
 

 

 

 

 

 

 

 

Abstract— Hybrid Energy Storage Systems (HESS) are 

gaining popularity due to their ability to compensate for the 

deficiencies of the conventional single energy storage solution. 

Battery-Double Layer Capacitor (DLC) is one of such HESS 

that is being adopted for different applications such as vehicle 

propulsion, auxiliary power unit and renewable energy storage. 

Real-time estimation of the states and parameters of such 

HESS is crucial for safe, efficient and optimal operation. In this 

paper, an online state-parameter estimation scheme is 

presented based on the electrical and thermal dynamics of the 

battery and DLC. The estimation scheme consists of two 

separate state-parameter estimators for battery and DLC each 

of which exploits a cascaded observer-based structure. The 

observers are designed based on sliding mode methodology. 

Theoretical verification of the overall state-parameter 

estimation is provided using Lyapunov’s argument. 

Effectiveness of the scheme is verified via simulation studies. 

I. INTRODUCTION 

Hybrid Energy Storage Systems (HESS) are being 
adopted to compensate for shortcomings of conventional 
single energy storage systems. Battery-Double Layer 
Capacitor (DLC) is one of the promising candidates for 
HESS which are gaining popularity in many different 
applications. Batteries, which have long been used as an 
auxiliary power unit in automotive and renewable stationary 
energy storage applications, suffer from low power densities 
[1].  On the other hand, DLCs have high power densities and 
long cycle lives and can assist batteries in peak power 
situations [2].  In this paper we concentrate on some of the 
applications that require high power for a short duration such 
as: 1) Cold cranking of an engine, 2) start and stop ability of 
the vehicle, and 3) HEV charge sustaining operation. We will 
refer to these applications as Hybrid Applications for the rest 
of the paper.  The use of a battery-DLC in these procedures 
has obvious advantages to reduce battery aging. In this paper, 
a real-time/online state and parameter estimation scheme is 
proposed for battery-DLC HESS. 

Estimation of battery states and parameters are important 
for optimizing performance and life of the battery while 
maintaining safe operation.  Important battery states and 
parameters include State-of-Charge (SOC), internal 
resistance, capacity, etc.  In particular, internal resistance and 
capacity can be used as indicators of battery State-of-Health 
(SOH) and ageing. Different approaches have been presented 
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in literature for online state and parameter estimation of 
batteries. Some of them include electrochemical model-based 
approaches [3]. However, due to the complexity of 
electrochemical models, we focus on the Equivalent Circuit 
Model (ECM) of the battery due to its computational 
simplicity and simple model structure. The most popular 
ECM based estimation includes Kalman filter based 
approaches [4],[5]. However, the Kalman filter-based 
approaches such as linear Kalman filter (KF), extended 
Kalman filter (EKF), adaptive extended Kalman filter 
(AEKF) suffer from following issues: 1) it is very difficult to 
theoretically verify the conditions for error convergence as 
well as higher initial error may lead to divergence of the 
estimation error, 2) tuning of noise covariance matrices can 
be nontrivial. Other ECM-based battery estimation 
techniques include for instance nonlinear observers [6], 
sliding mode observers [8],[9], Linear Parameter Varying 
Technique [7]. However, most of the existing approaches 
suffer from one or more of the following issues: 1) no 
theoretical verification of the overall state and parameter 
error convergence 2) no consideration of thermal dynamics. 
In this paper, we propose a sliding mode observer based 
approach using ECM with theoretical verification of the 
overall state and parameter error convergence. In particular, 
our scheme is different from most of the existing approaches 
including the sliding mode-based ones, in two aspects: 1) we 
include thermal dynamics along with the electrical dynamics 
of the battery for observer design, and 2) we present a new 
cascaded observer-based structure that consists of three 
observers which are based on thermal, electrical and SOC 
dynamics respectively. This structure essentially enables 
decomposing the overall estimation problem and significantly 
simplifies the design task.  

Although the cycle life of DLCs is longer than that of the 
batteries, DLCs are still sensitive to ageing processes if 
certain operating conditions are not maintained [10].  
Moreover, DLC aging information is necessary for state 
estimation as well as energy management algorithms in 
battery-DLC HESS. Therefore, it is necessary to monitor 
states and parameters of DLC to allow for correct operating 
conditions and optimal management [2],[11].    The common 
modeling approach for DLCs is also based on ECM. In DLC, 
the resistance and capacitances of ECM represents the 
internal impedance and charge capacity respectively and are 
useful as the SOH indicators [12]. However, unlike batteries, 
the real-time combined state and parameter estimation 
problem is relatively less explored for DLCs in the existing 
literature. In [2],[13] estimators were designed using EKF for 
state estimation of DLC. Similarly, in [14], a least square 
technique was used for parameter estimation. A dual Kalman 
filter based approach is used for combined state and 
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parameter estimation in [11]. In this paper, we propose a 
sliding mode observer based combined state-parameter 
estimation scheme that theoretically verifies the convergence 
of the overall estimation. Similar to the battery estimation 
scheme, DLC estimation scheme also exploits the cascaded 
observer structure in order to simplify the design by 
decomposing the estimation problem. 

