to time,
we obtain

dSOCbulk
dt

=
3
∑N
k=1 k

2 dcs,j,i
dt

N3 · |θj,100% − θj,0%| · cs,j,max
(10)

The capacity of the cell, Q (measured in Ah), in terms of
electrochemical parameters is given by [10]

Q = F ·A · Lj · εj · cs,j,max · (θj,100% − θj,0%)/3600
(11)

where εj is the active material volume fraction of the
electrode. Now, substituting (11) into the SOC dynamics
(10), we have

dSOCbulk
dt

=
3 · F ·A · Lj · εj

3600 ·Q ·N3

N∑
k=1

k2
dcs,j,i
dt

(12)



B. Thermal Dynamics

A two-state lumped thermal model that describes the
dynamics of the surface temperature and the core temperature
of the cell is used. The underlying assumption is that the
surface temperature is uniform throughout the surface and the
internal temperature is uniformly distributed across the core.
The mathematical representation of the two-state thermal
model is given by [14]

Cc
dTc
dt

= qcell +
Ts − Tc
Rc

Cs
dTs
dt

=
Tamb − Ts

Ru
− Ts − Tc

Rc

(13)

where Ts is the surface temperature, Tamb is the ambient
temperature, Cc is the heat capacity of the core, Cs is the
heat capacity of the surface, Rc is the conduction resistance
between the surface and core, Ru is the convective resistance
used to model the heat exchange with the environment, and
qcell is the irreversible heat generated due to the electrochem-
ical reaction given as

qcell = Ibatt ·
(
ηn(cs,n,surf , Tc)− ηp(cs,p,surf , Tc)

+Ibatt ·RSEI + Ibatt ·Re
)

(14)

C. Aging Dynamics

We use a semi-empirical model to capture the dynamics
of capacity loss and resistance increase in a cell. The model
is identified as a function of the extracted ampere hours
(Ah), obtained as Ah =

∫ |Ibatt|
3600 , and severity factors

(viz. SOCbulk, C-rate (Ic), core temperature (Tc)). The loss
in capacity (Qloss) and increase in resistance (Re,inc) are
defined as follows [6]:

Qloss =
Q0 −Q
Q0

· 100; Re,inc =
Re −Re,0
Re,0

· 100 (15)

where Q is the cell capacity subject to aging and Q0 is the
capacity at Beginning of Life (BOL), Re is the electrolyte
resistance and Re,0 is its value at BOL.

The semi-empirical model identified for capacity loss and
resistance increase are nonlinear functions of the severity
factors [SOCbulk, Ic, Tc, ], and [Ic, Tc] respectively, given by
[15], [6]

σfunct,Q(SOCbulk, Ic, Tc) = (αQ SOCbulk + βQ)·

e

 −Ea,Q + ηQIc
Rg(Tc + 273.15)


·Ahz

σfunct,Re(Ic, Tc) =
(
αRe + µRe e

(γRe Ic)
)
·

e

 −Ea,Re

Rg(Tc + 273.15)


·Ah

(16)

where Ea,Q, Ea,Re are the activation energy corresponding
to capacity loss and resistance increase respectively, while
αQ, βQ, ηQ, z, αRe , µRe , and γRe are parameters obtained
by fitting the model to the experimental data [16].

The capacity and resistance dynamics of the cell with
respect to time are given as follows [6]{
dQ
dt = − Q0

100 σfunct,Q(SOCbulk, Ic, Tc) z Ah
z−1 |Ibatt|

3600
dRe

dt =
Re,0

100 σfunct,R(Ic, Tc) · |Ibatt|
3600

(17)

In this paper, we assume that capacity loss is primarily
due to loss of cyclable lithium ions, that are lost to the side
reactions resulting in the growth of the SEI layer. This can
be written as [13]

dQ

dt
= is · as,n ·A · Ln (18)

From (4) and (18), the rate of capacity loss is related to the
rate of SEI layer growth as follows:

dQ

dt
= −dLSEI

dt
· 2 · F · ρSEI · as,n ·A · Ln

MSEI
(19)

III. AGING IN INTERCONNECTED SYSTEMS

Battery modules for automotive applications are large
scale systems consisting of several interconnected cells in
a series and/or parallel configuration. Due to manufacturing
variances and/or existence of temperature gradient within
modules, over a period of prolonged use, each cell ages at a
different rate causing dissimilar aging within interconnected
cells. The dissimilar aging of cells may further accentuate the
temperature differences between a cell and its neighboring
cells.

