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Recasting the HEV Energy management problem into an Infinite-Time Optimization
Problem including Stability

Roberto Mura, Student Member, IEEE, Vadim Utkin, Fellow, IEEE, Simona Onori, Member, IEEE

Abstract— This paper deals with the problem of finding a closed-
form optimal solution for the energy management problem in charge-
sustaining hybrid electric vehicles. For the first time, a generalized sta-
bility and optimality framework for this type of problem is proposed. In
the proposed control design, the energy management problem, that by
its very nature is a finite-time optimal control problem, is reformulated
as a nonlinear-nonquadratic infinite-time optimization problem, leading
to a family of state-feedback based control laws providing optimality
with respect to an infinite time horizon performance functional while
guarantee asymptotic stability.

The analytical solution is obtained through a Lyapunov-based dissi-
pative approach. The proposed optimal energy management control law
is implemented in a pre-transmission parallel hybrid heavy duty truck
and its performance is compared to the benchmark solution provided
by the Pontryagin’s Minimum Principle (PMP). Reduced computational
efforts and lower sensitivity of the control parameter, while maintaining
performances within 2% from the optimal value, makes the novel
control design a breakthrough in energy management control research.

I. INTRODUCTION

Hybrid electric vehicles (HEVs) are equipped with two or more
on-board propulsion devices and energy sources [1]. The addi-
tional degree of freedom offered from the hybrid architecture is
used to find an optimal split of the power demand between the
internal combustion engine (ICE) and the electric machines (EMs),
while minimizing a performance objective, commonly the fuel
consumption, although other objectives such as pollutant emissions,
battery aging, drivability or a combination of them ([2], [3]) can
also be included. The control layer responsible for this purpose is
the Supervisory Controller or Energy Management Module, which
represents the extra layer of control needed in hybrid vehicles to
generate the optimal actuator set points.

The HEV energy management problem can be cast into an
optimal control problem where the objective is to minimize a
functional cost defined over the time of a driving mission. Several
methods to tackle this problem have been proposed in literature
over the past decades (see, for example, [4], [5], [6] and references
therein). The simplest way to deal with the problem, by not
involving explicit minimization or optimization, is by designing
rules to manage the on-board energy of the vehicle. Rule-based
control and fuzzy logic strategies are within this category. Their
advantage is in a fast computational efficiency [7], at the price of
a large calibration parameters set, which require an ad hoc tuning
that depends on the architecture.

To fully exploit the potential of the hybrid electric architectures
model-based optimal control methods have been used, showing
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the benefits of a more sofisticated control design in terms of
improved performences over less computational demanding rule-
based strategies. For instance, global optimization methods like
dynamic programming (DP) and genetic algorithms (GA) [8] were
used to find off-line solutions. Stochastic dynamic programming
(SDP) was succesuflly used for on-line control developemnt [9],
[10] and model-predictive control (MPC) based methods have been
also applied to solve the energy management problem where a
short-term optimization horizon in the future is considered during
which the driving cycle is predicted and the optimal power split
is found [11], [12]. Instantaneous optimization methods have also
been proposed. Among them are enclosed Pontryagin’s Minimum
Principle (PMP) [6], [13], [14] and the Equivalent Consumption
Minimization Strategy (ECMS) [2], [15]. Both methods, that have
been shown in [13] to be equivalent, consist in the minimization, at
each time step, of an instantaneous suitable adjoint cost function,
leading to a sub-optimal result close to the global optimum. Both
ECMS and PMP require calibration of a tuning parameter, referred
to as equivalence factor and co-state, respectively. The optimality
is achieved only when future driving information is known, thus
making them not suitable candidates for in-vehicle implementation
(if the optimality is sought). To this end, on-line adaptation of the
tuning parameter as driving dynamics change was proposed (A-
ECMS, [16]), where the adaptation of the parameter is performed
on-line through PI-like adaptive law, either predicting the driving
cycle, or exploiting the correlation between the co-state and the
battery state of charge [16], [17].

