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Abstract— Advances in lithium-ion battery technology have
created new opportunities for this energy storage system to
penetrate much deeper into the transportation sector, especially
through automotive hybridization. In automotive applications,
managing and optimizing the safety and reliability of batteries
is of great interest for both users and manufacturers. To
this purpose, battery management system (BMS) implements
critical tasks such as monitoring battery health status, charge
control, and cell balancing together with the evaluation of state
of charge, state of health, and state of life. In this paper, we
focus on BMS tasks related to the battery health management.
We first cover main definitions, terminology and concept of
batteries in automotive applications. An electrical-thermal-
aging model of the battery cell is proposed, which is written in
terms of fast (i.e. state of charge) and slow (i.e. state of health)
dynamics. The time-scale separation of the proposed model
is characterized quantitatively. A framework to analyze the
propagation of aging from cell-to-cell within a battery pack is
developed and the properties of an interconnected system from
a degradation standpoint are studied. Further, a generalized
framework for interconnected cells exhibiting the phenomenon
of retroctivity is described. In addition, the effect of retroactivity
and the extent of aging propagation are evaluated in a series
and parallel topology, first and in a mixed series-parallel battery
configuration later.

I. INTRODUCTION

In response to the actual and future environmental and
energy challenges worldwide, the automotive industry has
been focusing on improving vehicle fuel efficiency. Although
there is no silver-bullet technology to replace existing ones,
at least in the near future, one possible answer to the
challenges of future traffic is found in electrification of both
the mobility and transport system. If, on one hand, many
opportunities still exist to improve efficiency of conventional
vehicles, vehicle electrification, today, seems like a promis-
ing path towards sustainable transportation. Consequently,
new concepts and new technologies need to be developed to
realize efficient electric vehicles suited for both individual
and public mobility and for goods distribution in urban
areas [1]. As shown in Fig. 1, a possible classification of
today’s vehicles in the market can be given based on internal
combustion engine size and electric machine size [2], as
follows:

1) Conventional internal combustion engine (ICE) vehi-
cles;

2) Micro hybrids (start/stop);
3) Mild hybrids (start/stop + kinetic energy recov-

ery+engine assist);
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1. Conventional Vehicle  
(ICE only-powered vehicle)  

2. Micro Hybrids 
(start/stop) 

3. Mild Hybrids 
(start/stop + kinetic energy recovery) 

4. Full Hybrids  
(mild hybrid capability + electric launch + engine assist) 

5. Plug-in Hybrids  
(full-hybrids capability +electric  range) 

6. Electric Vehicles  
(battery or fuel cell) 

Fig. 1: Spectrum of vehicle technologies [2]: pathway of increasing elec-
trification starting with ICE only-powered vehicles, going through different
means of vehicle hybridization and ending up with pure electric vehicles
powered by batteries or hydrogen fuel cell.

4) Full hybrids (mild hybrid capabilities + electric launch);
5) Plug-in hybrids (full hybrid capabilities + electric range)

(PHEVs);
6) Electric Vehicles (EVs).

Batteries of all technologies are employed in all the dif-
ferent automotive applications listed above: from advanced
lead-based batteries providing start-stop functionality and
other micro-hybrid features, directly lowering fuel consump-
tion by 5-10%, to high-voltage lithium-ion and sodium-nickel
chloride batteries employed to deliver zero-emission driving
in electric vehicles.

In particular, in PHEVs and EVs, high voltage battery
systems are installed to provide significant levels of elec-
tric propulsion. Due to the need for high energy density,
these vehicles are propelled predominantly by lithium-ion
battery systems, which are additionally set apart by their
fast recharge capability and good recharge and discharge
power. They offer higher energy densities, long cycle life,
and lighter weight than legacy battery chemistries such as
nickel cadmium, nickel metal hydride and lead acid.

However, automotive applications are quite demanding
as they place unprecedented cost, reliability, power/energy
density, and safety requirements on electrochemical batteries.
When managing and optimizing the safety and reliability of
batteries, it is critical, for both users and manufacturers, to
control cell balancing and evaluate state of charge, state of
health, and state of life. These tasks are executed by the
battery management system (BMS).



II. CHALLENGES IN AUTOMOTIVE BATTERIES

Comprehensive and mature BMSs are currently found in
portable electronics, such as laptop computers and cellular
phones, but they have not been fully deployed in EVs and
HEVs. Batteries for PHEVs and EVs have to provide high
voltage and high current. Moreover, the number of cells in
a vehicles battery is hundreds of times greater than that in
portable electronics and it is designed not only to be a long-
lasting energy system, but also to be a high power system.
Inevitably, designing BMSs for PHEVs and EVs is still a
challenging task.

A BMS has to manage the tradeoffs among key per-
formance parameters, like safety, life span, performance,
specific energy, specific power, charging time and cost.
Among those, an accurate quantification of the battery state
is one of the most critical task for BMSs, along with the task
of supervising lithium-ion cells when they are used in large
battery packs.

Without a reliable battery management system the battery
can get out of the so called safe operating area (SOA) which
is bounded by the individual cell voltage, battery current and
temperature limits specific to the battery chemistry. Getting
out of the SOA can cause serious damages through thermal
runaway of the battery or at least remarkably shorten the life
of the battery.

In this paper we call Battery Health Management System
(BHMS) the portion of BMS responsible to monitor and
control the state-of-health (SOH) of a battery pack.

A battery cell delivers electric current as the result of
an electrochemical reaction. Electrical current is carried by
lithium-ions, from the positive electrode (cathode) to the neg-
ative electrode (anode) during charging, and from negative
to positive during discharging. The ions are small and reside
within the crystal structure of the electrode materials.

In hybrid and electric vehicles, a battery pack is composed
of many cells (possibly hundreds) connected in series and
parallel, usually in modules which are then connected to
form a battery pack. Cells are wired in parallel to form
a block to satisfy the requirement of high capacity while
several blocks (or cells) are connected in series to provide a
high voltage. Each cell is distinct due to manufacturing and
chemical offset.

Within each module, each cell behaves differently due to
manufacturing differences, aging, different operating tem-
peratures, etc.. During charging, capacity fade in cells may
result in danger if a cell comes to its full charge easily.
When the battery consists of multi-cells in series, it will be
subject to a higher failure rate than any single cell due to a
series network. To reduce this effect and therefore prolonging
battery life, an effective cell balancing mechanism that would
keep the SOC level of individual cells in a battery pack as
close to each other, must be developed. In addition to that,
it is clear that understanding how much the failure rate of a
cell increases upon interconnection, is an important issue to
address as well. This is a fairly new research topic within
the battery domain that is getting the attention of researchers
today. In this paper, we propose a formal framework to tackle
this problem.

III. TERMINOLOGY OF BATTERY PERFORMANCE AND
CHARACTERIZATION

This section provides an introduction of the terminology
used to classify, describe and characterize battery perfor-
mance.
• Battery Cell. The smallest repeating unit of a battery. A

cell contains an anode, cathode and electrolyte to deliver
electric current as the result of an electrochemical
reaction. The term battery is commonly applied to a
single cell.

