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Abstract—Application of constrained Model Predictive 
Control (MPC) to systems with fast dynamics is limited by the 
time consuming iterative optimization solvers. This paper 
proposes a fast and reliable Quadratic Programming (QP) 
strategy to solve MPC problems. While the optimal control 
action is calculated with a fast online dual QP algorithm, a 
“warm start” technique is adopted to reduce iterations of the 
online search process. The warm start solution is calculated 
from a predicted active constraint set generated by a pattern 
recognition function (Artificial Neural Network, ANN, is 
discussed). This function is calibrated with data from Monte 
Carlo simulation of the MPC controller over finite sampling 
points of the state-space. The proposed MPC strategy can 
adapt to applications with long prediction/control horizons, 
Linear Parameter Varying (LPV) dynamics and time varying 
constraints with balance between computation time, memory 
requirement and calibration effort. This MPC approach is 
applied to control vehicle speed for a HIL driving cycle test on 
an engine dynamometer. Simulation results demonstrate the 
speed profile tracking error of the MPC “driver” can be 67% 
less than a PID “driver”. Furthermore, smooth throttle/brake 
actuations, similar to human drivers are achieved with the 
MPC controller.  

I. INTRODUCTION 

Applications of MPC in the automotive industry are being 
discussed intensively for its ability to improve system 
transient performance, manage constraints and reduce control 
effort (e.g. [1][2][3]). However, for systems with fast 
dynamics, the heavy computation burden of constrained 
MPC is a big challenge for hardware implementation. 
Although microprocessors are getting faster, most MPC 
methods for mechanical systems control are difficult to be 
implemented into prototype controllers.  

Receding horizon constrained linear MPC controllers are 
the most common and fundamental design applied to systems 
with fast dynamics. These controllers optimize their control 
sequence for the future horizon using Quadratic 
Programming (QP). Since the development of active set QP 
algorithms in the 1980s, this solver has been the fastest option 
for online operation [4][5][6][7]. This active set algorithm is 
based on the fact that QP problems have closed form 
solutions if the active constraint set of the optimal solution is 
known. In [4][5], active set algorithm based on the primal QP 
problem is proposed. The advantage of this method versus 
dual active set methods is that it keeps the solution feasible 
during the search for the optimal solution. However, because 
of the formulation of MPC, the primal QP problem usually 
contains large number of constraints. It requires a time 
consuming Phase I optimization to find a feasible initial 
solution. The dual of the original QP problem with Lagrange 
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multipliers as independent variables, on the other hand, has a 
much more uniformed constraint set (λ > 0). The search for 
the dual feasible initial solution can be done by calculating 
the optimal solution of the primal problem without any 
constraints. Dual active set QP methods (e.g. [6][7]) exploit 
this speed advantage, making them favorable for online 
operation with fast update frequency. [8] employed the 
Schur-complement dual active set QP method to the MPC 
application. Most dual QP methods can be applied to MPC 
and tested with fast prototype controllers. However, they are 
still not fast enough to be implemented into the ECUs of a 
production vehicle or other common industry level 
microprocessors. In addition to these two types of active set 
methods, the primal-dual (or interior point) method is another 
option to solve QP for MPCs [9][10]. It is not widely 
considered for fast MPCs since it requires more 
computational effort to complete each iteration. Furthermore, 
the difficulty of finding a “warm” start point is another reason 
that makes it not suitable for fast online operation.  

Computational effort of QP can be greatly reduced with a 
reasonable guess of the initial search point [8][11][12][13]. 
All active set QP methods can benefit from a reasonable 
guess of which constraints may be active. [11][12][13] 
proposed the online active set QP based MPC strategy. Based 
on the assumption that the active set of constraints does not 
vary a lot between consecutive control steps for most MPC 
applications, this approach utilized the active set information 
of previous the control step to formulate the warm start point 
for the QP problem of current control cycle. Then the QP is 
solved using a parametric programming method, which 
generates a suboptimal solution if terminated prematurely. 
This MPC approach was tested experimentally with the 
application of diesel engine EGR and VGT control [13]. The 
disadvantage of this approach is the assumption on which it is 
based. For some MPC applications, especially with nonlinear 
system models, time varying dynamics and constraints, the 
active constraint set can change dramatically between each 
control update, leading to an increased number of iterations to 
find the optimal solutions.  