Let us consider a module of four fresh cells i − 1, i,
i+ 1, and i+ 2 connected in series. The thermal dynamics
of every cell in the module is altered to accommodate the
thermal interaction occurring between its neighboring cells.
The surface thermal dynamics of a cell i connected to cells
i− 1 and i+ 1 is given by

Cs,i
dTs,i
dt

=
Tamb − Ts,i

Ru,i
− Ts,i − Tc,i

Rc,i
−

Ts,i − Ts,i−1
Rp,i−1

− Ts,i − Ts,i+1

Rp,i+1
(20)

In the above equation, the surface thermal dynamics of cell
i is modified with the inclusion of two terms that represent
heat exchange between the neighboring cells. The conduction
resistances within the battery pack Rp,i−1 and Rp,i+1 model
the heat exchange between the cell i and the upstream cell
i− 1, and cell i and the downstream cell i+ 1, respectively.
The core temperature of cell i varies according to the surface-
core relation expressed in (13). Rearranging (20) yields the
following equation

dTs,i
dt

=
Tamb

Ru,iCs,i
+

Tc,i
Rc,iCs,i

− Ts,iRcomb,i

+
Ts,i−1

Rp,i−1Cs,i
+

Ts,i+1

Rp,i+1Cs,i
(21)

where Rcomb is the lumped resistance given by(
1
Ru

+ 1
Rc,i

+ 1
Rp,i−1

+ 1
Rp,i+1

)
. The two boxed terms,

represent the heat transfer from the upstream cell i− 1 and



the downstream cell i+ 1. These two terms are responsible
to alter the thermal dynamics of cell i.

The existence of the boxed terms in (21) is demonstrated
through experiments conducted on a module of four fresh
cells connected in series, as shown in Figure 1. The cath-
ode chemistry is Lithium Nickel Manganese Cobalt Oxide
(NMC) and each cell has a rated capacity of 2.1Ah. The
ambient temperature is set to 20 ◦C and the distance between
each cell in the module is approximately 1− 1.3cm.

Fig. 1: Setup of four Li-ion NMC 18650 cells connected in series with four
thermocouples to measure the surface temperature of each cell and one
thermocouple to measure the core temperature of cell i.

We subject cell i to the current profile in Figure 2(a)
in both, an isolated and interconnected (as in Figure 1)
configuration. A difference in the core and surface temper-
ature of cell i is observed, as plotted in Figure 2(b). This
difference in temperature is the display of the loss of thermal
modularity; wherein modularity is defined as the property
of predicting the behavior of a large scale system based on
the input/output behavior of its composing units [7]. Such
a loss of modularity may be more pronounced in larger
battery modules, where numerous strings of cells in series
and parallel are placed very close to each other, and each
cell is thermally interlinked to many of its neighboring cells.
Through this, we understand that the behavior of a single
cell changes upon interconnection, making it a challenge to
accurately predict the thermal behavior of a battery module
by looking at the thermal dynamics of a single cell in the
module.

In [6], the authors adopted the phenomenon of retroac-
tivity, originally proposed for transcriptional modules [7],
to the context of interconnected battery cells1. Retroactivity
manifests itself through thermal interconnections between
cells (boxed terms in (21)). In light of retroactivity, within the
context of assessment of State-of-Health (SOH) and aging of
the battery pack, it is postulated that the degradation of an
upstream cell i, is affected, indistinctly, by the degradation of
the downstream cell i+1, through retroactivity. Degradation
in cell i + 1, for example, in terms of resistance increase
(Re,i+1 + ∆Re,i+1), causes an increase in its core temper-
ature (Tc,i+1 + ∆TC,i+1) due to higher Joule heating that
affects the thermal dynamics of the upstream cell i (through

1Retroactivity, in our context, is defined as the phenomenon in which the
dynamics of a cell are altered due to an upstream and a downstream cell.
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Fig. 2: (a) Current profile with ample excitation subjected to the series
configuration. (b) Comparison of core and surface temperature of cell i
when it is isolated and when it is interconnected to other cells.

retroactivity) making it operate at a higher core temperature
(Tc,i + ∆TC,i), ultimately resulting in cell i’s accelerated
degradation (Ri + ∆Ri).