• Battery module. A group of interconnected electro-
chemical cells in a series and/or parallel arrangement,
physically connected in an enclosure as a single unit to
provide the required voltage and current levels.

• Battery pack. A completely functional system including
battery modules, battery support systems and battery
controls. A battery pack is the final energy storage
assembly used in hybrid and electric vehicles.

• Capacity. It is the total charge that can be discharged
from a fully charged battery under specified conditions
(also referred to either Typical, Nominal, or Rated Ca-
pacity). Battery capacity Q0 as a function of discharge
current, I(t) (positive current is used in discharge), is
usually characterized by the Peukert equation

Q0 = k In (1)

where n is the Peukert exponent and k is a fitting
coefficient, [3].

• State of Charge (SOC). This is a dimensionless value
that describes the amount of usable charge that remains
in the battery compared to the total charge capacity
(under some nominal conditions). It can be expressed
as:

SOC(t) = −
∫ t
0
I(τ)dτ

Q0
× 100 (2)

• C-rate. The C-rate is an expression describing the rate
of charge or discharge current in normalized form:

C − rate =
I

Q0
[1/h] (3)

The general expression is C/xx, where xx indicates the
number of hours to completely discharge the battery
at a constant current. For example, a rate of 5C will
discharge the battery in 1/5 hours (= 12 minutes),
C/1 is the current at which the battery will last 1
hour. Hence, C/1 (or 1C) corresponds numerically to
the battery nominal capacity in Ah.

• Specific Energy. Specific energy, also called gravimetric
energy density, is used to define how much energy
a battery can store per unit mass. It is expressed in
Watthours per kilogram (Wh/kg). Specific energy of a
battery is the key parameter for determining the total
battery weight for a given mile range of EV.

• Specific Power. Specific power, also called gravimetric
power density of a battery, is the peak power per unit
mass. It is expressed in W/kg.



• Energy Density. Energy density, also referred as the
volumetric energy density, is the nominal battery energy
per unit volume (Wh/l).

• Internal Resistance. It indicates an overall resistance
within the battery, generally different for charging and
discharging, also dependent on the battery charge level.

• Cut-off Voltage. This is the minimum allowable voltage
defined by the battery manufacturer. It is the voltage
when discharge is complete.

• Depth of Discharge (DOD). It is the percentage of
battery capacity to which the battery is discharged.

DOD(t) = 1− SOC(t) =

= −
Q0 −

∫ t
0
I(τ)dτ

Q0
· 100 (4)

The higher the DOD, the shorter the cycle life. To
achieve a higher cycle life, a larger battery can be used
for a lower DOD during normal operations.

• State of Health (SOH). It can be defined as the ratio
of the maximum charge capacity of an aged battery
to the maximum charge capacity when the battery was
new. SOH is an important parameter for indicating the
degree of performance degradation of a battery and
for estimating the battery remaining lifetime. For this
reason, SOH definition is not univocal, because in a
battery it can be defined by loss in capacity, increase
in internal resistance, or a combination of both [4], [5].
Usually, SOH is correlated with the performance re-
quirements which depend on the system and its specific
application1.

• Calendar Life. Calendar life is the expected life span of
the battery under storage or periodic cycling conditions.
It can be strongly related to the temperature and SOC
during storage.

• Battery Management System (BMS). It is a combination
of sensors, controller, communication, and computation
hardware with software algorithms designed to decide
the maximum charge/discharge current and duration
from the estimation of SOC and SOH of the battery
pack.

• Thermal Management System (TMS). It is designed to
protect the battery pack from overheating and to extend
its calendar life. Simple forced-air cooling TMS is
adopted for the NiMH battery, while more sophisticated
and powerful liquidcooling is required by most of the
Li-ion batteries in EV applications.

IV. BATTERY AGING

Real world systems are inherently subject to aging. Aging
is the reduction in performance, availability, reliability, and
life span of a system or component.

Aging originates from a number of different mechanisms
and their interaction. These mechanisms are enhanced by

1For instance, in HEV applications high power is required to provide
adequate boost. In PHEV and EV applications the requirement is mileage
range and therefore capacity to store energy. In PHEV applications, high
power and large capacity to store energy are required.

stress factors such as load intensity, environmental condi-
tions, and usage patterns. In a battery cell, aging includes ca-
pacity decrease, increase in cell impedance (which produces
power fade), faster temperature rise during operation, lower
voltage and more frequent self-discharge, all of which reduce
battery performance. The physical-chemical mechanisms re-
sponsible for the aging are enhanced by stress factors such as
current severity (C-rate), operating temperature (Tbatt), state
of charge, cycling rates, overcharge and over-discharge.

A review on today‘s knowledge on the aging phenomena
in lithium-ion batteries can be found in [6].

Aging of lithium-ion cells is being more and more of
a concern, as the battery-powered applications are very
demanding, in that, they require the electrochemical system
to last a very long life, sometimes exceeding 15 years. The
batteries usually undergo two different types of aging: cycle
life aging and calendar aging [7]. The capacity drop, in gen-
eral, is due to parasitic side reactions, structural degradations,
positive-electrode material dissolution, Solid Electrolyte In-
terface (SEI) layer formation and loss of contact between the
electrode and the current collector [8]. In this paper, only the
cycle life aging of the battery is considered for which two
main families of modeling approaches have been proposed
in the literature:
• Electrochemical (physics-based) aging models: these

are physics-based models describing the actual phenom-
ena of diffusion and charge transport of ions of lithium
inside the battery. The main advantages of these models
are their accuracy and applicability to simulate aging
under different operating conditions. Their limitations,
on the other hand, is in their need for a detailed
knowledge of the aging mechanisms and the high CPU
time. In the current literature, these type of models have
been developed for different Li-ion battery chemistries
[9], [10], [8], [11], [12]. However, the integration of
these models inside a BMS for real time control is still
a research question.

• Semi-empirical aging models: Typically these are phe-
nomenological models developed from data obtained in
a laboratory through large scale testing under different
aging conditions. These type of models are developed
without the need for knowledge of the aging process
at the materials level. Although these models have
low predictability as they only describe how the aging
mechanisms manifests and do not capture their physics,
they are good for control-oriented purposes as they
require low computation time to predict degradation and
can be easily integrated within a BMS [4], [13], [14],
[15].

A. Aging propagation in large-scale systems

Large-scale systems are ubiquitous. By definition, a large-
scale or complex system is composed of various inter-
connected components [16]. The complexity of the behavior
of a system increases with the increase in inter-connected
components, and it becomes more challenging to monitor the
functionality of the overall system when these components
are exposed to disturbances, faults and aging.



In the case of batteries, life prediction deals with the entire
battery system, and must include battery pack related effects,
which are difficult to take into account if one only focuses
on aging processes at the cell level [17].

