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Abstract— In a Lithium-ion battery, the relative importance between
the three microscale transport processes, i.e. diffusion, electromigration
and heterogeneous reaction, can be quantified using the dimensionless
Electric Péclet (Pe) and Damköhler (Da) numbers. By means of
homogenization technique, we upscale the pore-scale Poisson-Nernst-
Planck equation to the macroscopic scale and formulate a phase
diagram in the (Da,Pe)-space that identifies the applicability conditions
under which isothermal electrochemical macroscopic models provide
an accurate description of the micro-scale dynamics [1]. In this work,
we focus on the effect of temperature on macroscale (Newman-type)
models’ accuracy for a number of commercially available lithium-ion
batteries. We show that macroscopic models are able to accurately
represent pore-scale dynamics only within specific temperature bounds
and their veracity is strongly controlled by the battery operating
temperature conditions.

I. INTRODUCTION

Lithium-ion batteries have been extensively used as energy
storage devices in portable electronics for their light weight and
higher energy and power density properties in comparison with their
metal-based counterparts [2]. Their applicability has been evolving
towards large scale applications such as aircraft auxiliary power
units, hybrid and fully electric vehicles, and long duration grid
energy storage [3].

The transition from small scale electronics to electric vehicles
with much higher power and energy demands has been hampered
by the relative lack of understanding of scaling effects, which
impact battery performance and electrochemical and mechanical
responses [4]. Battery chemical and physical heterogeneity on
a multiplicity of scales calls for the use of models that can
capture the system multiscale dynamics, including physicochemical
processes during battery charge/discharge operations, especially at
high current rates [5]. Further, physics-based multiscale models
must account for the effects of material properties and battery
morphology [6].

A plethora of mathematical models have been developed to cap-
ture the transport phenomena inside a Lithium ion cell. They include
empirical, thermal, stress-strain, molecular/atomistic, and electro-
chemical models [7]. Electrochemical models can be formulated at
a variety of different scales, from the pore-scale (microscale) to the
continuum scale (macroscale).

Microscale models consider diffusion, conduction, and elec-
trochemical kinetics at the micrometer scale, and simulate ion
transport in the electrodes and separator [8]. These models are
computationally demanding [9] and have limited application in
battery design since they focus primarily on localized phenomena
without considering the cell-level behavior [10]. In comparison,
macroscopic models are computationally efficient. For automotive
applications, understanding macroscopic design features is essential
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in order to determine their impact on microscopic electrochemical
processes [11]. This facilitates the need for a model combining
these two scales, which interpret the behavior of the system and
improve numerical efficiency.

The macroscopic lithium-ion battery model developed by New-
man et al. [12] is the earliest developed and widely utilized electro-
chemical model today. This model was derived using the volume
averaging technique, and treats the electrode as a homogeneous
continuum. This model does not consider the microscopic structure
of the electrode. Changes in the effective properties of the transport
parameters such as ionic diffusion and conductivity are accounted
for using a Bruggeman’s relation [13].

Upscaling studies emphasize the derivation of effective mod-
els that incorporate the microscopic characteristics of the porous
medium. To the best of our knowledge, upscaled models have not
completely addressed the validity of the underlying assumptions
and the approximations based on which they were derived. It is
important for macroscopic models that have been developed with
the objective of designing more accurate and predictive battery
management systems (BMS) to address this aspect of modeling.

A multiple scale asymptotic expansion technique to upscale the
microscopic mass and charge transport equations in a lithium ion
battery model has been studied in [1]. Dimensionless Electric Péclet
(Pe) and Damköhler (Da) numbers were defined to describe mass
and charge transport of lithium ions in the electrolyte. Using a
homogenization approach, constraints that identify a domain where
the upscaled equations accurately describe the microscale processes
were identified. A phase diagram in the (Pe,Da) space summarized
mass transport in the electrolyte phase.

In the process of developing a more predictive model, there is
a need to identify operating conditions where effective macroscale
transport equations would break down. This aspect of modeling will
be addressed in this paper. The focus of this paper is to apply the
results obtained in [1] to understand the veracity of mathematical
models that describe lithium-ion battery dynamics. In order to do
that, we have computed the values of Pe and Da for different battery
electrode chemistries reported in literature. The parameters α and
β are obtained from these dimensionless parameters, as a function
of the scale separating parameter ε.