Remark: From the knowledge of the cell dynamics,
we understand that the thermal dynamics is fast, SOCbulk
dynamics is semi-slow, and aging dynamics is slow [6]. In
order to quantify the effect of retroactivity on the slow aging
dynamics, we look to exploit this three time-scale behavior of
the cell. We introduce a “slow” time scale τ , and normalize
the cell dynamics given in (12), (13), and (17) with respect
to the slow dynamics, i.e. aging, to obtain a set of equations
as given below



dQ

dτ
= −Q0 · (αQ SOCbulk + βQ)·
z · Ahz−1 · |Ibatt|·

e

 −Ea + ηQIc
Rgas(Tc + 273.15)


dRe
dτ

= Re,0 ·
(
αRe + µRe e

(γRe Ic)
)
· |Ibatt|·

e

 −Ea,Re

Rgas(Tc + 273.15)


ε1 ·

dSOCbulk
dτ

=
ALjεj
QN3

∑N
i=1 i

2 dcs,j,i
dτ

ε1 · ε2 ·
dTc
dτ

=
qcell
Cc

+
Ts − Tc
Rc · Cc

ε1 · ε2 ·
dTs
dτ

=
Tamb − Ts
Ru · Cs

− Ts − Tc
Rc · Cs

(22)
where ε1 = 1/100, ε2 = 1/3600, and τ = ε1 · ε2 · t. The
choice of ε1 and ε2 is made by identifying constants that
are multiplied to the highest derivative of the states in the
equations of the cell dynamics. We notice that the above set
of state variables represent a three-time scale system in the



standard singularly perturbed form [17]:
ẋ = f(x, y, z, u) → Slow

ε1 · ẏ = g(x, y, z, u) → Semi− slow
ε1 · ε2 · ż = h(x, y, z, u) → Fast

(23)

where x, y, z are the set of slow, semi-slow, and fast variables
respectively, and ε1, ε2 are the perturbation parameters such
that 0 < ε1 · ε2 � ε1 � 1 and hence ε2 � 1. The general
evolution scheme of a three-time scale system involves a
boundary-layer system and a slow manifold. The initial
interval where the fast variable, starting from an initial value,
undergoes a rapid transient to reach its quasi steady state, is
described by the boundary-layer system. The semi-slow and
slow variables evolve on a slow manifold, by setting ε1 ·ε2 to
0 in the fast variable, such that any trajectory on this manifold
will remain in the manifold for all future time [18].

Observation: In system (22), the fast thermal variables,
T = [Tc, Ts], converge to their steady-state values, T̄ =
[T̄c, T̄s], thanks to the asymptotic stability of the boundary-
layer system. One can see this by performing a change of
variables that shifts the equilibrium of the boundary-layer to
the origin by introducing the error dynamics T̂ = T − T̄ . By
setting ε1 · ε2 = 0, we haveT̄c = qcellRc + T̄s

T̄s =
RuRc
Ru +Rc

(
Tamb
Ru

+
T̄c
Rc

)
(24)

To obtain the boundary-layer system, we revert back to the
fast time scale t, where the semi-slow and slow variables
freeze in their respective initial states. Substituting T =
T̂ + T̄ in the thermal dynamics given in (22), we obtain
the boundary-layer system

dT̂c
dt

=
−1

RcCc
T̂c +

1

RcCc
T̂s

dT̂s
dt

=
1

RcCs
T̂c −

(Ru +Rc)

RcRu
T̂s

(25)

where Rc, Cc, Ru, Cs are non-negative constants. The origin
of the boundary-layer system is globally exponentially stable,
if the condition (Ru+Rc)

Ru
> 1

Cs
is satisfied. We conclude

that T = T̄ + O(ε1 · ε2) exists for time t ∈ [t1, t2] [18].
For all t ∈ [t0, t2], where t0 < t1 < t2, we can comment
that the motion of the semi-slow and slow variables on
the slow manifold will be always confined in a bounded
space defined by their respective upper and lower limits,
such that SOCbulk ∈ [SOCbulk,min, SOCbulk,max],
Qloss ∈ [Qloss,min, Qloss,max], and Re,inc ∈
[Re,inc,min, Re,inc,max], where the minimum and
maximum limits are determined by the specific
application or the physical constraints of the cell2.
By substituting the quasi-steady state of thermal
dynamics(T̄c = qcell(Ru + Rc) + Tamb), we arrive at
the reduced order slow model, for both capacity and