Existing literature on aging modeling and SOH monitoring
has so far been focused on individual components. The
proposed work aims to understand the propagation of aging
in interconnected systems. In this paper, we investigate the
aging properties of isolated components upon interconnec-
tion. In particular, we analyze propagation of aging from cell-
to-cell within a battery pack and state-of-health monitoring
of battery pack based on the knowledge of its components
(cells) and their aging interaction. This analysis is addressed
in detail in Section VII.

B. Battery aging dynamics

It is common practice to model an engineering component
subject to aging by the dynamic equations, [18],{

ẋ = f(x, θ, u)

θ̇ = εg(x, p)
(5)

where x ∈ Rn is the set of state variables associated with
the fast dynamic behavior of the component; θ ∈ Rp is the
set of aging variables, i.e. the system parameters that change
with the age of the component; ε is a positive scalar ε << 1
representing the fact that the dynamics of the state variables
are much faster than the dynamics of the aging variables;
u ∈ Rm are the external inputs acting on the component;
p ∈ Rq is the vector of the aging factors. The vector p can be
composed of states and inputs or functions of these; y ∈ Rl
is the component output vector. The system described in (5)
represents a singular perturbation model with slowly drifting
parameters. As ε ↓ 0, the equations become{

ẋ = f(x, θ, u)

θ̇ = 0
(6)

The dynamics of the speed-up system (6) in the fast time
scale t shows that the aging variable θ is ”frozen”. With
application to the isolated battery cell system, the vector of
fast dynamics x is defined by [SOC, Tbatt]

T (T indicates
transpose), the vector of parameters θ is given by [Q,R]T ,
the control signal is u = Pbatt and the output signal is simply
Vbatt. The vector p, referred to as severity factors vector, is
given by [SOC, Tbatt, Pbatt] and contains factors responsible
to the battery aging. In the next section, the model of a
battery cell is detailed in all of its three main components:
electrical, thermal and aging; in Section VI a quantitative
characterization of the different time-scales is investigated
for a battery cell used in charge-sustaining HEV application.

V. BATTERY CELL MODEL

The battery cell model considered in this work is com-
posed of three components: electrical, thermal and aging,
as shown in Fig. 2. For each of these components, all the
dynamics involved and their mutual effects are analyzed in
this section.

Fig. 2: Battery cell model layout showing the electrical, thermal and aging
components

A. Electrical model

The electrical battery cell behavior is described with an
equivalent 0th-order model. The input to the battery cell
is the power Pbatt. The corresponding current is computed
through the non-linear algebraic function h(·, ·, ·), which
takes the form, [19]:

Ibatt = h(Pbatt, SOC,R0) =

=
Voc(SOC)−

√
V 2
oc(SOC)− 4R0Pbatt
2R0

(7)

where Ibatt is the cell current (positive in discharge), Voc is
the open circuit voltage, which is a non-linear function of
SOC, and R0 is the cell internal resistance when the cell
is new (BOL). R0 is in general a function of SOC and the
lumped internal temperature Tbatt, i.e., R0(SOC, Tbatt).
Fig. 3 shows a typical trend of the resistance as a function of
SOC parameterized for different values of temperature Tbatt.
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Fig. 3: Experimental characterization of R0 as a function of SOC and
Tbatt for A123 ANR26650 battery cell

The cell SOC dynamics are defined by the equation:

˙SOC = − Ibatt
Q0 · 3600

(8)

where Q0 is the capacity (in [Ah]) at BOL. Q0 is a function
of Tbatt as shown in Fig. 4.

Note that the battery cell resistance R and the capacity Q are
subject to a slow variation in time, starting from the initial
(fresh) values R0 and Q0 respectively. As the battery is being
used, the actual values of R and Q due to aging is described
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Fig. 4: Experimental characterization of Q0 as a function of Tbatt for A123
ANR26650 battery cell

in detail in Subsection V-C. The updated values R and Q, as
they slowly vary over time, are used in (7) and (8) in place
of R0 and Q0.

The output voltage Vbatt is given by:

Vbatt = Voc(SOC)−R Ibatt (9)

B. Thermal model

The cell thermal model describes the cell temperature
dynamics, taking into account the internal heat generation
due to the current flowing inside the cell and the heat
exchanged with the external environment. The dynamics of
the internal temperature Tbatt of the battery cell are described
by:

Ṫbatt =
1

McCp

[
R I2batt −

Tbatt − Tamb
Ru

]
(10)

where R I2batt is the thermal power generated by Joule
effect, McCp is the effective cell heat capacity considered
constant, Tamb is the ambient temperature and Ru is the
thermal resistance to model the cell heat exchange with the
environment. The values of the parameters of the first-order
model used to simulate (10) are from [20].

C. Aging model

In this paper we model the aging dynamics, i.e. capacity
decrease and resistance increase, by means of semi-empirical
models identified over experimental data collected to mimic
the battery behavior in a charge-sustaining HEV.

1) Capacity: We define the capacity loss of a cell as:

Qloss =
Q0 −Q
Q0

· 100 (11)

where Q is the actual cell capacity subject to aging and
Q0(Tbatt) is the capacity at BOL.

In this work, the Qloss semi-empirical model considered
is the one identified in [21] and expressed by the equation:

Qloss = σfunct,Q(SOC, Ic, Tbatt) ·Ahz (12)

where σfunct,Q(SOC, Ic, Tbatt) is the capacity sever-
ity factor function, dependent on the severity factors,
[SOC, Tbatt, Ic], (where Ic = Ibatt/Q) and defined as:

σfunct,Q(SOC, Ic, Tbatt) =(αQ SOC + βQ)·

e

( −Ea+ηQIc

Rgas(Tbatt+273.15)

)
(13)

and Ah is the Ampere-hour throughput whose dynamic
equation is given by

Ȧh =
|Ibatt|
3600

(14)

The capacity severity factor function (13) is an affine func-
tion of SOC, and an exponential function of Ic and Tbatt
(by means of the Arrhenius-type equation which is valid for
temperatures above 15◦C [22]). In (13) Ea is the activation
energy and Rgas is the universal gas constant. The model
was identified using experimental data from [23] and [24],
collected over a state of charge range of SOC ∈ [30%, 70%].

Since the experimental data used for the model identi-
fication are collected from tests conducted under constant
condition of state of charge, C-rate and temperature, when
computing the time derivative of Q, the capacity severity
function (σfunct,Q) is considered as constant, which leads
to:

dQ

dt
=

∂Q

∂Ah

∂Ah

∂t

Hence, the dynamics of the actual cell capacity, Q, is
obtained from (11), (12) and (14) as a function of Qloss
and Q0, and derived with respect to time as given in (15).

