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Abstract— In this work, the problem of battery state of
charge estimation is investigated, using a model based approach.
An experimentally validated model of a battery pack produced
by AllCell Technologies1, specific for light electric vehicle
(electric scooter or bicycles) is being used to design two state
of charge estimation algorithms. An Extended Kalman Filter
(EKF) for the state of charge estimation is developed. An
adaptive version (AEKF) is presented, in order to adaptively
set a proper value of the model noise covariance using the
information coming from the on-line innovation analysis. A
comparison between the two approaches is conducted and shows
that AEKF can consider the problem of incorrect value of
the model noise covariance matrix with a reduction of the
estimation error. The main idea is to propose an accurate and
not too computational demanding algorithm for small vehicle
BMS application.

Index Terms— Estimation; Battery; Kalman filter; Adaptive.

I. INTRODUCTION - MOTIVATION

Light Electric vehicles such as electric bikes or scooters
offer many benefits over their traditional counterparts such
as range, e-bikes and e-scooters can go further than con-
ventional bicycles with little effort. The e-bikes are easier
to pedal! They can be quickly recharged anywhere that you
can find a power supply, or low batteries can be swapped
instantly with fully charged batteries.

As technology advances, many electric vehicle batteries
are now also required to communicate with other components
within the vehicle such as the motor controller to maxi-
mize range and acceleration. An accurate estimation of the
energy available inside the battery is essential to excellent
powertrain operation and prevent stranding the rider. Lastly,
knowing the remaining energy also helps prevent overcharge
and overdischarge of batteries, vital to safe use and long life
of lithium-ion batteries.

Lithium-ion batteries have become the battery of choice
not only for hybrid and electric car, but also for electric
bicycle and scooter applications. The key drivers are their
high specific energy, energy density, cycle/calendar life as
well as their reduced need for maintenance as compared to
flooded lead acid batteries. One of their few drawbacks is
the difficulty estimating the amount of remaining energy.
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Different methods have been developed for estimating
battery state of charge (SoC). Following the Coulomb count-
ing definition, SoC is evaluated as the ratio between the
current capacity, as the integral of the battery current, and the
nominal capacity of the battery [1]. This approach shows the
drawbacks related to the integral operation computed on the
current measurement: it is very sensitive to the SoC initial
condition not always known precisely, and the integration
can easily diverge in case of additional noise [2].

For these reasons other methods have been investigated,
especially for vehicle on-board application based on real
measurement, as the case of e-bikes considered in this paper.
Extended Kalman filter (EKF) is a powerful model-based
estimator suitable for the purpose of this work.

In indirect methods, SoC is evaluated using information
from other estimated quantities. SoC can be computed start-
ing from open circuit voltage (VOCV ) measurement [3]. In
fact, Lead-Acid and Li-ion batteries VOCV is direct func-
tion of SoC and this relationship is usually experimentally
evaluated. For Lead-Acid batteries in particular, the SoC
estimation is straight-forward due to the linear decrease of
the VOCV with reference to SoC. By contrast, Li-ion batteries
does not present a linear relationship between VOCV and SoC,
so that it is harder to translate the VOCV measurement to SoC
[1], [4].

Some similar indirect methods are developed using re-
duced state space electrochemical models, which give a
good description of the process inside the battery, together
with EKF, in a form that can be used for online SoC and
parameters estimations [5] [6].

Other kind of methods have been used in literature as
well artificial neural networks and impedance spettroscopy.
These methods usually require a greater computational effort
compared with EKF and very accurate measurements [7];
this make them suitable for laboratory application [1].

EKF is a successful model-based method for state estima-
tion, widely used also for battery application. SoC estimation
with EKF is performed in [8]–[11].

In this work the problem of SoC estimation with EKF
is addressed for a Li-ion battery developed for e-bike ap-
plication. The main purpose is to design a reliable and
sophisticated algorithm as EKF for an accurate detection of
SoC for the new categories of light vehicle such as e-bikes.

In Section II the battery pack structure is discussed and
the mathematical model is introduced. In Section III model
parameters are identified: for the battery resistance a depen-
dence on SoC is defined. The SoC estimation algorithm is
presented in Section IV where and adaptive version of EKF



is also explained.

II. BATTERY MODELING

In this section a brief description of the battery pack is
provided and a mathematical model of the battery is defined.