This information is studied using the phase diagram for different
battery operating temperatures. The location of the data points (α,β)
determines the applicability of the upscaled transport equations in
the electrolyte medium. The key advantage of the work presented
in this paper is that we can determine a priori whether an elec-
trochemical macroscopic model would be capable of describing
the microscale dynamics of a particular battery system at a given
operating condition.

In Section II, a summary of the homogenization technique that
was implemented in the derivation of our isothermal macroscopic
model to describe lithium ion transport in the battery medium
is presented [1]. In Section IV, we present the dimensionless
parameters computed for different battery chemistries reported in
literature, and investigate the effect of operating temperature on the
applicability of the macroscale transport equations. In the process,
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we interpret the behavior of the system by examining the variation
in the battery parameters with the operating conditions. Section V
summarizes the conclusion of this work.

II. PORE-SCALE EQUATIONS

Batteries are composed of a solid porous medium (the electrode
phase) and a fluid (the electrolyte phase) separated by an interface.
The electrolyte solution surrounds the electrode and fills the void
spaces of the porous matrix. The electrolyte is a binary lithium salt
dissolved in an organic solvent. Diffusion and electro-migration are
the primary transport mechanisms lithium-ion transport in the elec-
trolyte phase. Reaction occurs at the electrode-electrolyte interface
Γε. The electrochemical model is developed for an isothermal case,
and does not include the energy balance equation.

Let us assume active particles inside an electrode are microscop-
ically arranged in the medium in the form of spatially periodic unit
cells Y with a characteristic length ε ≡ `/L � 1, where ` repre-
sents the microscopic length scale and L represents the macroscopic
length scale. The parameter ε is called the scale-separation variable,
and is the ratio of characteristic lengths associated with the micro
and macro scales. The unit cell consists of the electrolyte space
B and the ion permeable solid matrix S that are separated by the
smooth surface Γ. Fig. 1 presents an illustration of the unit cell and
the porous medium of the lithium ion battery. x and y represent
the coordinate system variables at the macroscale and microscale,
respectively, while t represents the time variable.

The mass and charge transport equations in the electrolyte and
the electrode phases control the spatiotemporal evolution of the
concentration of Lithium ions ĉiε(x, t) [molL−3] and the electro-
static potential φ̂iε(x, t) [V ] in the active particles {i = s} and the
electrolyte {i = e}.
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Fig. 1: Representation of an single unit cell (a), and a porous medium
idealized as a periodic arrangement of repeating unit cells (b).

A. Transport Processes and Dimensionless Numbers

The transport processes occurring at the pore-scale include het-
erogeneous reaction on the electrode-electrolyte interface Γε, and
ion diffusion and migration in the electrode and electrolyte phases,
Sε and Bε, respectively. The characteristic time scales associated
with the heterogeneous reaction, ionic diffusion, and ionic migration
over a macroscopic length scale L are

t̂R =
LF

k
, t̂Di =

L2

Di
, t̂Mi =

L2F 2csmax

RTKi
, i = {e, s}, (1)

respectively. In (1), T is the absolute temperature; F is Faraday’s
constant and R is the universal gas constant; k [LV Ω−1mol−1] is
the electrochemical reaction rate constant of Lithium ion transfer
on Γε; Di = O(D̂i) [L2T−1] and Ki = O(K̂i) [Ω−1L−1], i =

{e, s}, are characteristic values of the inter-diffusion and electric
conductivity tensors D̂i and K̂i in the electrode (i = s) and the
electrolyte (i = s), respectively (O represents the order of the
variable under discussion); csmax is the maximum concentration of
Lithium that can be stored in the active particle;

We define the dimensionless Damköhler and electric Péclet
numbers as

Dai :=
t̂Di

t̂R
=

Lk

FDi
and Pei :=

t̂Di

t̂Mi

=
RTKi

DiF 2csmax

, (2)

i = {e, s}. They provide information about the relative magnitude
of ion transport processes in the electrolyte and the electrode phases.