The rest of the paper is organized as follows. Section II 
briefs the modeling of the HESS elements. Section III 
describes the proposed estimation scheme. Section IV 
discusses a simulation case study on a passive battery-DLC 
HESS and Section V summarizes the conclusions of the 
work. 

II. MODELING OF THE HYBRID ENERGY STORAGE SYSTEM 

The HESS under consideration consists of two energy 

sources, namely battery and DLC. In this section, the 

modeling of these two sources is discussed. 

A. Battery Model 

In this study, a first order electrical circuit model [1] (Fig. 
1) and a lumped thermal dynamics are adopted for the 
battery.  

 

Figure 1. Electrical equivalent circuit model of battery 

The electrical dynamics of the battery can be written using 

Kirchhoff’s law, and with a usual definition of SOC: 

�̇�𝑐 = −
𝑉𝑐

𝑅0𝐶0

+
𝐼𝑏𝑎𝑡𝑡

𝐶0

 (1) 

𝑆𝑂𝐶̇ = −
𝐼𝑏𝑎𝑡𝑡

𝑄
 (2) 

𝑉𝑏𝑎𝑡𝑡 = 𝐸0 − 𝐼𝑏𝑎𝑡𝑡𝑅 − 𝑉𝑐  (3) 

where 𝑉𝑏𝑎𝑡𝑡 is the terminal voltage, 𝐼𝑏𝑎𝑡𝑡 is the input current, 
𝑅, 𝑅0 and 𝐶0 are the resistors and capacitors of the electrical 
circuit,  𝑉𝑐 is the voltage across the capacitor 𝐶0, 𝐸0 is the 
open-circuit potential (OCP), 𝑄 is the capacity of the battery 
cell. The lumped thermal model of the battery is given by: 

𝑚𝑐𝑏𝑎𝑡𝑡�̇�𝑏𝑎𝑡𝑡

= 𝐼𝑏𝑎𝑡𝑡
2 (𝑅 + 𝑅0) − ℎ𝐴𝑏𝑎𝑡𝑡(𝑇𝑏𝑎𝑡𝑡 − 𝑇𝑎𝑚𝑏) (4) 

where 𝑇𝑏𝑎𝑡𝑡 is the battery temperature, 𝑚𝑐𝑏𝑎𝑡𝑡 is the mass 
times the specific heat capacity of the battery cell, ℎ𝐴𝑏𝑎𝑡𝑡 is 
the effective heat transfer coefficient and 𝑇𝑎𝑚𝑏  is the ambient 
temperature. The OCP is still a function of SOC and 
temperature and can be written as: 

𝐸0 = 𝑓(𝑆𝑂𝐶, 𝑇𝑏𝑎𝑡𝑡) (5) 

B. DLC Model 

Similar to the battery, an electrical circuit model (Fig. 2) 
is adopted for DLC with two series resistance-capacitance 
pairs (𝑅𝑑 − 𝐶𝑑 and 𝑅𝑓 − 𝐶𝑓) where 𝑅𝑓 and 𝑅𝑑 are the 

resistances and 𝐶𝑓 and 𝐶𝑑 are the capacitances. Moreover, a 

lumped thermal dynamics is adopted [1].  

 

Figure 2: Electrical equivalent circuit model of DLC 

 

The voltage dynamics across the capacitors 𝐶𝑑 and 𝐶𝑓 can 

be written as: 

�̇�𝑐𝑓 =
𝐼𝑓

𝐶𝑓

 (6) 

�̇�𝑐𝑑 =
𝐼𝑑

𝐶𝑑

 (7) 

where 𝑉𝑐𝑓 is the voltage across the capacitor 𝐶𝑓, 𝑉𝑐𝑑 is the 

voltage across the capacitor 𝐶𝑑, 𝐼𝑑 is the current flowing 
through the 𝑅𝑑 − 𝐶𝑑 branch, 𝐼𝑓 is the current flowing through 

the 𝑅𝑓 − 𝐶𝑓 branch. The total current 𝐼𝑑𝑙𝑐 entering the DLC 

can be given by Kirchoff’s current law: 

𝐼𝑑𝑙𝑐 = 𝐼𝑓 + 𝐼𝑑 (8) 

and the voltage 𝑉𝑑𝑙𝑐  across the DLC is: 