2Qloss and Re,inc are related to Q and Re through (15).

resistance, as follows

dQ

dτ
= −Q0(αQ SOCbulk + βQ) · z Ahz−1 · |Ibatt|

e

 −Ea + ηQIc
Rgas((qcell(Ru +Rc) + Tamb + 273.15)


dRe
dτ

= Re,0
[
αRe

+ µRe
e(γRe Ic)

]
· |Ibatt|

e

 −Ea,Re

Rgas((qcell(Ru +Rc) + Tamb + 273.15)


(26)

The above reduced order model for an isolated cell is
extended to interconnected cells to study aging propagation
through retroactivity with the inclusion of the altered thermal
dynamics due to interconnection. The slow manifold and the
simulated trajectory of the dynamics of an isolated cell are
shown in Figure 3.

0
5

10
15

20

0

0.5

1
15

20

25

30

35

40

 

Qloss[%]SOCbulk[ ]
 

T
c
[◦

C
]

t = t0
t = t1
t = t2
Slow Manifold
Simulated Trajectory

Fig. 3: Simulation of three-time scale evolution of cell dynamics. The initial
point at the start of the simulation is at time t = t0, where Tc = 20 ◦C,
Tamb = 35 ◦C, SOCbulk = 0.4, and Qloss = 0%. Input to the
simulation is a charge-discharge cycle of 1C for a period of one day. At
time t = t1, the initial (boundary-layer) interval ends with Tc converging
into the slow manifold. The motion of SOCbulk and Qloss on the slow
manifold is bounded by the limits, specific to the application, given by
SOCbulk ∈ [0.3, 0.8], and Qloss ∈ [0, 20]%, until the end of simulation
time given by t = t2.

IV. SIMULATION RESULTS

The proposed framework of aging propagation in intercon-
nected cells through retroactivity is validated through simu-
lation results. Two scenarios are simulated and compared to
gauge the effect of retroactivity in a module of four cells in
series, where each cell is referred to by its position. The
first scenario assumes the absence of retroactivity in the
module, whereas the second scenario assumes the presence
of retroactivity acting on the cells through their respective
thermal interconnections. In both scenarios, the cell in po-
sition # 2 is aged, with its aging variables initialized as
Qloss = 5%, Re,inc = 2% [19], while the remaining cells in
the module are fresh. The input to both scenarios is a charge-
discharge cycle of 2C spanning the range of SOC from 40
to 70%, for a period of 45 days. The ambient temperature



is set to 45 ◦C and the initial core temperature of each cell
is 20 ◦C. The difference (∆Xi) in the core temperature, SEI
layer thickness, and the electrolyte resistance of each cell,
between the two scenarios, is obtained using

∆Xi = Xi,r −Xi,nr (27)

where i refers to the cell position, X ∈ [Tc, LSEI , Re], and
subscripts r and nr represent the second and first scenario
respectively. A positive value of ∆Xi indicates the adverse
effect of the presence of retroactivity on each cell in the
module, as plotted in Figure 4, wherein the degradation in
the cell in position # 2 has propagated to its neighboring
fresh cells.
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Fig. 4: Effect of retroactivity on four cells connected in series in terms of
increase in (a) Core temperature, (b) SEI layer thickness, and (c) Electrolyte
resistance

This propagation of aging through retroactivity can be
minimized by properly designing thermal management units
in way to enforce the modules/pack to retain the isolated
behavior of their constituting cells, i.e. minimizing tempera-
ture gradient. This can be achieved, for instance, using phase
change material [20] to passively control and reduce thermal
gradient and prevent the propagation effects.

V. CONCLUSION AND FUTURE WORK

We presented a framework exhibiting the propagation of
aging through thermal interconnections between connected
cells using an electrochemical degradation battery model,
two-state thermal model, and an aging model. The three-
time scale behavior of cell dynamics is exploited using the
singular perturbation theory to obtain a slow reduced order
model. The simulated trajectory exhibiting the three-time
scale behavior of the cell dynamics is displayed. Simulation
results showing aging propagation, due to retroactivity, are
presented in terms of increase in the SEI layer thickness
and electrolyte resistance of each cell in the module. Going
forward, the reduced order model for interconnected cells
will be used to quantify retroactivity in terms of increase in
SEI layer thickness and electrolyte resistance.
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