A. Battery Pack Topology

The battery pack, designed for an e-bike application,
is made by 40 LG ICR18650MG1 cells, with a structure
10s4p: a series of 10 modules, each of 4 cells in parallel. A
measurement of the voltage across each module is available,
as well as the pack input current, being the same in all 10
modules in series.

In this work an average cell model is considered. The
average cell voltage is computed in the Battery Management
System (BMS) as the average of the 10 voltage measure-
ments across the 10 modules. The average cell capacity is
evaluated considering that each of the 40 LG ICR18650MG1
cell in the pack has a rated capacity value of 2.6 Ah. With
reference to the battery pack structure, Qnom = 10.4Ah is the
capacity of the average cell, as well as the nominal pack
capacity.

B. Battery Cell Model

In order to develop a model-based SoC estimator, the
battery pack is modeled as an average cell, as discussed in
Section II-A. Two categories of models have been proposed
to model a lithium-ion batteries: those are electrochemical
processes based models [12], or equivalent electric circuit
based models [8], [13], [14]. The electrical equivalent circuit
based are the ones mostly used for BMS application and
system integration [15]. By contrast, electrochemical models
usually give a better description of the battery internal
chemical processes, but at the same time are computational
demanding for BMS use. Starting from electrochemical
analysis, an equivalent battery model is defined as an electric
equivalent circuit based model in [16], [17]. To achieve
this purpose, electrochemical impedance spettroscopy is a
technique used to define the model electric impedances [18],
[19].

Once the battery model is defined as equivalent electric
circuit, the electric parameters identification is not always
straightforward, as dependence on SoC, temperature or cur-
rent is introduced. In Section III model parameters are
identified and SoC dependencies are analyzed.

In the present study, a second order electric circuit based
model is considered, as shown in Fig. 1.

The state space formulation in discrete time domain is the
following:
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Fig. 1: Equivalent circuit representation of the average cell model

where k is a generic discrete time instant.
The first equation represents the SoC dynamic, in which

Qnom is the battery nominal capacity and ∆t is the discrete
time step. The input current I(k) is considered positive
during discharging and negative during charging. The two
RC parallels (RCT ,CCT and RDi f ,CDi f ) are used to model
the dynamic response of the battery cell, and τCT = RCTCCT
and τDi f = RDi fCDi f are the respective time constants. With
this notation, the two RC parallels (RCT ,CCT and RDi f ,CDi f )
represent the charge transfer (CT ) and diffusion (Di f ) phe-
nomena inside the battery. In [19] a detailed representation
of these battery phenomena is addressed: diffusion and
charge transfer properties are described with more impedance
elements, with specific dependence on the input current.

The output equation of the model relates the average
output voltage V (k) of the cell model to the open circuit
voltage VOCV and the voltage drops across the elements, as
follows:

V (k) =VOCV (SoC(k))−VCT (k)−VDi f (k)−R0 I(k) (2)

where R0 is the battery cell internal resistance.
Defining the state vector x(k) =[
SoC(k) VCT (k) VDi f (k)

]T , the model input u(k) = I(k)
and output y(k) = V (k), the discrete-time non-linear state
space battery model is written as:{

x(k) = A x(k)+B u(k)
y(k) = g(x(k),u(k))

(3)

The non linearity of the model is in the output equation
(2), non linear with reference to the state x(k), while the state
equation is linear and the system matrices are defined as:

A =

 1 0 0

0 e−
∆t

τCT 0

0 0 e
− ∆t

τDi f

 B =


− ∆t

Qnom

RCT

(
1− e−

∆t
τCT

)
RDi f

(
1− e

− ∆t
τDi f

)


(4)
The battery cell model (3) is defined as a function of the

dynamic parameters RCT ,CCT ,RDi f ,CDi f , of the open circuit
voltage VOCV and the resistance R0. The identification of
these parameters is discussed in Section III.

III. PARAMETERS IDENTIFICATION
The dynamic parameters RCT , CCT , RDi f and CDi f were

identified by cell/pack testing and AllCell Technologies.



Their values are presented in Table I. A dependence of these
parameters from SoC is not taken into account as a wide
variation of the parameters values with reference to the SoC
has not registered during testing. In addition, experimental
measurements to define the parameters dependency on SoC
are accurate when SoC value is higher than 10%.