It has been discussed in literature that the QP searching 
for optimal solution of MPC could be completed offline, 
while the online execution of MPC was transformed into a 
fast state and reference based control law, termed Piece-Wise 
Affine (PWA) function [14]. This approach was applied to 
multiple automotive related MPC research applications 
[15][16][17][18][19][20]. The fast and straight forward 
execution process made it possible to validate these results 
with hardware tests. The calibration and execution process of 
this MPC approach shares some similarities with that of 
dynamic programming, including its disadvantages. In the 
cases with long prediction horizon and a large number of 
constraints, the calibration time and memory required to store 
the PWA function gain matrices become less acceptable. On 
the other hand, the stability of MPC controllers often relies on 
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long prediction/control horizon [21] and a high number of 
constraints [22]. For Linear Time Invariant (LTI) MPC 
applications, it is possible to examine the Karush – Kuhn – 
Tucker (KKT) conditions for all constraint combinations to 
guarantee the validity of the control action calculated with the 
PWA function [14]. However, for MPC with time varying 
dynamics and constraints this process may be difficult even 
impossible to complete. Although the PWA gain matrices can 
be interpolated or extrapolated from stored values in these 
cases, the control action may not be optimal or feasible for the 
control horizon.  

In this paper, we propose an MPC-based strategy that can 
be considered as a combination between online active set 
methods and a similar concept of the PWA function 
approach. For the execution process, a fast dual active set QP 
solver is selected to search for the optimal solution from the 
warm start point that is calculated according to current system 
states and future reference. A pattern recognition function is 
used to estimate the initial guess of the active constraint set 
with reasonable accuracy. For the offline calibration process, 
instead of checking the KKT condition of all possible 
constraint combinations, a pattern function is trained with 
data from objective oriented Monte Carlo simulation. The 
memory requirement of this approach is also greatly reduced 
since it only needs to store a function instead of numerous 
PWA gain matrices. Compared to using the active constraint 
set of the previous control step as a warm start, the pattern 
function can generate a better “guess” of the start point and 
reduce the number of iterations to find the optimal solution. 
The proposed MPC strategy is applied to track the vehicle 
speed profile by manipulating gas and brake pedals during 
driving cycle tests. In [23][24][25] Hardware – in-the– Loop 
(HIL) or Engine – in-the– Loop (EIL) setups to complete 
driving cycle tests on the engine dynamometer are discussed. 
While the actual engine and control system were installed in 
the dyno test environment, the rest of the powertrain and 
vehicle longitudinal dynamics were simulated with in real 
time models. This testing method allows testing of powertrain 
component design and control without building the prototype 
vehicles. Since it is unlikely to employ a human driver for this 
type of testing, most previous work used classical controllers 
(e.g. PID) to track the designated speed profile. It is 
speculated that using MPC in this application could solve 
many potential tuning issues and provide better speed 
tracking performance.  

The rest of the paper is organized as follows. Section II 
describes the pattern recognition technique-based QP 
strategy to solve the MPC problem. Section III gives the 
details of the HIL driving cycle test setup and modeling. 
Section IV provides simulation results. Finally, Section V 
concludes the contribution of this research work and possible 
future extension. 

II. PATTERN RECOGNITION TECHNIQUE-BASED QP STRATEGY 

The most common MPC formulations focus on systems 
whose dynamics can be linearized and discretized into 
state-space formation. The state-space matrices can be 
different for each step, describing a LPV system with state 
vector � ∈ ℝ�, control inputs � ∈ ℝ� and outputs � ∈ ℝ�.  