Q̇ = − Q0

100
σfunct,Q(SOC, I, Tbatt) z Ah

z−1 |Ibatt|
3600

(15)

2) Resistance: The power fade process is characterized by
the increase in internal resistance of the battery cell, defined
in percentage as:

Rinc =
R−R0

R0
· 100 (16)

where R is the actual value of resistance in [Ω] and R0 is its
nominal value, corresponding to a fresh cell, as a function
of both SOC and Tbatt.
In literature, it is recognized that Rinc has a linear relation
with Ah-throughput, according to a certain coefficient which
takes into account the severity of the cycling conditions [22].
For the purpose of this work, a novel resistance increase
model was identified from HEV aging data [25]. This model
has the form:

Rinc = σfunct,R(Ic, Tbatt) ·Ah (17)

where σfunct,R is the resistance severity factor function
dependent on C-rate (Ic) and internal temperature (Tbatt),
defined as:

σfunct,R(Ic, Tbatt) =
[
αR + µR e(γR Ic)

]
·

e

(
−Ea

Rgas(Tbatt+273.15)

)
(18)

The resistance severity factor function in (18) has an expo-
nential dependence on Ic and has a typical Arrhenius term
to take into account the dependence on Tbatt. Its parameters
have been identified based on the experimental data collected
in [25]. There, the experimental campaign is performed at
Tbatt = 55◦C, which determines the maximum temperature
of validity of the model; while the minimum temperature
is Tbatt,min = 15◦C. Further, the data is collected for the
region of SOC from 0% to 30%. Three values of C-rate



were tested: Ic = 2, 4, 8 1/h, which provide the experimental
points for the identification of σfunct,R(Ic, Tbatt) as shown
in Table I.

TABLE I: Experimental points for the identification of σfunct,R(Ic, Tbatt)
collected at T batt = 55◦C

Ic [1/h] σfunct,R

2 0.0015831

4 0.0023786

8 0.0027499

The parameters of σfunct,R (αR, µR and γR) are identified
with a non-linear least-square algorithm and the results are
shown in Table II. The accuracy of the model is evaluated
with the statistical parameter R2, which is 0.9939. The
comparison between experimental data and the identified
model is shown in Fig. 5.

TABLE II: Parameters of σfunct,R(Ic, Tbatt) resulting from the identifi-
cation

Parameter Value

αR 297.0222

µR −297.7760

γR −0.4160
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Fig. 5: Comparison between experimental data and the identified severity
function σfunct,R(Ic, Tbatt)

The dynamic equation for R is obtained by taking its
derivative with respect to time, using (16), (17), and under
the assumption of contant σfunct,R, similar to the capacity
loss dynamic equation.

Ṙ =
R0

100
σfunct,R(Ic, Tbatt) ·

|Ibatt|
3600

(19)

VI. TIME SCALE SEPARATION

The battery cell model used in this paper is a dynamical
system characterized by a time-scale separation. It is known
that the electrical and thermal dynamics evolve over a dif-
ferent time-scale compared to the aging dynamics. However,
this time-based separation behavior has never been formally
studied in the literature, to the best of our knowledge. In

this section, we aim to visualize the separation in time scale
between the electrical, thermal and aging dynamics.

Every scale-separated dynamical system consists of a set
of fast and slow variables. For a given input, the fast variables
evolve quickly over time and reach a state of equilibrium;
whereas the slow variables, during the same time, evolve
very slowly. Hence, the evolution of the variables can be
defined by the slope or its rate of change during the time
taken by the fast variable to become stationary or stable. In
other words, it could be said that the slope of a dynamic
variable describes the time scale at which it evolves, and so
a difference between slopes of two variables will reveal the
separation in the time scale.

To that end, the equations for the rate of change of the
fast and slow variables presented in the previous section are
rewritten as follows:

˙SOC = − Ibatt
Q·3600 = |mSOC |

Ṫbatt = 1
McCp

[
R I2batt −

Tbatt−Tamb
Ru

]
= |mTbatt |

Q̇ = − Q0

100 σfunct,Q(SOC, I, Tbatt) z Ah
z−1 |Ibatt|

3600

= |mQ|
Ṙ = R0

100 σfunct,R(Ic, Tbatt) · |Ibatt|3600 = |mR|
(20)

where SOC, Tbatt are the fast variables;Q,R are the slow
variables and mSOC ,mTbatt ,mQ,mR are defined to be the
slope for the respective variables.

However, for the purpose of comparison of the evolution
of the variables, we define the dynamics in (20) using the
following formulism:

Ẋ = |mX | = ΨX ·mX,r

where, X = [SOC, Tbatt, Q,R], ΨX is a dimensionless
parameter defined as the rate of evolution of the dynamic
variable, X , and mX,r is a unity gain with same dimensions
as the slope mX . In the same vein, we define the rate of
evolution for all variables as follows:

˙SOC = ΨSOC ·mSOC,r

Ṫbatt = ΨTbatt ·mTbatt,r

Q̇ = ΨQ ·mQ,r

Ṙ = ΨR ·mR,r

(21)

The SOC is a fast variable and it is in the form of an
integrator equation as given in (20). In order to have SOC
reach a state of equilibrium, where ˙SOC = 0, we adapt the
concept of working of an astable multivibrator. An astable
multivibrator has two quasi-stable states and it oscillates
between them, producing a constant square or rectangular
waveform [26]. Quasi-stable state for a multivibrator is
defined as the state in which the multivibrator will remain
stable for a finite time, before it oscillates to another state.
For that purpose, we define the operating range of SOC
from 0.6 to 0.3. And in doing so, we impose two quasi-
stable states on SOC, one at SOC = 0.6 and another at
SOC = 0.3, such that, when SOC reaches any of these
two states, the derivative of SOC ( ˙SOC) will be equal
to 0, thereby creating quasi-stability. This is achieved by
subjecting the model to any constant discharge current until



SOC = 0.3, followed by a very short rest period of zero
current, and then a constant charge current until SOC = 0.6,
as shown in Fig. 6. Essentially, the SOC will oscillate, like
an astable multivibrator, from one state to another and also
remain stable in each state for a short period where the
current is zero, as shown in Fig. 6. This approach allows us to
see the dynamical equation of SOC in a new light, wherein
it attains stability for a short period (when current is zero,

˙SOC = 0), allowing us to compute the rate of evolution
of variables in the time taken by SOC to drop from 0.6
to 0.3 or rise from 0.3 to 0.6. The rate of evolution of all
the variables, however, is not dependent on the direction of
osciallation of SOC from one state to another, hence, in this
paper, we only compute the rate of evolution during the time
taken by SOC to drop from 0.6 to 0.3.
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Fig. 6: a. Current profile; b. SOC profile

Further, the rate of evolution of the variables depends on
the magnitude of current, initial battery temperature and the
ambient temperature. Hence, we simulate (21) with a C-rate
of varied magnitude, Ic = [1, 5, 10, 20] 1h , different initial
battery temperatures, Tbatt(0) = [25, 30]◦C, and a constant
ambient temperature, Tamb = 30◦C.