𝑉𝑑𝑙𝑐 = 𝐼𝑓𝑅𝑓 + 𝑉𝑐𝑓 = 𝐼𝑑𝑅𝑑 + 𝑉𝑐𝑑 (9) 

The lumped thermal dynamics of the DLC is given by: 

𝑚𝑐𝑑𝑙𝑐�̇�𝑑𝑙𝑐 = 𝐼𝑑𝑙𝑐
2 𝑅𝑓 − ℎ𝐴𝑑𝑙𝑐(𝑇𝑑𝑙𝑐 − 𝑇𝑎𝑚𝑏) (10) 

where 𝑇𝑑𝑙𝑐  is the DLC temperature, 𝑚𝑐𝑑𝑙𝑐  is the mass times 
the specific heat capacity of the DLC, ℎ𝐴𝑑𝑙𝑐  is the effective 
heat transfer coefficient.  

III. OBSERVER-BASED ONLINE STATE-PARAMETER 

ESTIMATION SCHEME 

In this section, the online estimation scheme for the HESS 
is described. Real-time measurements from the HESS are: 
𝐼𝑏𝑎𝑡𝑡, 𝑇𝑏𝑎𝑡𝑡, 𝑉𝑏𝑎𝑡𝑡 from the battery and 𝐼𝑑𝑙𝑐 , 𝑇𝑑𝑙𝑐  and 𝑉𝑑𝑙𝑐  
from the DLC. 

A. Battery State and Parameter Estimation 

In this section, we detail the design of online estimation of 
battery state and parameters. Note that, we are interested in 
𝑆𝑂𝐶, 𝑅 and 𝑄. Therefore, we focus on estimating those 
important quantities assuming the other parameters are 
known. The schematic of the online estimation scheme is 
shown in Fig. 3. While designing the estimation scheme, we 
take the following assumptions. 
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Assumption 1: The parameters 𝑅, 𝑅0 and 𝐶0 are constant in 
the range 𝑆𝑂𝐶 ∈ [𝑆𝑂𝐶𝑚𝑖𝑛 , 𝑆𝑂𝐶𝑚𝑎𝑥] considered for the 
hybrid application. The electrical parameters 𝑅0 and 𝐶0 as 
well as the thermal parameters 𝑚𝑐𝑏𝑎𝑡𝑡 and ℎ𝐴𝑏𝑎𝑡𝑡 are known 
with sufficient accuracy.  

 

Figure 3: Online battery state-parameter estimation scheme 

Assumption 2: The OCP 𝐸0 is a monotonically increasing 
function of SOC in the range 𝑆𝑂𝐶 ∈ [𝑆𝑂𝐶𝑚𝑖𝑛 , 𝑆𝑂𝐶𝑚𝑎𝑥] for 
any given temperature.  

Lemma 1: From Assumption 2, for a given 𝑇𝑏𝑎𝑡𝑡 = 𝑇𝑏𝑎𝑡𝑡
∗  and 

any two points 𝑆𝑂𝐶(1) and 𝑆𝑂𝐶(2) in the 𝑆𝑂𝐶-space within 
the range 𝑆𝑂𝐶 ∈ [𝑆𝑂𝐶𝑚𝑖𝑛 , 𝑆𝑂𝐶𝑚𝑎𝑥] with corresponding two 

points 𝐸0
(1)

= 𝑓(𝑆𝑂𝐶(1), 𝑇𝑏𝑎𝑡𝑡
∗ ) and 𝐸0

(2)
= 𝑓(𝑆𝑂𝐶(2), 𝑇𝑏𝑎𝑡𝑡

∗ )  

in 𝐸0-space and, the following is always true: 

𝑠𝑔𝑛(𝐸0
(1)

− 𝐸0
(2)

) = 𝑠𝑔𝑛(𝑆𝑂𝐶(1) − 𝑆𝑂𝐶(2)) (11) 

This can be easily verified by graphically using the battery 
OCP-SOC curve.  

Now, the Observer I, II and III for the battery state and 
parameter estimation is given as follows. 

Observer I: 

𝑚𝑐𝑏𝑎𝑡𝑡 �̇̂�𝑏𝑎𝑡𝑡 = 𝐼𝑏𝑎𝑡𝑡
2 𝑅0 

−ℎ𝐴𝑏𝑎𝑡𝑡(�̂�𝑏𝑎𝑡𝑡 − 𝑇𝑎𝑚𝑏) + 𝐿𝑇𝑠𝑔𝑛(�̃�𝑏𝑎𝑡𝑡) 
(12) 

�̂� = 𝑣𝑇/𝐼𝑏𝑎𝑡𝑡
2    (13) 

where 𝑣𝑇 is equivalent output error injection which is a 
continuous approximation or filtered version of 

𝐿𝑇𝑠𝑔𝑛(�̃�𝑏𝑎𝑡𝑡). 