�(� + 1) = �(�)�(�) + �(�)�(�)  
�(�) = �(�)�(�) 

(1) 

where:  
�(�) ∈ ℝ�×�, �(�) ∈ ℝ�×� , �(�) ∈ ℝ�×� 

 

With the information of current system states �� , the 
sequence of future system outputs ��  of the prediction 
horizon �� can be considered as an affine function of the 

future control action sequence �� of control horizon �� . The 
gain matrices ��  and �� are formulated with the LPV state 
space function (1) (refer to Appendix A).  

�� = ���� + ���� (2) 

where: 

�� = ��(� + 1), ⋯ ��� + ����
�
  

�� = �(�) 
�� = [�(�), �(� + 1), ⋯ �(� + ��)]� 

 

The optimal control action sequence can be calculated by 
solving the optimization problem whose cost function 
penalizes the sum of weighted quadratic norm of both 
tracking errors and control action. The constraints that are 
commonly encountered in MPC include control magnitude, 
control changing rate and state magnitude. These constraints 
can be integrated and transformed into one linear inequality 
constraint system that is imposed on the future control action 
sequence ��. 

min
��

�(�� − ��)���(�� − ��) + ��
������   

�. �.  ������� < ����� 
(3) 

where: 
����� ∈ ℝ�×�, ����� ∈ ℝ� 

�� = ��(� + 1), ⋯ �(� + ��)�
�
  

� is tracking reference. 
�� and ��  are symmetrical positive definite 

weighting matrices of reference tracking error and 
control effort, respectively.  

 

The above process transfers the equality constraints of 
system dynamics into the objective function, accelerating the 
search for an optimal solution. After substituting (2) into (3), 
the original optimization problem can be transformed into a 
QP form. 

���
�

�
1

2
��

��� + �����   

�. �.  ������� < ����� 
(4) 

where: 
� = 2���

����� + ��� 

� = −2��
���(�� − ����) 

 

Equation (4) is referred to as the primal QP problem of 
the MPC. The primal QP algorithms can be applied at this 
point to solve (4) and obtain the optimal control action 
sequence. However, the primal QP has multiple linear 
inequality constraints, which make it difficult to find a 
feasible initial solution. A phase one optimization is usually 
required to identify a feasible start point. Instead of 
conducting a two phase optimum search for the primal 



 

 

 

optimization problem, this work employs dual QP 
algorithms to find the optimal solution. The conversion of 
the primal QP into a dual QP with Lagrange multipliers � as 
independent variables is demonstrated by:  

min
�

�
1

2
���� + ���   

�. �.  � ≥ 0 
(5) 

where: 
� = �������������

�  
� = ����� + ��������� 

 

The initial solution �� of this QP can be easily obtained 
by solving the primal QP without any constraints (equivalent 
to letting � = 0). 

�� = −���� (6) 

Once the optimal solution (�∗) of the dual problem is 
found, the optimal control action �∗ can be calculated 
according to:  

�∗ = �� − ��������
� �∗ (7) 

A. Pattern Recognition Based Active Set Identification 

The warm start of the dual QP is a semi-positive vector  
��  that is close to the optimal solution �∗ . If it is known 
which constraints are active for the optimal solution, the 
constraint system of the primal and dual QP can be separated 
as the following: 

               Primal                         Dual  
������ = ����                  ���� > 0 (8) 
������ < ����                  ���� = 0 (9) 

Equation (8) shows active partition of the constraint 
system while (9) shows the inactive partition. After dropping 
the inactive constraints and substituting the primal active 
constraints partition into the objective function (4), the 
primal-dual problems have the closed form solutions as: 

����
∗ = −(�����������

� )��(���� + ��������) 
����

∗ = 0 
(10) 

�∗ = �� − �������
� ����

∗  (11) 

Substituting �  from (4) into (10), ����
∗  can be 

transformed into a PWA function corresponding to �� and 
��  with three gain matrices. For LTI MPC, these gain 
matrices are constant.  