When the magnitude of current is small and the initial
Tbatt is same as Tamb ((Tbatt(0) = Tamb), the rate of
evolution of Tbatt (ΨTbatt) will be comparable to the rate
of evolution of the slow variables (ΨQ and ΨR). This is
considered as the worst case scenario wherein the time
scales of the fast and slow variables will be the closest. For
Tbatt(0) = Tamb = 30◦C and for a set of Ic values, the
rate of evolution of all the variables are shown in Fig. 7
and Table III. Since the values of rate of evolution are of
a very small order of magnitude, they are plotted using a
logarithmic scale on the ordinate axis. From Fig. 7, it is
observed that even for the worst case scenario, the rate of
evolution ΨTbatt , ΨSOC differs from ΨQ and ΨR by more
than two orders of magnitude.

Further, as the difference between the initial battery tem-
perature and ambient temperature increases (Tbatt(0) 6=
Tamb), the thermal dynamics will evolve fast to become
stable, and hence the rate of evolution ΨTbatt will be always
greater than ΨQ and ΨR. For Tbatt(0) = 25◦C, Tamb =
30◦C and for a set of C-rate values, the rate of evolution
of all the variables are shown in Fig. 8. It is observed that

TABLE III: Rate of evolution for Tbatt = Tamb = 30◦C and Ic =
[1, 5, 10] 1

h

Rate of
Evolution Ic = 1 1

h
Ic = 5 1

h
Ic = 10 1

h

ΨSOC 2.77 · 10−4 1.28 · 10−3 2.76 · 10−3

ΨTbatt 1.03 · 10−4 1.00 · 10−2 6.26 · 10−2

ΨQ 8.95 · 10−7 6.04 · 10−6 1.79 · 10−5

ΨR 3.99 · 10−11 5.36 · 10−10 1.42 · 10−9
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Fig. 7: Rate of Evolution for a range of C-rate values with initial Tbatt =
30◦C and Tamb = 30◦C
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Fig. 8: Rate of Evolution for a range of C-rate values with initial Tbatt =
25◦C and Tamb = 30◦C

there is a broad separation between the rate of evolution of
the fast and slow variables for even the smallest value of Ic.

Based on the above results, we conclude that the time
scale separation between the fast and slow dynamics is
not always constant and it depends on external factors.
Mainly, for low values of C-rate, the time scale separation
is highly dependent on the difference between the initial
battery temperature, (Tbatt(0), and the ambient temperature,
(Tamb, as witnessed in the difference in value of ΨTbatt for
Ic = 1 in Fig. 7 and 8. However, for higher C-rates, the time



scale separation no longer depends on the the temperature
difference, as is evident from similar rate of evolution values
of variables for Ic > 10 in Fig. 7 and 8.

VII. AGING PROPAGATION

To understand whether the aging propagates among cells
within an interconnected structure, we start by analyzing the
simplest interconnected configuration, i.e. series, that cells
can be arranged within a battery pack.

In a battery pack, the cells are connected both electrically
(the same Pbatt flows with the series) and thermically. In
Fig. 9, the thermal connection between the cells is such that
the temperature of cell i is affected by the temperature of
the adjacent cells (both downstream (i + 1) and upstream
(i− 1)).

The property of modularity in a system guarantees that
the input/output behavior of a component (a cell) does
not change upon interconnection (series of cells) and the
behavior of the interconnected system can thus be predicted
by the behavior of the composing cells [27]. We want to
show that there is no modularity in a battery pack, as far as
aging goes, by demonstrating that the degradation of cell i
is affected, indistinctly, by the degradation of the cell i+ 1
or i− 1.

The interconnected system of Fig. 9 is characterized by
electrical and thermal connections. If, on one hand, elec-
trical modularity is guaranteed (from which the electrical
behavior of the overall system can be inferred from the
electrical behavior of the single cells), on the other hand, the
thermal characterization of the interconnected system cannot
be derived looking at the single cells. Because of that, also
the aging of the interconnected series cannot be inferred by
solely looking at the aging of the single cells.

The thermal dynamics of the connected cell i can be
spelled out as follows:

Ṫbatt,i =
1

τT

[
Rih(Pbatt)

2
]
− Tbatt,i − Tamb

Ru · τT
− (22)

−Tbatt,i − Tbatt,i−1
Rc,i−1 · τT

− Tbatt,i − Tbatt,i+1

Rc,i+1 · τT
where the thermal model introduced in Subsection V-B is
completed with the addition of two heat exchanges with the
adjacent cells. In particular, with reference to (10), Ri is
the electrical internal resistance of cell i, τT = McCp and
the thermal resistances Ru and Rc represent respectively
the thermal connection with the ambient and with the other
adjacent cells.

Thus, (22) can be rewritten as:

Ṫbatt,i = 1
τT

[ Rih(Pbatt)
2 − Tbatt,i[ 1

Ru
+ 1

Rc,i−1
+ (23)

+ 1
Rc,i+1

] + Tamb
Ru

+
Tbatt,i−1
Rc,i−1

+
Tbatt,i+1

Rc,i+1
]

From (23), we see that thermal dynamics of cell i are
determined by : 1) the current flowing into the cell i itself,
2) the external temperature Tamb, and 3) the temperature of
the adjacent cells Tbatt,i−1 and Tbatt,i+1, represented in the
boxed equations. Because of these two terms, modularity is

lost, in the sense that the temperature of cell i changes upon
interconnection, hence prediction of the thermal behavior of
the system cannot be directly derived from the behavior of
its components only. The two terms framed in the boxes in
(23) can be interpreted as impedance-like effects that change
the dynamics of the system (cell i) in the face of both
downstream and upstream system [28]. From the standpoint
of cell i, the term Tbatt,i+1

Rc,i+1
accounts for the change in the sys-

tem dynamics of cell i when it is connected to downstream
system i+ 1. Symmetrically, the term Tbatt,i−1

Rc,i−1
accounts for

the change in the system i due to the interconnection with
the system upstream.

Due to the nature of the thermal interconnection, from
Fig. 10 we see that the aging in the component i−1 in term
of increase of resistance ∆Ri−1 propagates to the component
i through the thermal dynamics of the cell i−1 and i leading
to an increase of aging of the system i itself. This property
is symmetrical with respect to the cell i, meaning that the
same resistance increase in the cell i+ 1 will have the same
impact, in terms of aging, to the cell i.

S !OCi−1 = f1,i−1(SOCi−1,Pbatt,Ri−1,Qi−1)
!Tbatt,i−1 = f2,i−1(Pbatt,Ri−1,Tbatt,i−2,Tbatt,i )

i+1

S !OCi = f1,i (SOCi,Pbatt,Ri,Qi )
!Tbatt,i = f2,i (Pbatt,Ri,Tbatt,i−1,Tbatt,i+1)

!Ri−1 = εg1,i−1(SOCi−1,Pbatt,Tbatt.i−1)
!Qi−1 = εg2,i−1(SOCi−1,Pbatt,Tbatt.i−1)

!Ri = εg1,i (SOCi,Pbatt,Tbatt.i )
!Qi = εg2,i (SOCi,Pbatt,Tbatt.i )

ii−1

Tbatt.i

Tbatt.i+1Tbatt.i

Ri−1 +ΔRi−1

Tbatt,i−1 +ΔTbatt,i−1

Tbatt,i +ΔTbatt,i

Ri +ΔRi

....