Observer II: 

�̇̂�𝑐 = −
�̂�𝑐

𝑅0𝐶0

+
𝐼𝑏𝑎𝑡𝑡

𝐶0

 (14) 

Observer III: 

𝑆𝑂�̂�̇ = 𝐿𝑆𝑂𝐶 𝑠𝑔𝑛(�̃�0) (15) 

�̂� = 𝐼𝑏𝑎𝑡𝑡/𝑣𝑆𝑂𝐶  (16) 

where 𝑣𝑆𝑂𝐶  is equivalent output error injection  which is a 
continuous approximation or filtered version of 

𝐿𝑆𝑂𝐶𝑠𝑔𝑛(�̃�0), �̂�𝑏𝑎𝑡𝑡, �̂�, �̂�𝑐, 𝑆𝑂�̂� and �̂� denotes the estimates 

of the corresponding states and parameters; �̃�𝑏𝑎𝑡𝑡 = 𝑇𝑏𝑎𝑡𝑡 −
�̂�𝑏𝑎𝑡𝑡, 𝐿𝑇 > 0 is arbitrarily high constant observer gain; 

�̃�0 = 𝑉𝑏𝑎𝑡𝑡 + 𝐼𝑏𝑎𝑡𝑡�̂� + �̂�𝑐 − �̂�0, �̂�0 = 𝑓(𝑆𝑂�̂�, 𝑇𝑏𝑎𝑡𝑡), 
𝐿𝑆𝑂𝐶 > 0 is arbitrarily high constant observer gain. Further, 

other estimation errors are defined as: 𝑆𝑂�̃� = 𝑆𝑂𝐶 − 𝑆𝑂�̂�, 

�̃�𝑐 = 𝑉𝑐 − �̂�𝑐, �̃� = 𝑅 − �̂�, �̃� = 𝑄 − �̂�. 

Theorem 1: Consider the system dynamics given in (1)-(4) 
and the observer structure (12)-(16), if Assumptions 1-2 and 

Lemma 1 hold true then the estimation error �̃� converges to 

zero in finite time; �̃�𝑐 converges to zero exponentially and 

𝑆𝑂�̃� and �̃� converges to zero asymptotically as 𝑡 → ∞. 

Proof: Subtracting (12) from (4), the error dynamics of the 
Observer I can be written as: 

𝑚𝑐𝑏𝑎𝑡𝑡 �̇̃�𝑏𝑎𝑡𝑡

= 𝐼𝑏𝑎𝑡𝑡
2 𝑅 − ℎ𝐴𝑏𝑎𝑡𝑡�̃�𝑏𝑎𝑡𝑡 − 𝐿𝑇𝑠𝑔𝑛(�̃�𝑏𝑎𝑡𝑡) 

(17) 

Note that, the sliding manifold in this case is 𝑠𝑇 = �̃�𝑏𝑎𝑡𝑡 as 

�̃�𝑏𝑎𝑡𝑡 is inside the sign term. The error dynamics can be 
analyzed by choosing the positive definite Lyapunov function 

candidate 𝑉𝑇 = 0.5𝑚𝑐𝑏𝑎𝑡𝑡�̃�𝑏𝑎𝑡𝑡
2 . The derivative of the 

Luapunov function candidate can be written as: 

�̇�𝑇 = 𝑚𝑐𝑏𝑎𝑡𝑡�̃�𝑏𝑎𝑡𝑡 �̇̃�𝑏𝑎𝑡𝑡

= �̃�𝑏𝑎𝑡𝑡{𝐼𝑏𝑎𝑡𝑡
2 𝑅 − ℎ𝐴𝑏𝑎𝑡𝑡�̃�𝑏𝑎𝑡𝑡 − 𝐿𝑇𝑠𝑔𝑛(�̃�𝑏𝑎𝑡𝑡)} 

⇒ �̇�𝑇 ≤ |�̃�𝑏𝑎𝑡𝑡|{|𝐼𝑏𝑎𝑡𝑡
2 𝑅| − 𝐿𝑇}, as ℎ𝐴𝑏𝑎𝑡𝑡 > 0  

⇒ �̇�𝑇 ≤ −𝛼√𝑉𝑇 where 𝛼 = −
(|𝐼𝑏𝑎𝑡𝑡

2 𝑅|𝑚𝑎𝑥 − 𝐿𝑇)

√0.5𝑚𝑐𝑏𝑎𝑡𝑡

> 0 

⇒ 𝑉𝑇(𝑡) ≤ {−
𝛼

2
𝑡 + √𝑉𝑇(𝑡0)}

2

 