����
∗ = ���� + ���� + �� (12) 

Where: 
�� = 2(�����������

� )�����������
��� 

�� = −����  
�� = −(�����������

� )������  

(13) 

For LTI MPCs with single state (� = 1) and one step 
prediction horizon (�� = 1), the active constraint sets can be 
visualized as 2D polyhedra in the state space (Figure 1 left). 
This plot is generated using the MPC controller designed for 
the driving cycle application with 1 step prediction horizon 
and LTI dynamics model. In this case, ��  is the speed 
reference for the next step while �� is the current vehicle 
speed. One drawback of the PWA function calibration is that 

the calibration time grows exponentially with control 
horizon and number of constraints. Furthermore, almost all 
matrices in (13) can be time varying for Nonlinear MPC 
(NMPC) applications. For instance, if the limitation of 
engine power and quadratic aerodynamic drag are 
considered, the boundaries of active constraint set polyhedra 
are curved making the calibration of PWA gain matrices by 
checking KKT conditions difficult (Figure 1 right).  

 
Figure 1: visualization of active constraint set for MPC applied to driving 
cycle tests with 1 step prediction horizon. Orange dots represent sampling 
points for Monte Carlo simulation. Left plot is for constant dynamics and 
constraints while the righ plot shows the constraint set considering engine 

power limit and quadratic aerodynamic drag.  

The identification of active set of constraint in the 
state-space can be considered as a pattern recognition 
process. Let � ∈ ℝ�  be a binary vector that has the same 
length �  as  � . Elements of �  is one if the corresponding 
constraint is active:  

�
�(�) = 0,   �� �(�) = 0

�(�) = 1,   ����
, for i = 1,2, …  � (14) 

Therefore, different �  vectors can uniquely represent 
which constraints are active. Then the active set of 
constraints identification problem can be reduced to the 
fitting of the pattern function: 

� = ℎ(��, ��) (15) 

The training data to fit the pattern function can be 
generated using Monte Carlo simulation with sufficient 
samplings points of the state-space (orange dots in Figure 1). 
The selection of sampling resolution and range can be 
practice - oriented to reduce calibration time. Many pattern 
recognition techniques can be applied to this application, 
including ANN [26], fuzzy logic [27] and optimal margin 
classification [28]. For this research work, an ANN with 
scaled conjugate gradient training algorithm is selected 
because of its fast execution.  

TABLE I: ANN PATTERN FUNCTION WITH DIFFERENT HIDDEN LAYER SIZE. 

Hidden layer 
size 

Max � diff. Mean � diff. 
Memory 

(KB) 
5, 0 10 1.79 7.2 
10, 0 8 1.14 11.3 

10, 10 5 1.08 13.4 
20, 0 5 0.83 19.3 
50, 0 5 0.80 33.8 

The most obvious advantage for the proposed active set 
method is the reduction in memory requirements. Storage of 
the pattern function ℎ  is usually negligible compared to 
hundreds of gain matrices for the traditional PWA methods. 



 

 

 

In order to demonstrate this property, the MPC applied to the 
driving cycle test is evaluated under random step inputs for 
106 consecutive control cycles with prediction and control 
horizon expanded to 50 and 20 steps. The traditional PWA 
cannot be evaluated in this case due to the astronomical 
memory requirement. Table I compares the performance and 
memory requirement of the ANN pattern function with 
different network sizes. It can be observed that a simple 
double-layer ANN can predict the active sets of constraints 
with reasonable accuracy and memory demand. The rest of 
the analysis focuses on the ANN with 10 neurons on the two 
hidden layers.  

TABLE II: COMPARISON BETWEEN COLD START AND DIFFERENT WARM 

START TECHNIQUES.  