Fig. 10: Aging propagates from upstream cell i− 1 to the downstream cell
i.

VIII. AGING PROPAGATION FRAMEWORK

As shown in Section VII, the degradation in a cell will
travel upstream as well as downstream in a system of
interconnected cells. A first attempt to describe the aging
propagation from an upstream cell to a downstream cell is
found in [17], where the case of series configuration was
studied for which a set of highly preliminary results was
given. In this section, we aim to propose a more formal
and exhaustive framework to explain analytically how the
aging in a downstream cell will propagate to the upstream
cell. In doing so, we borrow the theoretical framework based
on retroactivity proposed by [27] to model interconnected
systems composed of biological modules. Retroactivity, as
described in [27], and adapted in the context of battery packs,
is defined as the phenomenon in which a signal from a
downstream cell affects the dynamics of an upstream cell.

Retroactivity signals within a battery pack are realized
through the thermal coupling that exists between a down-
stream and an upstream cell (i.e. the term Tbatt,i+1

Rc,i+1
from

(23)) and they are primarily responsible for causing dis-
similar aging of cells in a battery pack. For the purpose
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Fig. 11: Interconnected cells with the inclusion of retroactivity signals (in
red).

of studying how aging propagates through retroactivity, we
start considering two cells interconnected as in Fig. 11. The
state-space representation of the two cells C1 and C2 and
their interconnection (including retroactivity) is given by:


ẋ1 = f1(x1, θ1, u1, q1) ẋ2 = f2(x2, θ2, u2, q2)

θ̇1 = ε · g1(x1, θ1, u1, q1) θ̇2 = ε · g2(x2, θ2, u2, q2)

y1 = Y1(x1, u1, q1) y2 = Y2(x2, u2, q2)

p1 = P1(x1, u1, q1) p2 = P2(x2, u2, q2)
(24)

where, xi is the set of fast variables, θi is the set of aging
variables, yi is the output, pi is the retroactivity signal to
the upstream cell, qi is the retroactivity signal from the
downstream cell and i = [1, 2]. The diagram of Fig. 11
and equations (24) are easily generalizable to the case of
interconnection of n cells. We define ξi as the aging damage
measure, a scalar quantity that ranges from 0 to 1, signifying
the progression of the aging process as

ξi =
θi − θ0
θf − θ0

(25)

where, θ0 is the initial condition of the aging variable when
no aging has taken place, and θf is the value of the aging
variable at the end of life [18].

To illustrate retroactivity, we consider the downstream cell,
C2, with a damage measure of ξ2. We define the aging
residual for the retroactivity signal p2 of system C2 as the
difference of its output with aging, and its output with no
aging [17], as

∆p2 = p2,a − p2 = P2(x2,a)− P2(x2) = φ(ξ2) (26)

Thus, we obtain that the residual of the retroactivity signal
p2 of system C2 is an arbitrary function of its aging damage
measure ξ2. From the retroactivity framework in Fig. 11, it
can be realized that the aging in C2 is propagated to the
upstream cell C1 through retroactivity, as follows

q1 = p2,a = p2 + ∆p2 = p2 + φ(ξ2) (27)

This results in the dynamics of the upstream system to be
defined by

ẋ1 = f1(x1, θ1, u1, p2 + φ(ξ2))

θ̇1 = ε · g1(x1, θ1, u1, p2 + φ(ξ2))

y1 = Y1(x1, u1, p2 + φ(ξ2))

p1 = P1(x1, u1, p2 + φ(ξ2))

(28)

It is clear from (28) that the dynamics and the output of
the upstream system C1 is altered due to the connection with
the downstream system C2. Hence, the aging of the upstream
system is now dependent on aging of the downstream system,
which transpires due to the presence of retroactivity. Further-
more, the residual of the retroactivity signal p1 of system C1

will affect the system that is upstream to C1, thereby creating
a chain of aging propagation through retroactivity.

IX. AGING PROPAGATION IN SERIES AND PARALLEL
TOPOLOGIES

One reason for studying aging propagation is to understand
what topology within a battery pack is least sensitive to
the effects of retroactivity and therefore, more robust to
the propagation of aging. In this section, we investigate the
influence of retroactivity and evaluate the extent of aging
propagation for two simple topologies, a string of n cells
in series and a string of m cells in parallel. Further, we
extrapolate the results obtained to comment on the aging
propagation for a mixed (parallel-series) topology.

A. Sequence of aging propagation

1) Series: For a battery pack consisting of n cells in
series, the current in the pack when subjected to a power



request of Ppack is given by:

Ipack =
Voc,s(ξQ)−

√
V 2
oc,s(ξQ)− 4Rs(ξR)Ppack

2Rs(ξR)
(29)

where, {
Voc,s(ξQ) =

∑n
i=1 Voc,i(ξQ,i)

Rs(ξR) =
∑n
i=1Ri(ξR,i)

(30)

and ξQ,i and ξR,i are the aging damage measure variables
for capacity and resistance of the form given in (25).
If one of the cells in the pack is more aged than the others,
the resistance and voltage across the aged cell changes,
resulting in an increased resistance of the pack, thereby
drawing more current to satisfy the power request. The
increase in current of the pack will increase the temperature
of each cell. However, the temperature of the aged cell will
increase more due to its higher resistance. Due to thermal
interconnection, this increase in temperature of the aged cell
affects the downstream and upstream cells, causing their
temperature to increase more than usual. And since the
aging dynamics are sensitive to the magnitude of current
and temperature, an additional loss in capacity and increase
in resistance in the downstream and upstream cells will occur.

2) Parallel: For a battery pack consisting of m cells in
parallel, the current in the pack when subjected to a power
request of Ppack is given by (31).

Ipack =
Voc,p(ξQ, ξR)−

√
V 2
oc,p(ξQ, ξR)− 4Rp(ξR)Ppack

2Rp(ξR)
(31)

where, 
Voc,p(ξQ, ξR) =

∑m
i=1

Voc,i(ξQ,i)
Ri(ξR,i)

Rp(ξR) = 1
m∑
i=1

1

Ri(ξR,i)

(32)

If one of the cells in the pack is more aged than the others,
the resistance of the aged cell increases causing lower current
to flow through it. Meanwhile, a high current is drawn by
the entire pack to satisfy the power request. This results in
additional load on the remaining cells, causing an increase
in the flow of current into the branches parallel to the aged
cell. The increasing current in the parallel branches causes an
increase in their temperature. And since the aging dynamics
are sensitive to the magnitude of current and temperature, an
additional loss in capacity and increase in resistance in the
downstream and upstream cells will occur.