It can be concluded from the above analysis that the sliding 

manifold 𝑠𝑇 = �̃�𝑏𝑎𝑡𝑡 = 0 can be attained in finite time given 
the observer gain 𝐿𝑇 is sufficiently higher and greater than 

|𝐼𝑏𝑎𝑡𝑡
2 𝑅|𝑚𝑎𝑥. At the sliding manifold, we have 𝑠𝑇 = �̃�𝑏𝑎𝑡𝑡 =

0 and �̇�𝑇 = �̇̃�𝑏𝑎𝑡𝑡 = 0 [15] and (17) can be written as: 

0 = 𝐼𝑏𝑎𝑡𝑡
2 𝑅 − 𝑣𝑇 (18) 

where 𝑣𝑇 is the equivalent output error injection signal 
required to maintain the sliding motion. Further, from (18) 

and (13), it can be concluded that �̃� also goes to zero in finite 
time.  

Now, subtracting (14) from (1), the estimation error for 
Observer II can be written as: 

�̇̃�𝑐 = −
�̃�𝑐

𝑅0𝐶0

 (19) 

The error dynamics can be analyzed by choosing the positive 

definite Lyapunov function candidate 𝑉𝐿𝐶 = 0.5�̃�𝑐
2. The 

derivative of the Luapunov function candidate can be written 
as: 

�̇�𝐿𝐶 = �̃�𝑐 �̇̃�𝑐 = �̃�𝑐 {−
�̃�𝑐

𝑅0𝐶0

} 

⇒ 𝑉𝐿𝐶 ≤ 𝑉𝐿𝐶(𝑡0)exp (−
2𝑡

𝑅0𝐶0

) 
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It can be concluded from the above analysis that the 
estimation error goes exponentially to zero as 𝑡 → ∞ with a 
convergence rate determined by 𝑅0𝐶0. Now, as the 

estimation error �̃� goes to zero in finite time and �̃�𝑐 goes to 

zero exponentially, it can be concluded that as 𝑡 → ∞, �̂� = 𝑅 

and �̂�𝑐 → 𝑉𝑐. Consequently, 

𝑉𝑏𝑎𝑡𝑡 + 𝐼𝑏𝑎𝑡𝑡�̂� + �̂�𝑐 → 𝑉𝑏𝑎𝑡𝑡 + 𝐼𝑏𝑎𝑡𝑡𝑅 + 𝑉𝑐 = 𝐸0 (20) 

Under this condition, the following is analyzed after 

sufficient time such that �̃�𝑐 is sufficiently small. The signal 

�̃�0 which is defined after (16) can be written as �̃�0 = 𝐸0 − �̂�0 
and further, using Lemma 1, the following can be written: 

𝑠𝑔𝑛(�̃�0) = 𝑠𝑔𝑛(𝑆𝑂�̃�) (21) 

Now, subtracting (15) from (2), the estimation error 
dynamics for Observer III can be written as: 

𝑆𝑂�̃�̇ = −
𝐼

𝑄
− 𝐿𝑆𝑂𝐶𝑠𝑔𝑛(�̃�0)

= −
𝐼

𝑄
− 𝐿𝑆𝑂𝐶𝑠𝑔𝑛(𝑆𝑂�̃�) (22) 

Note that, the sliding manifold in this case is 𝑠𝑆𝑂𝐶 = 𝑆𝑂�̃� as 

𝑆𝑂�̃� is inside the sign term. The error dynamics can be 
analyzed by choosing the positive definite Lyapunov function 

candidate 𝑉𝑠𝑜𝑐 = 0.5𝑆𝑂�̃�2. The derivative of the Luapunov 
function candidate can be written as:  

�̇�𝑆𝑂𝐶 = 𝑆𝑂�̃�𝑆𝑂�̃�̇ = 𝑆𝑂�̃� {−
𝐼

𝑄
− 𝐿𝑆𝑂𝐶 𝑠𝑔𝑛(𝑆𝑂�̃�)} 

⇒ �̇�𝑆𝑂𝐶 ≤ |𝑆𝑂�̃�| {|
𝐼

𝑄
| − 𝐿𝑆𝑂𝐶} 

⇒ �̇�𝑆𝑂𝐶 ≤ −𝛽√𝑉𝑠𝑜𝑐  , 𝛽 = −√2 (|
𝐼

𝑄
|

𝑚𝑎𝑥

− 𝐿𝑆𝑂𝐶) > 0 

⇒ 𝑉𝑆𝑂𝐶(𝑡) ≤ {−
𝛽

2
𝑡 + √𝑉𝑆𝑂𝐶(𝑡0)}

2

  

 