TABLE I: Dynamic parameters values

RCT 1.6 mΩ

τCT = RCTCCT 3.68 s
RDi f 7.7 mΩ

τDi f = RDi f CDi f 84.34 s

Several characterization tests were conducted at ambient
temperatures. For the purpose of this work the temperature
dependence of the model parameters is not taken into account
and the ambient temperature is considered the reference
operative thermal condition.

From experimental tests, the relationship between the
open circuit voltage VOCV and state of charge SoC has been
also identified. The VOCV (SoC) is shown in Fig. 2.
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Fig. 2: VOCV characteristic, function of SoC

Within this model, the left parameter to identify is the
battery cell resistance R0. For R0 identification, a battery
discharge test has established, as shown in Fig. 3 where the
current profile in Fig. 3(a) is given as input and the voltage
response in Fig. 3(b) is registered as output. During the test
the battery is completely discharged, starting from a full
charged condition. With reference to the e-bike application,
the only discharge scenario is evaluated, since regeneration
is not possible on board of the vehicle.

In the next Sections III-A an EKF algorithm for the resis-
tance R0 identification is shown. The results are compared
to the case where the resistance is identified through Least
Square (LS) in Section III-B.

A. Extended Kalman Filter for Resistance and Capacity
estimation

The Extended Kalman Filter is a well known algorithm
largely used [20]–[22] to estimate the state of a dynamic
system characterized by noisy measurements. At the same
time, this method may also be used to perform system
parameters identification starting from experimental data
[22].
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Fig. 3: (a) Experimental Input current; (b) Experimental output voltage

In this paper we use EKF to identify the resistance R0
of the second order Randle model in Fig. 1. In addition to
that, we also use EKF to identify the battery capacity Qnom.
The experimental discharging test used for parameter iden-
tification (Fig. 3) is performed on a battery at its Beginning
of Life (BOL) and the battery cell capacity value at BOL
is declared by the constructor. With the EKF this parameter
Qnom is estimated in order to verify the accuracy of the cell
capacity value.

Following the same structure of [22], the parameters to
identify are included in the parameters vector θ , as follows:

θ = [ R0 Qnom ]T (5)

Hence, the state space battery model (3) can be written
as: {

x(k+1,θ) = A x(k)+B(θ)u(k)
y(k,θ) = g(x(k),u(k),θ)

(6)

where the dependence of the parameters vector θ is now
made explicit.

The EKF is a model based method for the state estimation.
To identify the vector of parameters, θ has to be considered
as the state of a proper state space model. For this reason a
constant dynamic behavior for θ is modeled as:

θ(k+1) = θ(k)+ vθ (k) (7)

where vθ ∼ N (0,Qθ ) is a white noise gaussian distributed,
with zero mean and covariance Qθ . The model (7) is justified
by the fact that the aging parameters R0 and Qnom vary very
slowly compared to the system dynamics (3). The noise vθ

models uncertainties associated with the model (7). Given
that the constant dynamic behavior of θ is quite accurate,
the covariance of vθ is set to be quite small.

The output equation is a measurable function of the system



parameters θ :

yθ (k,θ) = g(x(k),u(k),θ(k))+wθ (k) (8)

This is the same output equation of the battery model, since
the battery voltage experimentally measured, indicated by
Vexp, is used for the identification. wθ ∼N (0,Rθ ) is a white
gaussian noise with zero mean and convariance Rθ which
represents the model output noise.

Due to the non linearity of the model here considered,
the Extended version of the Kalman filter has to be used. A
summary of a nonlinear EKF algorithm equations is shown
in Table II, defined by the prediction and correction steps
[8].

TABLE II: Extended Kalman filter algorithm for parameters identification

Prediction Step:
θ̂
−(k) = θ̂(k−1) (9a)

P−
θ
(k) = Pθ (k−1)+Qθ (9b)

Correction Step:
Lθ (k) = P−

θ
(k)Cθ (k)

T (Cθ (k)P
−
θ
(k)Cθ (k)

T +Rθ )
−1 (10a)

θ̂(k) = θ̂
−(k)+Lθ (k)[Vexp(k)−g

(
x(k),u(k), θ̂−(k)

)
] (10b)

Pθ (k) = (I −Lθ (k)Cθ (k))P
−
θ
(k) (10c)

In the prediction step, the estimated state θ̂ and its
covariance matrix Pθ are projected to the next time step
using the dynamic model equation defined for θ in (7) and
the noise covariance Qθ respectively. The superscript minus
indicates that these quantities in (9a) and (9b) have not
yet been corrected using the measurement [8], as done in
(10b) and (10c). In the correction step, the parameters vector
estimation θ̂ and its covariance Pθ are corrected by using the
information from the measurements and the adapted Kalman
gain Lθ . In this way, θ̂ is the parameters vector estimation,
in order to reduce the difference between the experimental
voltage Vexp(k) and the model response g

(
x(k),u(k), θ̂−(k)

)
.