Both PMP and ECMS require the adjoint cost function (the Hamil-
tonian or the equivalent fuel consumption function) to be minimized
instantaneously. This operation, that needs to be executed on-board
at each tick of the clock, despite being computationally expensive,
can lead in some cases to unpredictable results, due to the fact
that the Hamiltonian is in many instances of the driving cycle
not a convex function of the control variable, as one can see
in Fig. 1 where the Hamiltonian function is plotted for three
different points of the driving cycle. Different control values are
thus equally suitable in the minimization process, leading to a not
unique solution of the optimal control problem. With this, loss of
optimality is accompanied to poor drivability. To overcome these
issues, a new research direction has been sought. Inspired by
[18] and [19] on theoretical results on optimal nonlinear regulation
problem involving non quadratic cost functionals, a first attempt to
propose a new framework for the energy management problem was
given in [20]. In this work the authors cast the energy management
problem into a nonlinear optimal regulation problem where the
battery state of charge SOC' was optimally regulated to its reference
target in the case of zero disturbance. Preliminary results showed
the feasibility of the closed-form control law in the simple case
of vehicle at standstill. Reduction in computational execution and
decreased sensitivity of the control parameter with respect to driving
conditions were also showed. Nonetheless two issues were not
being addressed properly in [20]: the definition of stability and
the extension of the finite-time cost function into an infinite-time
functional (needed to fully use results from [18], [19]). Starting
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Fig. 1: Hamiltonian function H (bottom) evaluated for different instances
of a Manhattan driving cycle (top).
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Fig. 2: Power flow diagram of pre-transmission parallel HEV.

from this, this paper proposes an extension and improvement of
concepts initially presented in [20]. The objective is to find an
analytical, closed-form, energy management strategy that is real-
time implementable and that assures optimality and stability. To
this end, the problem is cast into a nonlinear infinite-time optimal
regulation problem, and a Lyapunov based approach is used to
design an analytical control law which produces performances
comparable to PMP solutions, used as a proxi for global optimum.

II. HYBRID HEAVY-DUTY TRUCK MODEL

The vehicle model used in this work is a heavy duty pre-

transmission parallel HEV, whose schematic is shown in Fig. 2.
The engagement or disengagement of the clutch makes the engine
to be connected to the transmission, and thus to the rest of the
powertrain. The vehicle can operate in three different modes which
are described in the following, depending on the status of clutch
and the gear position.
1) Electric Mode. In this mode the clutch is open and the vehicle
uses only the battery and the electric motor for propulsion; the
engine is not connected to the wheels and is switched off. Since
there is just one propulsion device in this mode the torque/power
requested by the driver at the wheels is totally satisfied using the
electric drivetrain and no optimization is needed. The instantaneous
torque/power balance equations are:

Tor (t) = Tyn(t)
Poare (t) = Proy(t) + Pice’
Wt (t) = wap(t)

where Typ(t) and wgp(t) are the instantaneous gearbox torque and

speed; Trmot(t), wmot(t) and Py, (t) are the instantaneous elec-

vt e0,T] (1)

tric motor torque, speed and mechanical power; PS¢ represents
the electrical accessory power (considered constant) and Py, (t)
represents the instantaneous electrical power of the electric motor:

Tlmot * P:;Lot P'r?zot >0
;nnot = 1 e e (2)
Nmot *Lmot P'mot <0
mo

where 1m0t represents the efficiency of the electric motor.