It can be concluded from the above analysis that the sliding 

manifold 𝑠𝑆𝑂𝐶 = 𝑆𝑂�̃� = 0 can be attained asymptotically as 
𝑡 → ∞, given the observer gain 𝐿𝑆𝑂𝐶  is sufficiently higher 
than |𝐼/𝑄|𝑚𝑎𝑥. At the sliding manifold, we have 𝑠𝑆𝑂𝐶 =

𝑆𝑂�̃� = 0  and �̇�𝑆𝑂𝐶 = 𝑆𝑂�̃�̇ = 0 [15] and (22) can be written 
as: 

0 = −
𝐼

𝑄
− 𝑣𝑆𝑂𝐶  (23) 

where 𝑣𝑆𝑂𝐶  is the equivalent output error injection signal 
required to maintain the sliding motion. Further, from (23) 

and (16), it can be concluded that �̃� also goes to zero 
asymptotically as 𝑡 → ∞.  

B. DLC State and Parameter Estimation 

In this section, we discuss the design of online estimation 
of DLC state and parameters. As discussed before, 𝑉𝑐𝑑 and 
𝑉𝑐𝑓  represents the slow and fast dynamics of the DLC 

respectively. In the estimation scheme, we concentrate on the  
𝑉𝑐𝑓  dynamics and estimate the variables associated with 

𝑅𝑓 − 𝐶𝑓 branch of the DLC, namely the state 𝑉𝑐𝑓 and 

parameters 𝑅𝑓 and 𝐶𝑓. The schematic of the DLC online 

estimation scheme is shown in Fig. 4. The estimation scheme 
consists of three observers: Observer IV (based on the 
thermal dynamics of the DLC), Observer V (based on the 
𝑅𝑑 − 𝐶𝑑 dynamics), Observer VI (based on the 𝑅𝑓 − 𝐶𝑓 

dynamics). 

 

Figure 4: Online DLC state-parameter estimation scheme 

While designing the estimation scheme, we take the 
following assumptions. 

Assumption 3: The parameters 𝑅𝑓, 𝑅𝑑, 𝐶𝑓 and 𝐶𝑑 are 

constants and 𝑅𝑑 and 𝐶𝑑, along with the thermal parameters 
𝑚𝑐𝑑𝑙𝑐  and ℎ𝐴𝑑𝑙𝑐  are known with sufficient accuracy.  

Now, the observer structure for the DLC state and parameter 
estimation is given as follows. 

Observer IV: 

𝑚𝑐𝑑𝑙𝑐 �̇̂�𝑑𝑙𝑐

= −ℎ𝐴𝑑𝑙𝑐(�̂�𝑑𝑙𝑐 − 𝑇𝑎𝑚𝑏) + 𝐿𝑇2𝑠𝑔𝑛(�̃�𝑑𝑙𝑐) 
(24) 

�̂�𝑓 = 𝑣𝑇2/𝐼𝑑𝑙𝑐
2   (25) 

where 𝑣𝑇2 is the equivalent output error injection which is a 
continuous approximation or filtered version of 

𝐿𝑇2𝑠𝑔𝑛(�̃�𝑑𝑙𝑐). 

Observer V: 

�̇̂�𝑐𝑑 = (
𝑉𝑑𝑙𝑐 − �̂�𝑐𝑑

𝑅𝑑

)
1

𝐶𝑑

 (26) 

𝐼𝑓 = 𝐼𝑑𝑙𝑐 −
𝑉𝑑𝑙𝑐 − �̂�𝑐𝑑

𝑅𝑑

 (27) 

Observer VI: 

�̇̂�𝑐𝑓 = 𝐿𝑉𝑠𝑔𝑛(�̃�𝑐𝑓) (28) 

�̂�𝑓 = 𝐼𝑓/𝑣𝑉  (29) 

where 𝑣𝑉 is equivalent output error injection which is a 

continuous approximation or filtered version of 𝐿𝑉𝑠𝑔𝑛(�̃�𝑐𝑓), 

�̂�𝑑𝑙𝑐 , �̂�𝑓, �̂�𝑑, �̂�𝑐𝑓, �̂�𝑐𝑑, 𝐼𝑑 and �̂�𝑓 denotes the estimates of the 

corresponding states and parameters; �̃�𝑑𝑙𝑐 = 𝑇𝑑𝑙𝑐 − �̂�𝑑𝑙𝑐 , 

𝐿𝑇2 > 0 is constant observer gain; �̃�𝑐𝑓 = 𝑉𝑑𝑙𝑐 − 𝐼𝑓�̂�𝑓 − �̂�𝑐𝑓,  
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and 𝐿𝑉 > 0 is constant observer gain. Further, other 

estimation errors are defined as: �̃�𝑓 = 𝑅𝑓 − �̂�𝑓, �̃�𝑐𝑑 = 𝑉𝑐𝑑 −

�̂�𝑐𝑑 and �̃�𝑑 = 𝐶𝑑 − �̂�𝑑. 