It has to be noticed that to evaluate this last term, the model
state x(k) is necessary: this can be evaluated from the model
itself, integrating the system equations (1), starting from
the initial conditions corresponding to SoC(0) = 100% and
VCT (0) = VDi f (0) = 0V , with reference to the experimental
test shown in Fig 3.

The matrix Cθ , used in (10a) and (10c), represents the
linearization of the non linear output equation (8), with
respect to the vector of parameters θ :

Cθ (k) =
dg(x(k),u(k),θ(k))

dθ

∣∣∣∣
θ=θ̂−(k)

(11)

As also shown in [22], since the non linear function
g(x(k),u(k),θ(k)) is function of both the parameters vector
θ(k) and the battery model state x(k), (11) can be written
as:

dg(x,u,θ)
dθ

∣∣∣∣
k
=

∂g(x,u,θ)
∂θ

∣∣∣∣
k
+

∂g(x,u,θ)
∂x

∣∣∣∣
k

(
d x
d θ

∣∣∣∣
k

)
(12)

d x
d θ

∣∣∣∣
k
=

∂B(θ)

∂θ

∣∣∣∣
k−1

u(k−1)+A
(

d x
d θ

∣∣∣∣
k−1

)
(13)

The term d x
d θ

is initialized at 0 and evolves following the
dynamics in (13). In this work, since the vector θ is defined
as in (5), through (12) (13) the matrix Cθ (k) can be computed
as:

Cθ (k) = [ −I(k) 0 ]+

+C(k)


 0 ∆tI(k−1)

Q2
nom(k−1)

0 0
0 0

+A d x(k−1)
d θ

 (14)

where C = ∂g(x,I,θ)
∂x and A is the dynamic matrix of the battery

model shown in (4).
The values used for the state and output noise covariance

in this work are Qθ =

[
10−6 0

0 10−4

]
and Rθ = 10. The

noise vθ has a weak effect on the constant dynamics of the
parameters, while a larger output covariance is accepted for
wθ , in order to consider generic uncertainties on the overall
model.

In Fig. 4 the estimated resistance R̂0 is shown (dashed
line). In Fig. 5 it is shown a comparison between the
model response V̂mod when using this value of R0, and the
experimental data Vexp. To quantify how close the model
output is to the measurements, the validation error ẽEKF is
evaluated as:

ẽEKF(k) =Vexp(k)−V̂mod(k) (15)

where Vexp is the experimental voltage measurement and
V̂mod is the model output voltage, computed using (2) where
R̂0 is used. The error ẽEKF is shown in Fig. 6 and its RMS
value is shown in Table III.

The capacity value Q̂nom estimated with this approach
is practically constant over the simulation time window,
and equivalent to its nominal value Qnom = 10.4 Ah: this
confirms that the original value of the nominal capacity can
be consider correct for the battery model, and a variation of
this value due to aging phenomena is not relevant on a short
time window.

With regard to the resistance R̂0, in Fig. 4 a dependence of
R̂0 on SoC is noticeable. In order to include and identify the
resistance dependence on the SoC, in the next section a Least
Squares method is used for the identification of R0(SoC).

B. Least Squares Methods for Resistance identification

It is known that battery resistance is function of SoC
[23]. This is also confirmed by the results of the resistance
estimation R̂0 via EKF in the previous section. In this section,
a Least Squares method is considered to better identify this
dependence and define R0(SoC).