2) Parallel mode with neutral gear. This mode of operation
occurs when the vehicle is at standstill with the clutch closed and
the gearbox in neutral position. The engine is still connected to
the transmission, but its speed is free to vary as the gearbox is in
neutral position. The instantaneous torque, power and speed balance
equations to be satisfied are:

Tice( ) Tg’clde(t) = - mOt(t)
Pbatt( )7 mot( )+P;iic
Wmot (t) = wice(t) - w;ce(t)

where Tjce (t) and w;ce (t) represent the instantaneous engine torque

vte[0,7] ()

and speed; 777¢"(t) is the instantaneous mechanical accessory
torque; and wj..(t) represents the instantaneous optimal engine

speed obtained by selecting the maximum efficiency operating line
of the engine. Being the total power requested at the wheels zero,
the power balance equations can be written, assuming a constant
efficiency for the electric motor (9mot), as:

Pyy(t) = 0 = Pree(t)—Pie™ (t)+

(Pran(t) = PEL) @)

TNmot

3) Parallel. In this mode both devices are used for propulsion,

with clutch closed and the engine connected to the wheels. The

speed at the wheels determines, through the transmission, the

speed of both the electric machine and the engine. The powertrain
equations are:

’LCE( ) T;ﬁg‘:h + Tmot (t)
Pbatt(t) mot( ) + P;«'l;zc
Winot (1) = Wice (t) = wgp(t)

P’ice PaW;gCh + Nmot - (Pbatt -

P’ice P;ZgCh + ‘ (Pbatt -

=Tg (t)
vt € [0,T] %)

PE)  Poo >0

Py =

Piif) Pt <0

(6)
The vehicle model described above has been implemented in a
PSAT (Powertrain Simulation Analysis Toolkit) detailed forward
model simulator. PSAT is a state-of-the-art flexible powertrain
simulation software developed by Argonne National Laboratory,
running in MATLAB/Simulink environment, which provides access
to dynamic models of different mechanical and electrical compo-
nents of several hybrid vehicle configurations [21].

'mot

III. ENERGY MANAGEMENT PROBLEM - CLASSICAL
FORMULATION

The objective of the energy management strategy in a HEV is
to find the optimal power split between the primary and secondary
energy sources that minimizes a given objective function over an
entire driving cycle. In particular the aim is to minimize the total
mass of fuel my [g] during a driving mission of length 7', starting
from ¢ = 0, thus is equivalent to minimize the cost Jr:

Jr = / ring (u(t))dt %

where 7ivy is the instantaneous fuel consumption rate expressed in
[g/s] and w(t) is the control variable.

6838



A. System dynamics and constraints

When solving the energy management problem, the only state
variable is the battery state of charge SOC(-), whose dynamics
are defined as:

1(t)
-«
Qmaz

where « represents the Coulombic efficiency [1], I(¢) [A] the actual
battery current (positive in discharging, negative in charging) and
Qmaz [Ah] the maximum battery capacity. In a charge-sustaining
HEYV, the net energy variation in the battery over a given driving
cycle should be zero. This condition is guaranteed by imposing
that the SOC is the same at the beginning and at the end of the
cycle. Equation (9) represents the global constraints of the optimal
problem:

S0C(t) = ®)

SOC(0) = SOC(T) = SOChe; ©)

Local constraints are imposed on state and control variables as well.
These constraints mostly concern physical operation limits, such as
maximum engine torque and speed, maximum motor power, and the
battery SOC limits. For pre-transmission parallel HEV powertrain
local constraints are expressed as:

Pbatt,min S Pbatt(t) S Pbatt,maz
SOCrin < SOC(t) < SOChax
Tx,min S Tx(t) S Tac,maac
P:c,min S P:c(t) S P:c,maac
Wa,min < we(t) < Wa,maz

vt € [0,T] (10)

T = ice, mot

where the last three inequalities represent limitations on the in-
stantaneous engine and motor torque, and speed respectively;
(‘)min; ()maee are the minimum and maximum value of
power/SOC/torque/speed at each instant. In particular battery power
limits are not constant but depend on internal parameters like V.
[V1], the battery open circuit voltage, and R, [€2], the battery internal
resistance. Moreover, powertrain constraints are also enforced at
each instant to ensure that the total power demand at the wheels is
satisfied, in accordance to the specific mode of operation. Within
this formulation the energy management problem can be defined as
follows:

Problem 1: The energy management problem is a constrained
optimal control problem where the cost function (7) is minimized
under system dynamics (8), global and local constraints ((9) and
(10), respectively).