Theorem 2: Consider the DLC system dynamics given in (6)-
(10) and the observer structure (24)-(29),  if the Assumption 3 

holds true then the estimation error �̃�𝑓 converges to zero in 

finite time; 𝐼𝑓 converges to zero exponentially; �̃�𝑐𝑓  and �̃�𝑓 

converges to zero asymptotically as 𝑡 → ∞. 

Proof: Subtracting (24) from (10), the error dynamics for 
Observer IV can be written as: 

𝑚𝑐𝑑𝑙𝑐 �̇̃�𝑑𝑙𝑐 = 𝐼𝑑𝑙𝑐
2 𝑅𝑓 − ℎ𝐴𝑑𝑙𝑐�̃�𝑑𝑙𝑐 − 𝐿𝑇2𝑠𝑔𝑛(�̃�𝑑𝑙𝑐) (30) 

Note that, the sliding manifold in this case is 𝑠𝑇2 = �̃�𝑑𝑙𝑐  as 

�̃�𝑑𝑙𝑐  is inside the sign term. The error dynamics can be 
analyzed by choosing the positive definite Lyapunov function 

candidate 𝑉𝑇2 = 0.5𝑚𝑐𝑑𝑙𝑐�̃�𝑑𝑙𝑐
2 . The derivative of the 

Luapunov function candidate can be written as: 

�̇�𝑇2 = �̃�𝑑𝑙𝑐{𝐼𝑑𝑙𝑐
2 𝑅𝑓 − ℎ𝐴𝑑𝑙𝑐�̃�𝑑𝑙𝑐 − 𝐿𝑇2𝑠𝑔𝑛(�̃�𝑑𝑙𝑐)} 

⇒ �̇�𝑇2 ≤ |�̃�𝑑𝑙𝑐|{|𝐼𝑑𝑙𝑐
2 𝑅𝑓| − 𝐿𝑇2} 

⇒ �̇�𝑇2 ≤ −𝛾√𝑉𝑇2 where 𝛾 = −
(|𝐼𝑑𝑙𝑐

2 𝑅𝑓|
𝑚𝑎𝑥

− 𝐿𝑇2)

√0.5𝑚𝑐𝑑𝑙𝑐

> 0 

⇒ 𝑉𝑇2(𝑡) ≤ {−
𝛾

2
𝑡 + √𝑉𝑇2(𝑡0)}

2

 

It can be concluded from the above analysis that the sliding 

manifold 𝑠𝑇2 = �̃�𝑑𝑙𝑐 = 0 can be attained in finite time given 

the observer gain 𝐿𝑇2 is sufficiently higher than |𝐼𝑑𝑙𝑐
2 𝑅𝑓|

𝑚𝑎𝑥
. 

At the sliding manifold, we have 𝑠𝑇2 = �̃�𝑑𝑙𝑐 = 0 and 

�̇�𝑇2 = �̇̃�𝑑𝑙𝑐 = 0 [15] and (30) can be written as: 

0 = 𝐼𝑑𝑙𝑐
2 𝑅𝑓 − 𝑣𝑇2 (31) 

where 𝑣𝑇2 is the equivalent output error injection signal 
required to maintain the sliding motion and essentially a 
continuous approximation (filtered version) of the switching 

term 𝐿𝑇2𝑠𝑔𝑛(�̃�𝑑𝑙𝑐). Further considering (31) and (25), the 

parameter error �̃�𝑓 converges to zero in finite time. Now, 

considering (7) along with (9) as plant dynamics and 
Observer V given in (26) and (27), the estimation error for 
Observer V can be written as: 

�̇̃�𝑐𝑑 = −
�̃�𝑐𝑑

𝑅𝑑𝐶𝑑

 (32) 

The error dynamics can be analyzed by choosing the positive 

definite Lyapunov function candidate 𝑉𝐿𝐷 = 0.5�̃�𝑐𝑑
2 . The 

derivative of the Luapunov function candidate can be written 
as: 

�̇�𝐿𝐷 = �̃�𝑐𝑑 �̇̃�𝑐𝑑 = �̃�𝑐𝑑 {−
�̃�𝑐𝑑

𝑅𝑑𝐶𝑑

} 

⇒ 𝑉𝐿𝐷(𝑡) ≤ 𝑉𝐿𝐷(𝑡0)exp (−
2𝑡

𝑅𝑑𝐶𝑑
)         (33) 

It can be concluded from the above analysis that the 
estimation error goes to zero exponentially as 𝑡 → ∞. The 

convergence rate is determined by 𝑅𝑑𝐶𝑑. Moreover, �̂�𝑐𝑑 →
𝑉𝑐𝑑 as 𝑡 → ∞, leads to 𝐼𝑓 → 𝐼𝑓 using (27). 