B. Electrolyte Phase

The dimensionless mass and charge transport equations in the
electrolyte phase x ∈ Bε are

∂ceε
∂te

= ∇ · [(De + λt2+PeeK
e/ceε)∇ceε + 2Peet+K

e∇φeε], (3a)

0 = ∇ · [(λt+PeeK
e/ceε)∇ceε + 2PeeK

e∇φeε], (3b)

subject to

ne· [(De + λt2+PeeK
e/ceε)∇ceε + 2Pee t+K

e∇φeε]
= Daef(ceε, c

s
ε, φ

s
ε, φ

e
ε), x ∈ Γε, (4a)

ne· [(Peeλt+K
e/ceε)∇ceε + 2PeeK

e∇φeε]
= Daef(ceε, c

s
ε, φ

s
ε, φ

e
ε), x ∈ Γε, (4b)

respectively. In (3) and (4), De = D̂e/De and Ke = K̂e/Ke

are the dimensionless inter-diffusion coefficient and the electric
conductivity in the electrolyte, respectively; f(ceε, c

s
ε, φ

s
ε, φ

e
ε) =√

ceεcsε(1− csε){exp(φsε − φeε − U) − exp[−(φsε − φeε − U)]};
U = FÛ/(2RT ) and Û are the dimensionless and dimensional
open circuit potentials, respectively; t+ is the transference number,
λ = 1 + ∂ln ĉeε ln f± is assumed constant and f± is the activity
coefficient. ne is the outward unit normal vector to Γε pointing
from the electrolyte towards the active particle. The dimensional
spatial and time scales (x̂ and t̂) are non-dimensionalized by the
macroscopic length L and the diffusion time in the electrolyte phase
t̂De respectively, i.e. x = x̂/L and te = t̂/t̂De .

C. Electrode Phase

The dimensionless mass and charge transport equations in the
electrode phase Sε can be written as

∂csε
∂ts

= ∇ · (Ds∇csε), x ∈ Sε, (5a)

0 = ∇ · (PesK
s∇φsε), x ∈ Sε, (5b)

subject to

− ns · [Ds∇csε] = Dasf(ceε, c
s
ε, φ

s
ε, φ

e
ε) x ∈ Γε, (6a)

− ns · [2PesK
s∇φsε] = Dasf(ceε, c

s
ε, φ

s
ε, φ

e
ε) x ∈ Γε, (6b)

respectively. In (5) and (6), ciε := ĉiε/c
s
max and φiε := φ̂iεF/(2RT )

i = {s, e}, are the dimensionless concentration of Lithium ions
and the electrostatic potential in the active particles {i = s} and
the electrolyte {i = e}; ns is the outward unit normal vector to Γε

pointing from the active particle towards the electrolyte. The dimen-
sional spatial and time scales (x̂ and t̂) are non-dimensionalized by
the macroscopic length L and the diffusion time in the solid phase
t̂Ds respectively, i.e. x = x̂/L and ts = t̂/t̂Ds .

III. CONTINUUM-SCALE EQUATIONS

Continuum-scale equations govern the spatiotemporal distribu-
tion of averaged concentration of Lithium ions and the electrostatic
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potential in the active particles and the electrolyte. We define the
following local averages of a quantity A(x) in the electrode and
electrolyte phases:

〈A〉e ≡
1

|Y |

∫
B(x)

Ady, 〈A〉s ≡
1

|Y |

∫
S(x)

Ady, 〈A〉B ≡
1

|B|

∫
B(x)

Ady,

(7)

where 〈A〉 = η〈A〉B and η = |B|/|Y | is the porosity. A system
of equations governing the dynamics of (7) can be obtained by
means of upscaling techniques. Using the method of multiple-scale
expansions, we expand the concentration and potential ciε and φiε,
i = {e, s} in equations (3)-(6) into an asymptotic series in powers
of ε. We define exponents α, β, γ and δ as

Pee = ε−α, Dae = εβ , Das = εγ , Pes = ε−δ. (8)

in order to understand the system behaviour.
In [1], we show that pore-scale reactive transport processes

described by (3a)–(4b) can be homogenized, i.e., approximated up
to order ε2 in the electrolyte phase with the following effective
mass and charge transport equations:

η
∂〈ceε〉B
∂te

= ∇x ·De∇x〈ceε〉B + Pee∇x · (Ke
1∇x ln〈ceε〉B

+ 2Ke
2∇x〈φeε〉B) + ε−1DaeηK ?f(〈ceε〉B, 〈csε〉s, 〈φeε〉B, 〈φsε〉s)

(9)

and

Pee∇x · (Ke?
1 ∇x ln〈ceε〉B + 2Ke?

2 ∇x〈φeε〉B)

= −ε−1Dae ηK ?f(〈ceε〉B, 〈csε〉s, 〈φeε〉B, 〈φsε〉s) (10)

provided the following conditions are met,
1) Dae < 1,
2) Pee < 1,
3) Dae/Pee < 1,

and ε � 1. In (9)-(10), De, Ke
1, Ke

2, Ke,?
1 , Ke,?