To apply the LS method, the input and output collected
data are divided into SoC batches, as shown in Fig. 3. For
each batch i, a constant resistance value R̃0,i is identified
minimizing the sum of the squared difference Si between
the experimental measured voltages Vexp,i and the voltage
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Fig. 4: Comparison between R̂0 estimated with EKF and R̃0 identified with
LS approach

predicted by the model output relation (3):

min(Si) = min

(
Tf ,i

∑
j=T0,i

(Vexp,i( j)−g(x( j),u( j), R̃0,i))
2

)
(16)

T0,i and Tf ,i are the initial and final time instant of each
batch i respectively. As shown is Section II, the output
function g(·) has a linear dependence on the parameter R̃0,i
and the input u(k), and it is non linear with reference to
the model state x(k). To apply the LS method, the input
u(k) and the state x(k) are known at each time instant,
the former from experimental measurements and the latter
from the model integrating the equation (1); this is possible
since the current measurements are accurate and the values
SoC(0) = 100% and VCT (0) =VDi f (0) = 0V are considered
as initial conditions.

In Fig. 4 (solid line) the LS-estimated results R̃0(SoC(k))
is shown as function of time, since the SoC(k) is known
integrating the model equation. Comparing R̂0 evaluated with
EKF and R̃0 with LS method both as a function of time,
from Fig. 4 it can be seen that the two show similar trends
over the entire SoC range except for high SoC (beginning of
discharging, 99% SoC) and low SoC values (1%).

Also in this case the validation error ẽLS is evaluated as
the difference between experimental voltage Vexp(k) and the
model output Ṽmod when R̃0(SoC) is used:

ẽLS(k) =Vexp(k)−Ṽmod(k) (17)

The error ẽLS is shown in Fig. 6. In addition, in Table III the
error RMS value of ẽEKF and ẽLS are compared, while in Fig.
5 the model output voltages V̂mod(k) and Ṽmod(k) evaluated
using R̂0 and R̃0(SoC) are shown respectively.

Even if the RMS value of ẽEKF in Table III is slightly
better, from Fig. 5 and Fig. 6 it is clear that validation
performances are comparable between the EKF and LS
approach. Thus the resistance identification performed with
LS method here presented well describes the the resistance
dependence R̃0(SoC) on the SoC and it will be used in the
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TABLE III: Validation RMS error, comparison between EKF method and LS
approach

Error RMS value

ẽEKF (k) 0.01694V 2

ẽLS(k) 0.0216V 2

state space battery model.
In order to obtain a good SoC estimation with model based

algorithms, the accuracy of the state space model is a crucial
point to get good performances. In the next section, SoC
estimation problem is addressed based on the model here
identified.

IV. SoC ESTIMATION ALGORITHMS

In this paper, for the SoC estimation an EKF is designed
along with an adaptive version of the Kalman filter where
the process covariance matrix is adaptively updated.

A. Extended Kalman Filter

In this work, the SoC estimation problem for an e-bike
application is addressed, with the purpose to define an
algorithm suitable for on board implementation, in order to
improve the battery usage and the vehicle power manage-
ment.

In this section, the EKF is considered with reference to the
model (3) introduced in Section II and identified in Section



III. Here it is proposed with the addition of the gaussian noise
on the state and the output equation, as Kalman assumption:{

x(k+1) = A x(k)+B u(k)+ v(k)
V (k) = g(x(k),u(k))+w(k)

(18)

where v(k)∼ N (0,Q) and w(k)∼ N (0,R) are white gaus-
sian noises with zero means and covariance matrices Q
for the model state equation and R for the output relation
respectively. The estimator equations are summarized in
Table IV.

TABLE IV: Summary of Extended Kalman filter algorithm equations

Prediction Step:
x̂−(k) = A x̂(k−1)AT +B u(k−1) (19a)

P−(k) = A P(k−1)AT +Q (19b)
Correction Step:

L(k) = P−(k)C(k)T (C(k)P−(k)C(k)T +R)−1 (20a)

x̂(k) = x̂−(k)+L(k)[Vexp(k)−g
(
x̂−(k),u(k)

)
] (20b)

P(k) = (I −L(k)C(k))P−(k) (20c)

A brief description of the Kalman prediction and correc-
tion step was already given in Section III-A. Matrices L(k)
and P = E[e(k) · e(k)T ] are respectively the Kalman gain
and the covariance matrix of the estimation error e(k) =
x(k)− x̂(k).

Matrix C = ∂g(x,I,θ)
∂x , used in the filter equations (20a) and

(20c), is the linearized output matrix.
With regards to the choice of the noises statistical param-

eters Q and R, matrix Q is designed under the assumption
that there is no correlation between the noise on different
state components [11], leading to a diagonal structure. The
state noise v(k) represents the model uncertainties as well as
the approximation due to the non-linearities not considered,
which cause the battery dynamic behavour not to be com-
pletely represented by the model [10]. The designed matrix

Q =

[
1000 ·R 0 0

0 0.1 ·R 0
0 0 0.01 ·R

]
, defined with reference to

the matrix R, presents a higher weight on the first component
of the state x(k), since the main interest is in the SoC
estimation.