We refer to Problem 1 as the standard HEV energy management
problem. Typical SOC' behavior resulting from solving Problem 1
is shown in Fig. 3.

so0c(t)

SOCpax
SOCyef F°
SOCpin

50C(0) = SOC(T) = SOCyf
0 T t

Fig. 3: SOC profile obtained solving the HEV energy management problem
as formulated in Problem 1.

B. Fuel flow rate consumption - Engine Model

In the new control design proposed in this paper we use an
analytical model of the engine fuel consumption rather than a map-
based model which is generally used to solve this type of problems
[1]. In particular, the engine chemical power (P.perm) is given as

a function of the engine power (P;..) and speed (wice) using a
Willans line model:

Pehem (t) = eO(UJice(t)) +e1 (wice (t)) . Pice(t) (l 1)

where eo(w) represents the engine friction losses and eq(w) the
conversion efficiency of the machine. A good approximation of the
friction losses and conversion efficiency coefficients is given by
expressing ep and e; as a quadratic fitting with respect to engine
speed, as:

eo(Wice(t)) = eoo + €01 - Wice (t) + €02 * Wik, ()
ey (Wice(t)) = e10 + €11 * Wice (t) +e12 - wizce(t)

where e;; > 0, ¢, = 0,1,2 are the constant Willans line
coefficients, Pepem = "y - Qruv (Qrmv is the lower heating
calorific value of diesel in [kJ/kg]) is the chemical power input to
the engine and Pjce = Ticewice 1s the engine power output. Hence,
the fuel consumption rate can be written as:

12)

1
Ty (t) = [e0(wice (1)) + e1(wice(t)) - Pice(t)]  (13)
QrLuv
otherwise written by means of the coefficients po and p1:
Mf (t) = Po (wice) +p1 (wice)PL’ce (t) (14)

that can be written also as an explicit function of Pyq¢; by means
of (4):

mf = no(wmot) + n1 (Wmot)Pbatt (t) (15)
where the relation between coefficients po, p1 and ng, nq is:
mech 1 elec
nO:p0+p1 Pacc“ + Pa‘cc”
nmot (16)
P1
ny = —
77mot

The Willans line fuel consumption rate model, together with a
suitable description of the battery model, is used in the next section
to reformulate the energy management problem as an infinite-time
horizon optimal problem including stability.

IV. INFINITE-TIME NONLINEAR OPTIMIZATION PROBLEM
INCLUDING STABILITY

The novel approach proposed in this paper consists in re-
thinking the standard finite-time optimal control problem in HEV
(Problem 1) as a nonlinear non-quadratic optimization problem over
an infinite time horizon. In particular, a Lyapunov based approach
is used to design the controller, leading to a family of feedback
closed-form control laws that guarantee stability and optimality with
respect to an adjoint cost function. This adjoint cost (defined later
in this section) guarantees a bound on the worst-case value of the
nonquadratic cost functional over a prescribed set of bounded input
disturbances. To ensure optimality of vehicle operation when ¢ > T,
the [0 7] optimization horizon is extended into the infinite horizon
[0 oc], so as to lead to a ngw cost function defined over [0 oo]:

Joo = [[iins () g(t) at a7
0
by means of the scalar positive function g(t),
¢ q
1+« (T)
g(t) = ————F— 0<a<l, k>0 (18)

20

The role of the function g(t), shown in Fig. 4, is to penalize the
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g(t)

Fig. 4: Behavior of g(t) for different values of q. Note that for ¢ — oo
is obtained that Joo = Jr + Jo where Jr is defined in (7) and Jo =
o0

ffanadt.
T

action of the control u(t) for ¢ > T in order to approximate the
finite-time cost J defined in (7) with the infinite-time functional
defined above.