2 , and K ? are
effective coefficients. Similarly, for the electrode phase,

∂〈csε〉s
∂ts

=∇x ·
(
Ds∇x〈csε〉s

)
− ε−1Da2 ηK ?f(〈ceε〉B, 〈csε〉s, 〈φeε〉B, 〈φsε〉s) (11)

and

2Pe2∇x · (Ks∇x〈φsε〉s) =

ε−1Das ηK ?f(〈ceε〉B, 〈csε〉s, 〈φeε〉B, 〈φsε〉s) (12)

provided the following conditions are met
1) Das < 1,
2) Das/Pes < 1.

In (11)-(12) Ds and Ks are effective parameters.
The former conditions enforce bounds on the order of magnitude

of relevant dimensionless numbers that describe transport processes
dynamics. The former conditions can be expressed in more compact
form in terms of bounds on the magnitude of α and β, which
can be summarized in the form of a phase diagram of the type
showed in Fig. 2. In the region shaded grey, the established
conditions are valid and the macroscopic equation holds. In the
white region, micro and macro scale equations are coupled and
must be solved simultaneously. At the point (α, β) = (0, 0), the
transport mechanisms are of the same order of magnitude. This
approach enables us to define a domain where upscaled Newman-
type macroscopic equations are capable of accurately describing
the microscale processes. When they fail to capture the system

response, processes at the microscale and macroscale cannot be
decoupled. In the latter case, multi-algorithm, hybrid techniques
should be employed instead.

Finally we notice that, despite classical macroscopic models as
the one just described are derived for isothermal conditions, our
analysis suggests that coupling across scales may occur if the
battery is operated at different temperatures. Because of (2), con-
straints on Pee result in bounds on the maximum temperature when
multiscale, coupled effects will impact the accuracy of standard
Newman’s type models.

In the following, we consider a number of commercial batteries
with different chemical composition and investigate in what portion
of the parameter space they follow. This information is critical
to establish the appropriateness of modeling approaches to be
employed when simulating a system with electrochemical models.
Further, we investigate the impact of temperature on determining
the degree of coupling between pore-scale and macroscale transport
processes.

Without loss of generality, we focus on the impact of temperature
on process coupling in the electrolyte only.
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Fig. 2: Phase diagram that specifies the range of applicability of the
upscaled equation in the electrolyte phase.

IV. ANALYSIS OF BATTERY CHEMICAL COMPOSITION AND
TEMPERATURE DEPENDENT DYNAMICS

In this section, we examine the operating parameters of existing
batteries reported in literature and determine the corresponding val-
ues of the dimensionless parameters α and β. This information will
allow one to determine whether or not Newman-type macroscopic
models are the most appropriate modeling tools.

The key parameters of interest in this study are:

1) electrochemical reaction rate constant, k [A · m2.5·mol−1.5];
2) lithium diffusion coefficient in the electrolyte De [m2·s−1];
3) lithium ionic conductivity of in the electrolyte Ke [S ·m−1];
4) and battery operating temperature, T [K].
5) dimensionless scale separation parameter, ε = `/L
6) maximum concentration of lithium in an electrode, csmax [mol ·

m−3].
7) F , Faraday constant, whose value is 96,485 A · s ·mol−1.
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8) R, the universal gas constant, whose value is 8.314 J ·mol−1 ·
K−1.

In the electrolyte phase, we treat the separator as an inherent
property of the electrolyte. For this reason, the value for the
macroscale characteristic length L is taken as the combined thick-
ness of the electrode and separator, expressed in m. The value
for the microscale characteristic length ` is taken as the average
diameter of the active particle in the electrode, expressed in m.
This is illustrated in the representation of the unit cell in figure 1.

The values of `, L, csmax, R, and F are considered invariant with
respect to temperature for the sake of this study. We proceed to
investigate the effect of temperature on the parameters k, Ke, and
De.