In order to understand how the current varies with respect
to the aging damage measure variables for both topologies,
we simulate two battery packs, one with 5 cells in series
and another with 5 cells in parallel, with only Cell 3 being
aged, as shown in Fig. 12. We define current residual as the
difference between current in the pack with an aged cell and
the current in the pack with no aged cell as:

Ipack,residual = Ipack,aged − Ipack (33)

Fig. 12: Battery pack of 5 cells in a series and parallel topology with an
aged Cell #3

A constant power request of 50 W is applied to the two
battery packs shown in Fig. 12 and the current residual is
plotted at the end of the simulation period of 700 seconds for
varying aging damage measure variables (ξQ, ξR) as shown
in Fig. 13 and 14. It is evident that current in the battery
pack for both topologies is directly proportional to the aging
damage measure variables (ξQ, ξR), meaning that as the cells
degrades more, the current in the battery pack increases.
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Fig. 13: Variation of current residual with respect to aging damage measure
variables ξQ and ξR for a series topology

B. Retroactivity attenuation and quantification

In this subsection, we quantitatively investigate the effects
of retroactivity in a series and parallel topology. We evaluate
the severity of retroactivity by quantifying its influence on
the capacity loss or resistance increase of cells downstream
and upstream to the aged cell. For that purpose, we compare
two the scenarios: 1) a battery pack exhibits retroactivity and,
2) retroactivity is attenuated, or in other words, the thermal
coupling between cells in a battery pack is insulated.

Retroactivity attenuation is a broad field of research that
will not be discussed in detail here. Retroactivity attenuation,
with respect to battery packs, is insulation of the thermal
interconnections, which can be achieved using active thermal
management strategies like liquid cooling, air cooling or
passive strategies like the usage of phase change materials
[29]. These strategies absorb heat and maintain a uniform
temperature throughout the battery pack.
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Fig. 14: Variation of current residual with respect to aging damage measure
variables ξQ and ξR for a parallel topology

To quantify the effect of retroactivity on each cell, we
define two retroactivity residual parameters for capacity loss
and resistance increase, as follows:{

ζQ,i = Qloss,r,i −Qloss,nr,i
ζR,i = Rinc,r,i −Rinc,nr,i

(34)

where Qloss,r,i and Rinc,r,i are the capacity loss and re-
sistance increase of cell i in a battery pack exhibiting
retroactivity, whereas Qloss,nr,i and Rinc,nr,i are the capacity
loss and resistance increase of cell i in a battery pack with
no retroactivity. A constant power request of 50 W is applied
to the two battery packs of Fig. 12 and the retroactivity
residual parameters of all the cells are plotted at the end
of the simulation period of 700 seconds.
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Fig. 15: Retroactivity residual for Capacity Loss (ζQ) for a series topology

In the case of a series topology, as shown in Figure 15
and 16, it can be observed that there is a noticeable effect of
retroactivity on all 5 cells. There is a difference in retroactiv-
ity residual values between Cell #1 and Cell #2 showing that
the cell closer to the aged cell is being affected more due
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Fig. 16: Retroactivity residual for Resistance Increase (ζR) for a series
topology

to retroactivity. Also, cells upstream and downstream to the
aged cell (Cell #2 and #4), have equal retroactivity residual
values, due to similar thermal interconnections, showing that
they are equally affected by retroactivity. It is to be noted that
as the duration of the usage of the battery pack increases,
the retroactivity residual values for each cell will increase,
causing certain cells to age sooner than they normally would.
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Fig. 17: Retroactivity residual for Capacity Loss (ζQ) for a parallel
topology

For the parallel topology, as shown in Fig. 17 and 18,
the difference in retroactivity residuals values between cells
upstream and downstream to the aged cell is not as pro-
nounced. More importantly, the retroactivity residual values
are one order of magnitude lower than the values for a
series topology, indicating that the effect of retroactivity
is not dominant in a parallel topology. This is attributed
to the low magnitude of current flowing through the aged
cell which causes only a slight rise in its temperature.
And since retroactivity manifests through thermal coupling,
the resulting increase in temperature of the cells upstream
and downstream to the aged cell is less. Hence, the aging
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Fig. 18: Retroactivity residual for Resistance Increase (ζR) for a parallel
topology

propagated through retroactivity in a parallel topology is not
as severe as in the series topology.

C. Extent of aging propagation

We define the extent of aging propagation as the influence
of an aged cell on the cells it is interconnected to. We
evaluate the extent of aging propagation by comparing the
capacity loss and resistance increase in cells in series and
parallel with the aged cell, for a series and parallel topology
respectively. A constant power request of 50 W is applied to
the two battery packs in Fig. 12 and the capacity loss and
resistance increase of all the cells (excluding the aged Cell
3, since we only want to observe the effect of aging on the
interconnected cells) are plotted at the end of the simulation
period of 700 seconds.

As observed in Fig. 19 and 20, the extent of aging
propagation is higher in case of a parallel topology. Thus, a
series topology is more robust to aging propagation. This is
primarily attributed to the high magnitude of current flowing
through the cells in parallel to the aged cell, due to which
they degrade more.

In light of the above results, we can extrapolate and claim
that in a mixed (parallel-series) configuration, the cells in
series with the aged cell will degrade lesser than usual. To
support this claim, we validate it by introducing an aged cell
(Cell #3) in a topology combining series and parallel strings
as shown in Fig. 21. We define capacity loss residual and
resistance increase residual as follows:{

rQ,i = Qloss,i,f −Qloss,i,nf
rR,i = Rinc,i,f −Rinc,i,nf

(35)

where Qloss,i,f and Rinc,i,f are the capacity loss and resis-
tance increase of cell i in a battery pack with an aged cell,
representing the faulty condition (f), whereas Qloss,i,nf and
Rinc,i,nf are the capacity loss and resistance increase of cell
i in a battery pack with all cells fresh, representing the non-
faulty condition (nf). A constant power request of 50 W is
applied to the battery pack in Fig. 21 and the capacity loss
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Fig. 19: Capacity Loss comparison between series and parallel topology
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Fig. 20: Resistance Increase comparison between series and parallel topol-
ogy

and resistance increase residuals of all the cells are plotted
at the end of the simulation period of 700 seconds.

Fig. 21: Battery pack of 10 cells in a mixed (series-parallel) topology with
an aged Cell #3

As claimed, the extent of aging propagation in the cells
that are in series with Cell #3 is lower compared to the
cells in parallel to Cell #3, as shown in Fig. 22 and 23. The
negative residual values corresponding to the cells in series
with Cell #3 indicate that they age lesser than they would
normally do in the non-faulty scenario.

X. CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the topic of battery health
management for automotive applications. In particular, the
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Fig. 22: Capacity Loss Residual of cells in a mixed (parallel-series) topology
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Fig. 23: Resistance Increase Residual of cells in a mixed (parallel-series)
topology

battery cell aging and its propagation upon a battery pack
configuration has been analyzed. Battery cell model has
been described in terms of fast and slow dynamics, whose
time-scale separation has been characterized quantitatively.
A framework has been developed to describe the battery
pack as an interconnected system, where propagation of cell
degradation takes place. The phenomenon of retroactivity
in battery packs is explored and a generalized framework
showing degradation through retroactivity is developed. Fur-
ther, the influence of retroactivity and the extent of aging
propagation in a series and parallel topology is investigated.
Finally, starting from an unbalance of the aging condition
in a battery pack, represented as an aging fault injection in
one cell, it is shown that the aging is propagating inside the
pack, due to the coupling among the cells. As a result, a
more aged battery pack has been achieved, where the cells
closer to the aged one are affected more by the aging fault.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of National
Science Foundation through the GOALI Award #1301238.