Before presenting the new control design, a set of mathematical
preliminaries from [19] is included in the next sub-section for ease
of discussion, consisting in a set of sufficient conditions requiring,
among other things, the nonlinear system to be dissipative with
respect to a supply rate function.

A. General Framework

Let be D C R"™ an open set and let i/ C R™, with 0 € D and 0 €
U. Moreover, let W C R?. Consider now the controlled dynamical
system:

19)

with performance output vector:

2(t) = h(z(t), u(t)) (20)

where F : R™ x R™ — R" satisfies F(0,0) = 0, G : R™ — R,
h:R™ x R™ — RP satisfies h(0,0) = 0 and the control u(-) is
restricted to the class of admissible controls such that u(t) € U,
Vt > 0. Given a feedback control law u(t) = ¢(x(¢)), the closed-
loop system has the form:

&(t) = F(z(t), ¢(x(t))) +
2(t) = h(x(t), o(x(t)))
@n

With respect to the open loop system (19) and the closed one (21),
the following assumptions and definitions are given.

J(x(t)w(t) z(0)=z0, t>0

Assumption 1: The mapping ¢ : D — U satisfies sufficient
regularity conditions such that the resulting closed-loop system (21)
has a unique solution forward in time.

Let L: D xU — R and S the set of regulation controllers for the
nonlinear system with w(t) = 0.

Definition 1: S(xo) = {u(-): u(-) is admissible and such that
z(-) given by (19), starting from initial state condition xo, satisfies
z(t) = 0 as t — oo with w(t) =0 }.

Definition 2: -y is the system Lo gain from w to z, representing
the maximum energy amplification of the input signal w € L5 on
the performance variable z:

[2C)ll2 < Allw()ll2 (22)
Definition 3: Given the system (19), the performance output (20)
and a Lyapunov function V' : D — R, a positive storage function

I' : DxU — R, and the given supply rate function r : RP xR? — R

are introduced as follows:
1 (av)® w
2\ 3 ) (23)

2

I(z,u) =
r(z,w) = yw® — z

where f(u) is a generic scalar nonlinear function of the control
variable wu.
Theorem 1: (from [19]) Consider the nonlinear dynamical sys-
tem (19) and (20) with performance functional:
oo

J@mMJ%=/L@&LMﬂMh (24)

0

where u(-) is an admissible control. Assume that there exist a
Lyapunov function V' : D — R, a positive storage function
I': D xU — R, the given supply rate function  : R” x R — R,
and a control law ¢ : D — U such that:

1 V(0)=0
2. V(z)>0, z€D, z#0
3. 60)=0
4 a‘g;$)F(x,¢(x)) <0, z€D, z#0
oV (x
5. 2 D6 < (e, w) + L, o) + o 0(2)
reD, wew
6 { H(z,¢(z)) =0, z€D
| H(z,u) >0, z€D, uweld
(25)
where
Hz,u) = 8‘2;“’)1?(96,@ Y L(z,u) +T(zu)  (26)
Then:

« there exists a neighborhood Dy C D of the origin such that the
zero solution z(t) = 0 of the undisturbed (w(t) = 0) system
is locally asymptotically stable;

o if g € Dy then the feedback control u(-) =
minimizes J (zo, u(+)) in the sense that:

T (w0, 9(x(-))) = J (o, u(-)) @27)

p(z(-))
min
u(-)€S(zo)
where J (zo, ¢(x(+))) is the adjoint functional defined as:

oo
IO: /
0

and in addition:

Joo (0, p(2(+)) < T (w0, p(2(-))) (29)

e if D =R, U = R™, w(t) = 0, and V(z) — oo as
||z|| = oo, then the zero solution z(¢) = 0 of the closed loop
system is globally asymptotically stable.