Under this condition, the following is analyzed after 

sufficient time such that 𝐼𝑓 is sufficiently small. Now, using 

(9), measured 𝑉𝑑𝑙𝑐  and known 𝑅𝑓 from Observer IV, 𝑉𝑐𝑓 can 

be reconstructed as 𝑉𝑐𝑓 = 𝑉𝑑𝑙𝑐 − 𝐼𝑓𝑅𝑓. This reconstructed 

signal 𝑉 𝑐𝑓 will be used as pseudo-measurement for Observer 

VI. Subtracting (28) from (6), the error dynamics for 
Observer VI can be written as: 

�̇̃�𝑐𝑓 =
𝐼𝑓

𝐶𝑓

− 𝐿𝑉𝑠𝑔𝑛(�̃�𝑐𝑓) (34) 

where the actual 𝑉𝑐𝑓 and 𝐼𝑓 are reconstructed as discussed 

above. The error dynamics can be analyzed by choosing the 

positive definite Lyapunov function candidate 𝑉𝑉 = 0.5�̃�𝑐𝑓
2 . 

The derivative of the Luapunov function candidate can be 
written as: 

�̇�𝑉 = �̃�𝑐𝑓 �̇̃�𝑐𝑓 = �̃�𝑐𝑓 {
𝐼𝑓

𝐶𝑓

− 𝐿𝑉𝑠𝑔𝑛(�̃�𝑐𝑓)} 

⇒ �̇�𝑉 ≤ |�̃�𝑐𝑓| {|
𝐼𝑓

𝐶𝑓

| − 𝐿𝑉} 

⇒ �̇�𝑉 ≤ −𝜁√𝑉𝑉 where 𝜁 = −√2 (|𝐼𝑓/𝐶𝑓|
𝑚𝑎𝑥

− 𝐿𝑉) > 0 

⇒ 𝑉𝑉 ≤ {−
𝜁

2
𝑡 + √𝑉𝑉(𝑡0)}

2

 

It can be concluded from the above analysis that the sliding 

manifold 𝑠𝑉 = �̃�𝑐𝑓 = 0 can be achieved asymptotically given 

the observer gain 𝐿𝑉 is sufficiently higher than |𝐼𝑓/𝐶𝑓|
𝑚𝑎𝑥

. 

At the sliding manifold, we have  𝑠𝑉 = �̃�𝑐𝑓 = 0 and �̇�𝑉 =

�̇̃�𝑐𝑓 = 0 [15] and (34) can be written as: 

0 =
𝐼𝑓

𝐶𝑓

− 𝑣𝑉 (35) 

where 𝑣𝑉 is the equivalent output error injection required to 
maintain the sliding motion. Further, considering (29) and 

(35), it can be concluded that the parameter error �̃�𝑓 

converges to zero asymptotically.  

IV. CASE STUDY 

In this section, we test the effectiveness of the proposed 
scheme by conducting a case study on a passive battery-
DLC HESS. The battery used in this case study is a sealed 
12 V lead-acid battery with nominal capacity 90 Ah.  The 
DLC has the following characteristics: total capacitance 
1500 F, rated voltage of 2.7 V. The HESS simulator is 
implemented in MATLAB-Simulink platform and simulation 
studies are conducted to validate the proposed scheme. The 
HESS is subjected to a dynamic current profile. The total 
current and individual currents of the battery and DLC are 
shown in Fig. 5. To emulate a realistic scenario, noise 
components have been added to the measured voltages, 
currents and temperatures.  Estimation performance has been 
shown in Fig. 6 for battery variables and Fig. 7 for DLC 
variables. It can be seen that the observers perform 
reasonably and provide sufficiently close estimate of the 
states and parameters. 
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Figure 5: Current components of HESS 

 
Figure 6: Battery estimation performance 

 
Figure 7: DLC estimation performance 

V. CONCLUSION 

In this paper, an observer-based scheme is presented for 
state and parameter estimation for battery-DLC HESS. The 

scheme consists of two separate battery and DLC state-
parameter estimators based on the sliding mode methods. 
Each estimator consists of cascaded observers designed with 
the electrical and thermal dynamics of battery and DLC. 
Theoretical verification of the overall estimation 
convergence is provided using Lyapunov’s argument. The 
effectiveness of the scheme is tested via simulation studies 
which show reasonable performance. As future work, the 
scheme should be validated with battery experiments. 
Moreover, the estimation problem here is treated separately 
for two power sources. Possibly an exploration of the overall 
coupled system could be used to further enhance the 
estimation scheme. 
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