The output noise covariance R is evaluated using the
experimental data and considering the model validation error
ẽLS(k) computed with (17): from a statistical analysis of the
error itself, it is can be shown that ẽ(k) is well approximated
by a Gaussian distribution with zero mean and the covariance
value R = 8.432 ·10−4.

In the next section an adaptive version of the EKF is
presented.

B. Adaptive Extended Kalman Filter

The idea behind the adaptive-EKF is to update the statisti-
cal noises covariance parameters Q and R in order to improve
the estimation performances. In a Kalman filter, the a priori
covariance values for the measurement and process noises

are crucial for the stability and the convergence property of
the EKF: a complete knowledge of the process statistical
properties is assumed [24]. The works mentioned in the
following show that an adaptive update of the covariance
matrices improves the estimation results as opposed to a fixed
choice of the covariances.

These kind of solutions are successfully used in different
research fields: in [25] an AEKF is implemented to estimate
the position of a mobile robot, considering a matrix Q
with a fixed structure, apart from a scaling factor which is
adaptively changed. A different adaptive law is shown in
[24], where the adaptive filter is use in particular to deal
with asynchronous measurement in a tank reactor.

AEKF algorithm has been used also for battery SoC
estimation. In [26] the process covariance matrix is updated
online with a dedicated estimator. In [27] the adaptive
algorithm is activated only when the estimation is diverging,
in order keep it stable. In both the cases, particular attention
is made on the accuracy of the model, with parameters
estimation realized respectively with neural networks and the
filter itself. In [28] a solution more similar to the following is
proposed, but for a for a different type of battery (Lead-Acid)
and application.

AEKFs have been used also to solve the problem
of inertial navigation system/global positioning system
(INS/GPS). In these applications a problem of data fusion
is addressed, since INS sensors are used: they represent a
cheap solution and also not so accurate. For this reason, it is
not easy to define good a priori statistical parameters values,
due mainly to their large variability of the sensor noise: this
is directly related to the accuracy of position estimation.
The adaptive solution can deal with this problem, providing
a choice of the noises covariance parameters Q and R,
representing also a solution for system interaction [29]–[31].
In all these works the adaptive algorithm proposed in [32] is
validated and the good results of this approach are confirmed.

In this work, the adaptive law for the process covariance
Q proposed in [32] for INS/GPS application is used. An
adaptive update of matrix Q can help in overcoming the
uncertainties in the noise properties, which represent model
uncertainties due to the identification process and non-
linearities not included.

An adaptive choice for matrix R is not investigated, since a
reliable analysis of the measurement covariance R is possible
starting from the model validation, as shown in Section IV-A.

In all the adaptive algorithms here mentioned, the esti-
mation performance is considered through the information
represented by the innovation sequence d(k). The innovation
d(k) is defined:

d(k) =Vexp(k)−g(x̂−(k),u(k)) (21)

It is the difference between the experimental voltage mea-
surement Vexp(k) and the predicted value g(x̂−(k),u(k)). In
d(k) the predicted voltage is computed by the model output
equation when the state in the prediction step x̂−(k) is taken
into account.



The innovation covariance matrix is computed as:

D̂(k) =
1
N

N

∑
i=i0

d(i)d(i)T (22)

using a moving average of d(k) evaluated in (21), inside a
moving estimation window of size N, where j0 = k−N +1
is the first instant inside the window.

Matrix D̂(k) represents the actual performance of the
estimation process, so that it is a crucial element to be used
in defining the adaptive law for matrix Q. The choice of
the window length N become a design parameter for the
algorithm: it must be not so small to correctly represent the
estimation performance and at the same time, for on-board
implementation, it has to consider the memory available on
a physical board.

