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Abstract— Composite electrode lithium-ion batteries can of-
fer improved energy and power density, as well as increased
cycle life compared to batteries with a single active material
electrode. Both available power and cell life are functions of
the local current allocated to each composite material, however
there are no examples in literature of electrochemical-based
models of composite electrode cells that are suitable for estima-
tion and control. We present a reduced order, electrochemical
model of a composite LiMn2O4 - LiNi1/3Mn1/3Co1/3O2 cell
that predicts bulk and surface concentrations of each composite
material, as well as the local current allocated to each material.
Observability properties are analyzed by approximating the
system as linear over certain operating conditions. A solution
method is developed to use the model in an extended Kalman
filter for online state of charge estimation, which is validated
with experimental data.

I. INTRODUCTION

Lithium ion (Li-ion) batteries continue to see increased use
in automotive hybrid/electric applications due to their high
energy and power densities compared to other chemistries;
however accurate state of charge (SOC) estimation is re-
quired to utilize the battery power safely and efficiently.
Due to their ability to capture the physical electrochemical
processes occurring in the battery, increased attention has
been given to electrochemical-based models over traditional
equivalent circuit models to predict cell performance. For
example, it has been shown that with knowledge of the
electrode surface concentration, pulse charging that exceeds
the manufacture’s upper voltage limit can be done without
risking lithium plating typically seen with overcharging
[1]. Additionally, electrochemical models can be used to
improve state of health (SOH) estimation since they utilize
physical parameters that evolve as the battery ages, such
as the ohmic and charge transfer resistances, amount of
cyclable lithium, and volume of active electrode material
[9]. Periodic estimates of these parameters can be used to
dynamically predict the available capacity and power. Con-
tinually updating the model parameters as the battery ages
also maintains robust SOC estimation throughout the life of
the battery [10]. However, electrochemical models inherently
consist of partial differential equations (PDEs) which are
not well suited to estimation methods. Therefore, model

This work was supported by the Ford University Research Project
a Center for Automotive Research, The Ohio State University, Columbus,

OH 43212, USA (bartlett.137, rizzoni.1@osu.edu)
b Ford Motor Company, Research and Innovation Center, 2101 Vil-

lage Rd., Dearborn, MI 48124, USA (jmarcick, xyang11,
tmille22@ford.com)

c Automotive Engineering Department, Clemson University, Greenville,
SC 29607, USA. She was with a at the time of this research.
sonori@clemson.edu

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

C
ur

re
nt

 S
pl

it 
F

ac
to

r 
(β

i)

 

 

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time (s)

S
O

C
p,

i

LMO
NMC

a

b

Fig. 1: a) Fraction of the total current through each composite
material and b) SOC of each material under a constant 1C discharge,
as predicted by the multiple particle, reduced order model.

order reduction techniques can be applied to approximate the
governing PDEs while still preserving adequate information
for improved SOC/SOH estimates. Electrochemical models
also have an advantage over equivalent circuits in that
they eliminate the need for complex parameter identification
algorithms [21]; although certain electrochemical parameters,
such as diffusion coefficients and kinetic rate constants, can
be difficult to quantify experimentally [2], [3].

More sophisticated models are particularly useful in pre-
dicting the performance of batteries with composite elec-
trodes. Composite electrodes consist of a blend of two or
more electrode chemistries in order to improve performance
and life. Layered LiNi1/3Mn1/3Co1/3O2 (NMC), which has
a high energy density but poor rate capability [5], has been
mixed with LiMn2O4 spinel (LMO), which has good rate
capability but suffers from poor life due to manganese dis-
solution in the electrolyte [4], [6]. The result is a composite
cathode that exhibits good energy and power densities with
improved cycle life [7]. However, Li does not necessarily
(de)intercalate from each composite material at the same
rate. For example, Figure 1 (predicted using the model
described in this paper) shows that during a constant current
discharge the LMO approaches saturation first, at which point
the NMC carries much of the remaining current until the
discharge is complete. This same behavior was seen using
x-ray diffraction (XRD) to track the structural changes of
each cathode material during charge/discharge [5]. Since
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the instantaneous available power is highly dependent on
the remaining capacity of each material, one challenge for
estimation of composite material electrodes is to predict the
effective SOC of each material, rather than just the SOC
of the entire electrode/cell. Additionally, since capacity and
power fade of each material are typically functions of the
local current throughput, SOH estimation can be improved
by modeling how the current is allocated to each material at
different SOC and stages of life.