Our initial study involves plotting the data points (α,β) in the
phase diagram for eight different battery electrode chemistries
whose key parameters have been provided under room temperature
conditions (25◦C or 298K). This is shown in figure 3. These
battery compositions have been chosen because they consist of the
most commonly used cathode materials in commercial lithium-ion
batteries. The first battery system consists of a lithium graphite
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Fig. 3: Representation in the phase diagram of dimensionless parameters
α and β for the most commonly used lithium-ion battery materials. These
values are determined at room temperature.

negative electrode (LixC6) and a lithium cobalt oxide (LCO)
positive electrode (LiyCoO2), and the electrolyte is composed of 1.2
M of LiPF6 salt dissolved in a 1:2 v/v mixture of ethylene carbonate
and dimethyl carbonate (EC:2DMC). All parameter values for this
system have been obtained from [14] and [15]. The second battery
system consists of a lithium carbon negative electrode (LixC6) and
a lithium manganese oxide (LMO) positive electrode (LiyMn2O4),
and the polymer electrolyte is comprised of LiClO4 salt dissolved
in poly(ethylene oxide) (PEO). Parameter values for this system
have been obtained from [16] and [17].

The third battery system consists of a lithium graphite negative
electrode (LiC6) and a lithium ferrous phosphate (LFP) positive
electrode (LiFePO4). The parameter values have been procured
from [18]. The fourth battery chemistry is composed of lithium
carbon negative electrode (LiC6) and a lithium nickel manganese
cobalt oxide (Li NMC) positive electrode (LiNi1/3Mn1/3Co1/3O2).
The parameter values have been acquired from [19].

We observe in the phase diagram of figure 3 that the battery sys-
tems composed of LiFePO4, LiyCoO2, and LiNi1/3Mn1/3Co1/3O2

have parameters that fall in the shaded region of our phase diagram
in figure 1. This implies that the macroscale mass transport equation

is capable of describing the porous medium composed of these
materials. However, the system containing LiyMn2O4 cathode and
LixC6 anode must also utilize the microscale equations in order
to describe the electrochemical dynamics in the medium. When
compared with the other three chemistries, this observation is
attributed to a combination of two factors: the lower value of the
scaling parameter ε coupled with faster kinetics of lithium transport
at the reaction interface. This implies that the active material and
porous electrode structure play an important role in determining the
validity of the electrochemical model at a given operating condition.

To emphasize the importance of these two factors, we present
another lithium ion battery chemistry composed of lithium man-
ganate cathode and lithium graphite anode. The electrolyte is
composed of 1.0 M of LiPF6 salt dissolved in a 3:7 v/v mixture of
ethylene carbonate and ethyl methyl carbonate (3EC:7EMC). The
values for ionic conductivity in the electrolyte have been reported
as a function of temperature in [20]. Valøen and Reimers have
reported the variation in the ionic diffusion coefficient for this
system for different temperatures in [21]. By applying a cubic
spline interpolation, we compute the values of ionic diffusivity for
intermediate operating temperatures in the region of our interest.
The values we have obtained are in agreement with those reported
by Nyman et al. in [22].

The electrochemical reaction rate constant k for a given electrode
system can be described as a function of temperature using the
Arrhenius equation, as reported in [23] and [24]:

kj(T ) = kj,ref · exp
[Ear,j

R

( 1

Tref
− 1

T

)]
. (13)

kj(T ) and kj,ref are the reaction rate constants of electrode j at the
desired temperature T and reference temperature Tref , respectively.
Ear,j is the reaction rate activation energy of electrode j. For our
system of interest, the values of kj,ref and Ear,j are provided
in [25] for a reference temperature of 298K (25◦C). The parameter
values necessary to determine α and β for this system are also
presented here.Using (13), we compute the values of k for different
temperatures of our interest.

The phase diagrams for lithium graphite and lithium manganate
are presented in figures 4 and 5, respectively. In this case, both the
systems exhibit a similar behavior. The magnitude of parameters α
and β increase at a nearly equal rate with the operating temperature,
since a line joining these data points would almost be parallel with
the line α + β = 0. This indicates that the behavior of the system
(as a function of temperature) is a linear function in α and β. At
elevated temperatures, the effect of increase in k is compensated by
the increase in De, leading to only a small change in β. Similarly,
the small change in α at elevated temperatures is a result of increase
in Ke compensated by increase in De. For these systems, the data
points satisfy the constraints on α and β over the range of operating
temperature conditions. Hence our upscaled equation for lithium
mass transport should provide an accurate description of the pore-
scale behavior.