 
Cold 
start 

Warm start 
Previous 

cycle 
ANN 

Constant 
system 

Max iter. #. 59 11 8 
Mean iter # 41 7 3 

Varying 
system 

Max iter. #. 59 23 9 
Mean iter # 43 14 3 

The performance of active set prediction methods is 
measured with � difference, which is defined as the number 
of  � elements that is different from the �∗  of the optimal 
solution. Most optimization algorithms take more iterations 
to find the optimal solution with larger � difference although 
this relationship may not be exactly linear. Table II shows 
that the two warm start techniques generate close to optimal 
initial guesses of active sets. Comparing to the warm start 
technique that uses active set information of previous control 
cycle (traditional online active set method), the proposed 
ANN pattern function can provide more accurate initial 
guesses of active sets. This significantly reduces the number 
of online iterations to find the optimal solution. Figure 2 
shows that the � predicted by ANN pattern function has two 
elements different from the optimal �∗ for more than 90% of 
control updates. Another important characteristic of the new 
approach is that it does not rely on the boundaries between 
active set polyhedra to be straight (Figure 1). Therefore, the 
accuracy of active sets prediction does not degenerate with 
varying dynamics model and constraints (Table II and Figure 
2). However, identifying active sets for LPV MPC can 
benefit from training data with higher resolution of the 
state-space.  

Depending on the control objectives, the pattern function 
can include other inputs to capture non-state dependent 
variation of dynamics model and constraints. For instance, 
the vehicle mass �  can alter the vehicle longitudinal 
dynamics. The pattern function inputs are augmented by 
including the vehicle mass to predict the active sets with 
consideration of vehicle loading conditions: 

� = ℎ(��, ��, �) (16) 

 
Figure 2: cumulative distribution function as a function of prediction error � 
between different warm start techniques. Both constant and varying system 

dynamics/constraints are evaluated. 

B. Hildreth Search Method for �∗ 

Without using the predicted active sets to compute 
control actions directly, the online optimal search process 
increases the tolerance to initial guess error. Therefore, it is 
possible to use training data with coarser resolution to 
calibrate the pattern function. For applications with long 
prediction and control horizons, this trait of the proposed 
MPC strategy allows for faster calibration and more 
robustness against system variations than PWA methods.  

The dual QP methods of Hildreth and D’Espo [29][30] 
are applied to search for optimal solution �∗  for 
computational efficiency. Without matrix inversions during 
each iteration, the algorithm is fast and reliable [31]. 
Possibilities of applying other online QP algorithm will be 
considered in the future work of this research.  

III. HIL DRIVING CYCLE TEST SETUP AND MODELING 

 
Figure 3: block diagram of HIL driving cycle test setup. V��� is the reference 
speed. �� and �� are torque output from engine and final drive, respectively.  

Figure 3 shows a block diagram of the HIL driving cycle 
test setup. Other than the engine and dynamometer (red dash 
circle), the rest of the components are simulated with real 
time models. The engine dyno speed is determined by 
current vehicle speed and gear ratio. The throttle and engine 
speed are sent to the dyno through the software interface, 
while the engine torque measured by the dyno is sent back. 
Both engine and dyno are currently replaced with 
mathematical models. The engine model is a high-fidelity 



 

 

 

Control Oriented Model (COM) [32]. The dyno is assumed 
to be able to measure engine torque instantaneously. Its 
delay to RPM command is considered as a first order delay 
with time constant of 0.7s.  

The proposed MPC strategy is implemented as the 
“driver”. The MPC control objective is to mimic a real driver 
on actual roads, who foresees the desired vehicle speed 
several seconds ahead of time. The update frequency of the 
MPC is set to be 0.5s. Both prediction and control horizons 
are selected as 10 steps during the simulation. The 
optimization problem is formulated as described in Section I. 
Both speed tracking error and control effort are being 
minimized with respect of weightings. The gas and braking 
pedal actuations are interpreted as demand of normalized 
traction and braking force ranging from 0 to 1. While the 
maximum braking force ��  is assumed to be constant, the 
maximum of traction force is limited by the maximum 
engine power ���� at the specific vehicle speed.  

��� +
1

2
����������� + ��̇ =

����

�
�� − ����  (17) 

Where: 
������ Frontal area 

�� Drag coefficient 
��, �� Traction, braking force 

� Vehicle velocity 
� Coefficient of rolling resistance 

 

 

The longitudinal vehicle dynamics in Equation (17) are 
linearized at each step according to reference velocity along 
the prediction horizon. This LPV system model is applied to 
formulate the MPC controller. 