REFERENCES

[1] C. C. Chan, “The state of the art of electric and hybrid vehicles,”
Proceedings of the IEEE, vol. 90, no. 2, pp. 245–275, 2002.

[2] A. A. Pesaran, “Choices and requirements of batteries for EVs, HEVs,
PHEVs,” in NREL/PR-5400-51474, April 2011.

[3] M. Jongerden and B. Haverkort, “Battery modeling,” Enschede,
January 2008. [Online]. Available: http://doc.utwente.nl/64556/

[4] S. Onori, P. Spagnol, V. Marano, Y. Guezennec, and G. Rizzoni,
“A new life estimation method for lithium-ion batteries in plug-in
hybrid electric vehicles applications,” International Journal of Power
Electronics, vol. 4, no. 3, pp. 302–319, 2012.

[5] K. Goebel, B. Saha, A. Saxena, J. R. Celaya, and J. P. Christophersen,
“Prognostics in battery health management,” IEEE Instrumentation &
Measurement Magazine, vol. 11, no. 4, p. 33, 2008.

[6] J. Vetter, P. Novk, M. Wagner, C. Veit, K.-C. Mller, J. Besenhard,
M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche,
“Aging mechanisms in lithium-ion batteries,” Journal of Power
Sources, vol. 147, pp. 269–281, Sep. 2005.

[7] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre,
K. Nechev, and R. Staniewicz, “Main aging mechanisms in Li ion
batteries,” Journal of Power Sources, vol. 146, no. 1, pp. 90–96, 2005.

[8] M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, “Life-
Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue
Approach: II Introduction: Capacity-Loss Prediction Based on Damage
Accumulation,” Journal of The Electrochemical Society, vol. 157,
no. 6, pp. A713–A720, 2010.

[9] P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov,
“Development of First Principles Capacity Fade Model for Li-Ion
Cells,” Journal of The Electrochemical Society, vol. 151, no. 2, pp.
A196–A203, 2004.

[10] S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, “Review
of models for predicting the cycling performance of lithium ion
batteries,” Journal of Power Sources, vol. 156, no. 2, pp. 620 – 628,
2006.

[11] X. Lin, J. Park, L. Liu, Y. Lee, A. M. Sastry, and W. Lu, “A Com-
prehensive Capacity Fade Model and Analysis for Li-Ion Batteries,”
Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1701–
A1710, 2013.

[12] E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot,
and F. Huet, “A Simplified Electrochemical and Thermal Aging Model
of LiFePO4-Graphite Li-ion Batteries: Power and Capacity Fade
Simulations,” Journal of The Electrochemical Society, vol. 160, no. 4,
pp. A616–A628, 2013.

[13] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Ver-
brugge, H. Tataria, J. Musser, and P. Finamore, “Cycle-life model
for graphite-LiFePO4 cells,” Journal of Power Sources, vol. 196, pp.
3942–3948, 2011.

[14] F. Todeschini, S. Onori, and G. Rizzoni, “An experimentally validated
capacity degradation model for li-ion batteries in phev applications,”
8th IFAC International Symposium on Fault Detection, Supervision
and Safety of Technical Processes, 2012.

[15] H. Wenzl, I. Baring-Gould, R. Kaiser, B. Y. Liaw, P. Lundsager,
J. Manwell, A. Ruddell, and V. Svoboda, “Life prediction of batteries
for selecting the technically most suitable and cost effective battery,”
Journal of power sources, vol. 144, no. 2, pp. 373–384, 2005.

[16] D. D. Siljak, Large-scale dynamic systems: stability and structure.
North-Holland New York, 1978, vol. 310.

[17] S. Onori, G. Rizzoni, and A. Cordoba-Arenas, “A prognostic method-
ology for interconnected systems: preliminary results,” in 8th IFAC
International Symposium on Fault Detection, Supervision and Safety
of Technical Processes, Mexico DF, Mexico, 2012.

[18] L. Serrao, S. Onori, G. Rizzoni, and Y. Guezennec, “A novel model-
based algorithm for battery prognosis,” Safeprocess, 2009.

[19] L. Serrao, S. Onori, and G. Rizzoni, “ECMS as a realization of
Pontryagins Minimum Principle for HEV control,” Proceedings of the
2009 American Control Conference, 2009.

[20] A. Cordoba Arenas, S. Onori, Y. Guezzennec, and G. Rizzoni, “A
control-oriented lithium-ion battery pack model for plug-in hybrid
electric vehicles cycle-life studies and system design with considera-
tion of health management,” Submitted to: Journal of Power Sources,
2014.

[21] G. Suri and S. Onori, “A control-oriented Li-ion battery aging model
for hybrid electric vehicle optimization,” Submitted to: Energy, 2015.

[22] A. Cordoba Arenas, S. Onori, Y. Guezzennec, and G. Rizzoni, “Capac-
ity and power fade cycle-life model for plug-in hybrid electric vehicle



lithium-ion battery cells containing blended spinel and layered-oxide
positive electrodes,” Submitted to: Journal of Power Sources, 2014.

[23] J. Groot, “State-of-health estimation of Li-ion batteries: cycle life
test methods,” Licentiate thesis, Energy and Environment, Chalmers
University of Technology, G oteborg, Sweden, 2012.

[24] P. Spagnol, S. Onori, N. Madella, Y. Guezennec, and J. Neal, “Aging
and characterization of Li-ion batteries in a hev application for lifetime
estimation,” 6th IFAC Symposium Advances on Automotive Control,
Munich Germany, July 12-14 2010.

[25] A. Suttman, “Lithium-Ion battery aging experiments and algorithm
development for life estimation,” Master thesis, The Ohio State Uni-
versity Graduate Program in Mechanical Engineering, 2011.

[26] P. Rao, Pulse and Digital Circuits. Tata McGraw-Hill Education,
2006, vol. 1.

[27] D. D. Vecchio, A. J. Ninja, and E. D. Sontag, “A System Theory with
Retroactivity: Application to Transcriptional Modules,” Proceedings
of the American Control Conference, pp. 1368–1373, 2008.

[28] S. Jayanthi and D. D. Vecchio, “Retroactivity attenuation in bio-
molecular systems based on timescale separation,” IEEE Trans. Aut.
Control, vol. 56, no. 4, pp. 748–761, 2011.

[29] G. Karimi and X. Li, “Thermal management of lithium-ion batter-
ies for electric vehicles,” International Journal of Energy Research,
vol. 37, no. 1, pp. 13–24, 2012.