For the system described above, increasing temperature caused
the data points (α,β) to propagate further within the domain of
interest for the upscaled equation. It is also possible for the dimen-
sionless parameters to exhibit a contrasting behavior. We present
such a case by investigating the effect of increasing temperature for
three different cathode chemistries: Li NMC, LFP, and LCO. The
electrolyte used in these systems consists of LiPF6 salt dissolved in
an organic solvent mixture of propylene carbonate (PC), EC, and
DMC.

The parameters necessary to compute α and β for the Li NMC
battery system are derived from [26]. The electrolyte material
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Fig. 4: Representation of parameters α and β in the phase diagram for
LixC6 anode as a function of temperature.
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Fig. 5: Representation of parameters α and β in the phase diagram for
LiMn2O4 cathode as a function of temperature.

is common for all the three cathode materials, hence the ionic
diffusivity De and ionic conductivity Ke equations for LFP and
LCO have also been utilized from [26].

The phase diagram for the lithium nickel manganese cobalt
oxide cathode system is presented in figure 6. Values for the
reaction rate constant k for LFP are determined using the Arrhenius
equation (13). The parameter values for LFP are provided in [18]
and the value of the reaction rate activation energy is obtained
from [27]. The phase diagram for the lithium ferrous phosphate
cathode system is presented in figure 7. The reaction rate constant
expression (13) is also used for the LCO sustem. The parameter
values for LCO are provided in [28] and the value of the reaction
rate activation energy is obtained from [29]. The phase diagram for
the lithium cobalt oxide cathode system is presented in figure 8.

In analyzing the phase diagrams in figures 6 to 8, we observe
that for all the three cathode systems, the value of α increased and
the value of β decreased with increasing operating temperature.
In comparing the values of k for the Li NMC, LFP, and LCO, the
relatively very slow kinetics of reaction at the Li NMC - electrolyte
interface resulted in significantly higher values for β for this system.
For the LFP and LCO systems, the kinetics of the interface reaction
were several order of magnitude higher than the Li NMC system,
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Fig. 6: Representation of parameters α and β in the phase diagram for
LiNiMnCoO2 cathode as a function of temperature.
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Fig. 7: Representation of parameters α and β in the phase diagram for
LiFePO4 cathode as a function of temperature.
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Fig. 8: Representation of parameters α and β in the phase diagram for
LiCoO2 cathode as a function of temperature.

and with increasing temperature, the rate of decrease in β was
higher than the rate of increase in α.

We note that the upscaled equation of mass transport for the Li
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NMC system is valid for the entire range of operating temperatures
considered. However, for the LFP system, the macroscale equation
is no longer accurate in describing microscale transport processes at
temperatures 323K (50◦C) and higher. For the LCO system, beyond
303K (30◦C), the microscale equation of mass transport must be
simultaneously solved with the upscaled equation. This is because
the value of α+ β is less than 0.

For the battery chemical compositions considered in this study,
we observed that α and β vary linearly with temperature. The
key transport parameters k, Ke, and De exhibit an exponential
behavior with temperature, and the logarithmic dependence of α
and β on the scale separating parameter ε results in a linear
relationship of the data points with temperature. The Li-NMC
system can be represented in the transport regime where diffusion
and migration are of the same order (comparable) and dominate
the reaction transport mechanism. The upscaled equations of such
systems can also be reduced to a simpler form. The LFP and
LCO system are represented in the transport regime where all
three lithium transport processes are of the same order. Macroscale
equations describing such systems are vulnerable to the effect of
the operating temperature and may fail to describe battery physics
at the microscopic level.

We would like to explicitly state that the parameter values k,
Ke, and De required to determine Pe and Da are based on data
values reported in literature, without any extrapolation. Figures 6
to 8 were investigated in the temperature range [233 - 333K], i.e.,
[-10 - 40◦C] due to availability of data in this temperature range.
Further experiments over a wider range of temperatures may enable
the determination of these parameters, leading to the investigation
of figures 4 and 5 beyond its currently reported temperature range.

V. CONCLUSIONS

Phase diagram in the (Pee, Dae) space is used to examine the
temperature-dependent dynamics in lithium-ion battery electrodes.
Different battery compositions are examined to determine the range
of applicability of classical Newman-type (macroscopic) models.
The significant outcome of this work is the identification of tem-
perature as a critical parameter that governs transport processes
and induces the onset of multiscale dynamics. We also demonstrate
that standard macroscopic models may fail to describe microscale
processes in batteries that are operated above critical temperature
conditions. Appropriate incorporation of this dependence will help
in deriving more predictive battery models for different battery
compositions.
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