Starting from the evaluation of D̂(k), the innovation based
adaptive Kalman filter can be used, as demonstrated in [32].
The innovative contribution in [32] is the formulation of
the filter in terms of maximum likelihood (ML) estimator.
The advantage of this approach is to define some adaptive
parameters to be used in the traditional EKF estimator. A ML
equation is defined, function of these adaptive parameters.
In this work, the only adaptive parameter considered is
the process noise covariance matrix Q. The ML equation
represents the mathematical condition which allows to derive
an adaptive law for the matrix Q function of the innovation
covariance matrix D̂(k). Under the assumption that the
measurement noise covariance R is taken as constant, the
ML equation in [32] can be transformed in:

Q̂(k) =
1
N

N

∑
i=i0

∆x̂(i)∆x̂(i)T +P(k)−A P(k−1)AT (23)

where ∆x̂ is the state correction:

∆x(k) = x̂(k)− x̂−(k) (24)

This is evaluated as the difference between the state before
and after updates. From (20b) it can be written:

∆x̂(k) = L(k)d(k) (25)

Substituting (25), (23) can be approximated as [32]:

Q̂(k) = L(k) D̂(k)L(k)T (26)

To conclude, the AEKF algorithm for the SoC estimation
uses the same equation of the EKF filter summarized in Table
IV, where the equation (19b) is updated with the adaptive
law (26) introduced:

P−(k+1) = A P(k)AT + Q̂(k)

C. Results comparison

EKF and AEKF algorithms are both tested considering
the experimental discharge test in Fig. 3. In Fig. 7 it is
shown a comparison between ˆSoCEKF and ˆSoCAEKF , the
estimated state of charge from the EKF and AEKF algorithms
respectively. As a reference for the comparison, state of
charge obtained with Coulomb Counting method (SoCcc) is
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Fig. 7: Comparison between SoC estimation results: reference Coulomb
counting SoCcc, ˆSoCEKF evaluated with EKF and ˆSoCAEKF with AEKF
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Fig. 8: Comparison between SoC estimation error with EKF algorithm
eEKF = SoCcc − ˆSoCEKF , and error with AEKF eAEKF = SoCcc − ˆSoCAEKF

considered. SoCcc time discrete domain expression is the SoC
dynamic equation in the battery model:

SoCcc(k+1) = SoCcc(k)−
∆t

Qnom
I(k) (27)

In both the cases, the model state is estimated starting from
the initialization state x(0) = [ 0.4 0 0 ]T , corresponding
to an initial SoC(0) = 0.4, while the actual level is close to
1, to test the convergence performances of the filters.

As shown in Fig. 8, using EKF the SoC estimation error,
computed as eEKF(k) = SoCcc(k)− ˆSoCEKF(k), remains be-
tween the 5% with respect to the SoCcc (Fig 8). This result
is related to the performance of the model in reproducing the
battery behavior: the choice made in the identification phase,
to define a dependence on the SoC only for the resistance
R0(SoC), reflects into a non prefect representation of the
dynamics of the battery. In addition, where the model error
is greater (Fig. 6), and in particular for very low SoC values,
also the estimation becomes more difficult.

With the AEKF a substantial improvement in the estima-
tion performance is achieved, as shown in Fig. 7. Form Fig.
8 the estimation error eAEKF(k) = SoCcc(k)− ˆSoCAEKF(k) in
this case remains close to 1%, a good improvement with
reference to the EKF, thanks to the adaptive update of the
covariace Q. In this way, the uncertainty of the model are
adaptively compensated since Q̂(k) changes following the
estimation error. Also for low values of SoC the overall



performance are better, even if is not possible to assure a
perfect estimation very close to zero value of SoC.

About the convergence, both filters show a quick response.
In AEKF in particular, the convergence time depends on the
first choice of Q̂(0) in the initialization phase: the values
Q̂(0) = Q, corresponding to the constant Q used for the
EKF, is chosen. It has been verified that even starting with
a poor initialization, the AEKF estimation performances are
however good after a first convergence period.

V. CONCLUSIONS
In this work, a state space model for a Li-ion battery

design by AllCell Technologies for light vehicle application,
such as e-bikes, has been defined. Model parameters have
been experimentally identified. A comparison between EKF
and LS identification methods, to identify the resistance
dependence on SoC, has been performed. In this way a good
model validation is achieved.

An EKF for SoC estimation and an adaptive improvement
of the estimator have been presented. These algorithms have
been implemented is simulation and the estimation results
are compared. The choice of an adaptive law for the process
noise covariance matrix shows an improvement in estimation
performances. In terms of estimation error, the EKF results
are into 5% estimation error range, while with AEKF this
range is reduced up to 1%.
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