)+ T(x(t),u(®)] dt  (28)

Proof: The proof of Theorem 1 is given in Chapter 10 of [19].
|

B. Application to the energy management problem in HEVs

Following the lines of Theorem 1, a Lyapunov-based approach
is used to obtain a state-feedback control law to find the optimal
torque/power split between the engine and the electric motor. In the
new control framework, the power requested (Prcq) is regarded as
a Lo disturbance.

Without loss of generality, the state of energy (SOFE), defined as
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the amount of battery energy stored at the present time (E(t)) to

the maximum battery energy capacity (Emaz) , is used as state

variable in this discussion. SOF is related to SOC by the following

relationship:

VL (t) E(t)

SOE(t) =S0C(t) ——= ——

(t) O Vmes = E,,.0

where V7, is the battery terminal voltage and V. ** the maximum

open circuit voltage. From here on the explicit dependence on time
will be omitted. The SOFE dynamics are:

. Pbatt
SOFE = —
“ Enaz

max
Ema,z = Qmaz . Voc

Assuming k = m the battery SOFE error ( = SOE,¢f —
SOE is introduced, whose dynamics are described as a function
of the control input (Pic.) and the disturbance (Pr.q) (as shown
later in (34)). Note that in parallel mode the power requested is the
sum of accessory powers (PSe¢ + Pme¢) and the gearbox power
(Pgp). When the vehicle is not moving (v = 0), instead, the power
requested P, only accounts for the accessory loads power. The

disturbance power P, is thus following:

b _Pa+t Nmot Psec + Pec® v>0 Vte[0 T]
") ot PELC 4 Pmece v=0 Vte[T o]
(32)
Consider a compact set Z C R such that { € Z, aset i/ C R such
that Pj.. € U, and a set W C R such that Preq € W and Preq in
L. The control, state and disturbance domains are:

Z =[SOE,c; — SOEmaz,SOEc; — SOEmin]

(30)

€2V

U = [0, Piee™] (33)
W:{P’V‘Eq:P’I‘Eq G['Z}
Then consider the control system
{ g i C_k:Pice + kPre(p C(O) = CO (34)

where ¢ = 0 is an equilibrium point and z is the performance
variable, and the functional cost defined as:

(oo}

Joo (G0, Pice(+)) = /

Po (wice) + pP1 (wice) . Pice (t)

g(t) dt (35)

QrLuv
0
50C(t)
s0¢(T)

SOCpma :
SOCyer
S0Cnin

0 T t
Preq(t)

M m My fﬁ M
0 G ¢

P

Fig. 5: Infinite time optimization and stability in HEV energy management
problem.

Problem 2: The infinite-time optimal problem consists in
minimizing the cost function (35) under system dynamics (34),
with state and control variables defined in the sets Z and U
respectively, and Preq € W.

Definition 4: Consider the Problem 2 with Pr.q = 0 and ¢(¢(t))
an optimal solution for the problem. Then the origin {(¢) = 0 of
the closed-loop system under ¢(¢(t)) is asymptotically stable if
¢(t) = 0 for t — oo.

When solving Problem 2 in presence of Pr., given by (32), a
typical SOC behavior is shown in Fig. 5. It can be noticed that
the global constraint (9), given in the standard control problem,
requiring SOC(T) to be equal to the reference value SOC;.y is
not met. In other words, different SOC' values can be taken t = T,
but the convergence to SOC.y is guaranteed only as t — oo (see
Fig. 5).

l Preq(t)

SOEyef (1) Pice(9)

¢

$) = F(Piee(©))

SOE(t)

Fig. 6: Closed-loop energy management scheme.
V. NON LINEAR OPTIMIZATION CONTROL STRATEGY
(NL-OCS) DESIGN
With respect to the system (34) the Hamiltonian function H (26)
takes on the following form:

H(<7 Pice7 >\) - mf(Pice) +A- (kpice) + F(C7 Pice)

where 1y is the instantaneous cost function and I'(, Pice) is a
positive definite function of ¢ and the control variable, and A is the
co-state variable. In order to have the Hamiltonian function zero at
the minimum value, a shifting of the H is operated as follows:

H(C, Pices A) = H(C, Pice, A) — po (37

(36)

Theorem 2: Consider the system (34) with functional cost (35).
Then, the feedback control law Pj,.(¢) defined as:

2k2 (M4C3)2
Piee = 0(¢) = (éw“@ — P1(wice)g(t)) v2
¢

¢>G
0<¢<G
(38)

- p1 s .
with (1 = <W> , 1s such that:
1 the solution ((¢) = 0, ¢ > 0 of the closed-loop system is
locally asymptotically stable in accordance to Definition 4.
2 the adjoint performance functional 7 (Co, Pice(¢)) (28) is
minimized.
The proof of Theorem 2 follows the steps of the proof of Theorem 1
(Chapter 10 of [19]). The sufficient conditions from Theorem 1
are satisfied with the proposed optimal controller (38), leading the
conditions 1. and 2. in Theorem 2 to hold true. Hence, the origin
¢ = 0 of the closed-loop system is optimally locally asymptotically
stable when Pr..q, = 0. Moreover, Pj,.. is optimal with respect to the
adjoint functional 7 (o, Pice(+)), which represents an upper bound
for J(Co, Pice(+)). The optimal control law obtained in Theorem 2
is implemented via the closed-loop system shown in Fig. 6.

VI. SIMULATION RESULTS

In this section simulation results obtained with the proposed
control law NL-OCS (Eq. 38) are presented and compared to the
optimal global solution obtained from PMP (which is a proxi for
the optimal global solution). The characteristics of the vehicle
used in this study are shown in Table I. The only parameter the
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TABLE I: Vehicle characteristics

Vehicle mass 19878 kg
Engine power 194 kW
Motor power 200 kW
Battery energy capacity | 7.5 kWh
Electrical accessory 7 kW
Mechanical accessory 4 kW

analytical control law (Eq. 38) depends on is p. In particular, p has
an impact on the difference between SOC(T'), and the reference
value SOC:.y, therefore on the amount of fuel consumed. The
calibration of p is carried out to obtain minimum fuel consumed
while ensuring charge sustainability (SOC(T) — SOCprey = 0). In
this section simulation results for a concatenation of four different
driving cycles are shown. Table II summarizes the overall fuel
consumption obtained with the new porposed design versus the
PMP. The NL-OCS law consumes 2.3% more fuel when compared
to PMP, but shows a better capacity in keeping the SOC(t) close
to the reference SOC,.y, both urban and highway examples of
the driving cycle. For the simulation scenario used, the overall
execution time needed to run the NL-OCS is almost 6 times lower
than the time used by the PMP solution. Another advantage of the

TABLE II: Efficiency and fuel consumption comparison between the PMP
and NL-OCS solutions in the simulated scenario

Strategy Fuel consumption m [kg] | ICE efficiency
PMP 12.93 0.319
NL-OCS 13.24 (+2.3%) 0.310 (-3.1%)

proposed strategy is in the rather low sensitivity of optimality of
the control parameter p with respect to driving missions (when
compared to the sensitivity of the optimal co-state in PMP).
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Fig. 7: Comparison of fuel consumption and SOC profile between PMP and
NL-OCS.

VII. CONCLUSIONS

The novelty of this paper consists in a re-thinking of the energy
management problem in charge-sustaining HEVs as a nonlinear-
nonquadratic infinite-time optimization problem. In doing that, a
new stability framework for HEVs has also been proposed. It has
been shown that the new framework allows to design a family
of state-feedback based control laws that provide optimality with
respect to an infinite time horizon performance functional while
guarantee asymptotic stability. Simulations results e have shown

that while maintaining the performances near to the optimal (within
2%) a reduction of computational effort (about 6 times lower) is
obtained. Moreover, a law sensitivity of the control parameter with
respect to optimality is obtained which makes the newly proposed
strategy a great candidate for on-board implementation.
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