IV. SIMULATION RESULTS 

Simulations are conducted implementing the proposed 
MPC strategy within the HIL driving cycle test using the 
following main parameters. 

TABLE III: IMPORTANT PARAMETERS FOR THE SIMULATION 

Engine 
Displacement 3.2 L 
Max torque 287 Nm 
Max power 157 kw 

Powertrain 
Gear ratio 4.1/2.4/1.6/1.2/0.9/0.7 
Final drive 2.8 

Vehicle 
Mass 1800 kg 

�� × � 0.25 × 2.1 

FTP Driving 
Cycle 

Max/Average speed 91/34 km/h 
Max accel./decal. 3/-3 m/s2 

The performance of two MPC “drivers” is compared to a 
PID controller. Figure 4 is a snap shot of vehicle speed and 
normalized driver actuation from a portion of the drive cycle. 
Both MPC “drivers” demonstrate the ability to optimize 
control actions according to future reference and constraints. 
The first MPC (MPC 1 in the figures) has small weighting on 
the control effort (�� ). Therefore, it tends to change the 
control actuation aggressively to match the speed profile. 
The mean speed tracking error (MSTE) is 3.8%. The second 

“economical” MPC (MPC 2 in the figures) has a larger  �� 
resulting smooth pedal actions. Although its speed tracking 
performance (MSTE 6.5%) is slightly worse than the 
“aggressive” MPC, the “economical” MPC still follows the 
speed profile better than the PID “driver”, whose MSTE is 
11.6%.  

 
Figure 4: performance comparison between aggressive MPC (MPC 1), 

economical MPC (MPC 2) and PID “drivers” 

V. CONCLUSION 

In this paper, a pattern recognition based active set QP 
strategy is proposed to solve an MPC problem. This MPC is 
solved by means of an online QP based on the Hildreth 
algorithm. Without matrix inversions each iteration, this 
algorithm is fast and reliable. The initial point of the online 
search is calculated from current system states and future 
reference with a pattern function. The recognition of the 
pattern function is complete with data generated from Monte 
Carlo simulation. The pattern function can also include 
non-state dependent variables as input to further improve the 
adaptive-ness of nonlinearities. Compared to a traditional 
PWA approach, the pattern function requires less memory 
space, making it possible to handle problem with long 
prediction/control horizons and a large number of 
constraints. The online search process guarantees the 
robustness against pattern function fitting error. Simulation 
results indicate that it may be possible to employ a simple 
ANN to reasonably predict the active constraint sets for 
MPC with a long control horizon and varying dynamics and 
constraints. The prediction accuracy is better than using the 
previous active set directly. As a result, the warm start point 
generated by the pattern function can significantly reduce 
iterations when finding the optimal solution.  

The proposed MPC strategy is applied to HIL driving 
cycle by manipulating the gas and brake pedals. The 
formulation of the MPC involves varying dynamics and 
constraints, which is efficiently solved by the pattern 
recognition active set QP method. Simulation results 
demonstrate that the MPC driver can track the speed profile 
with relative error less than 7%. The method also produces 
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realistic control actions like a real human driver, who 
forecasts the desired vehicle speed several seconds ahead. As 
a byproduct of the smooth pedal action, fuel economy 
improvement can also be realized.  

The actual hardware validation of the entire system will 
be carried out in the near future. Other possible future 
expansion of this work includes: 1) comparing different 
pattern recognition methods for active sets identification; 2) 
integrating this warm start technique with other online QP 
solver; 3) applying this MPC strategy to systems with faster 
dynamics and 4) replacing human driver for chassis dyno 
cycle tests with the proposed MPC control strategy.  

APPENDIX 

��  and �� in equation (2)  are formulated as (dropping step 
indicator �)  

�� = �

��
���

⋮
���� 

� , �� = �

�� 0 ⋯ 0
��� �� ⋯ 0

⋮ ⋮ ⋱ ⋮
����−1� ����−2� ⋯ ����−���

� 
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