The extended Kalman filter (EKF) has been shown to
work well for SOC estimation using equivalent circuit battery
models [15]–[17] and single particle electrochemical models
(SPM) [1], [12], [19], [21], although it is not necessar-
ily an optimal observer for nonlinear systems. In order
to systematically design an observer, the system must be
equipped with observability properties. Global observability
is almost always straightforward to prove for linear systems
[22]; for nonlinear systems, this may not be the case. Local
observability of a volume-averaged electrochemical model,
similar to the SPM, has been shown in [19]. However, global
observability of nonlinear electrochemical-based models is
still a topic under investigation.

The novel contributions of this paper include an extension
of the reduced order, electrochemical model developed in
previous work [8]–[10] to a battery with a composite elec-
trode, in a form suitable for estimation. The model is used
to design an EKF to estimate the SOC of each composite
material. A method for analyzing observability is presented,
and the estimation algorithm is validated with experimental
data under dynamic load conditions.

II. METHODS
A. Model Overview

The multiple particle, reduced order, electrochemical
model (MPRO) described herein has been used previously
by our research group for characterizing aging in cells with
composite cathodes [9]. Our goal is to use the MPRO model
to design an EKF for online SOC estimation and, in future
work, SOH estimation. The model structure, outlined in
Figure 2, is based on the single particle model [1], [8], [11],
[12], [21], which assumes that the 3-dimensional electrode
can be lumped into a single, spherical, representative particle.
The intercalation current density is assumed to be uniform
throughout the thickness of each electrode and zero in
the separator. The negative electrode is treated as a single
particle, however in order to predict the allocation of current
to each composite cathode material, the positive electrode is
modeled as two particles acting in parallel, one representing
each material. The potential across the two particles is
considered constant but the total current is split between each
particle according to its effective impedance. An additional
extension to the traditional single particle model is the
inclusion of simplified liquid phase dynamics in order to
improve the model accuracy at high rates (> 1C) [1], [8].

The model governing equations can be found in [9] and
will not be repeated here, with the exception of a few
clarifications.
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Fig. 2: Schematic of the MPRO model with single/multiple particle
approximations of the anode/cathode, respectively, and simplified
liquid diffusion dynamics

Ficks law describes the concentration gradient induced
diffusion throughout each spherical particle, with the surface
concentration flux dictated by the intercalation current den-
sity, ji. Subscript i denotes the negative electrode particle or
the two positive electrode particles: n, p1, or p2, respectively.
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)
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∂ r
= 0 at r = 0, Di

∂ci

∂ r
=

ji(x, t)
F

at r = Ri

(1)

The intercalation current density, assumed to be piecewise
constant throughout each electrode, is scaled by the active
electrode volume and surface to volume ratio of the particle:

ji(x, t) = ji(t) =
I(t)βiRi

3ALiεam,iεi
(2)

where Ri is the particle radius, A is the current collector
area, Li is the electrode thickness, and εam,i is the active
material volume fraction. For the positive electrode, a current
split factor, βi, allocates the total current to each particle,
and the active material volume incorporates a term for the
volume fraction split of each material, εi (both βi and εi
are equal to 1 for the single negative electrode particle).
Since partial differential equations are not well suited for
estimation algorithms, the Pade approximation is used to
reduce the PDEs to low order ordinary differential equations
(ODEs) [13]. The resulting state space formulation is shown
for a given particle, subject to a current input, u:

ẋi = Aixi +Bi(t)u (3)

Ai =

0 1 0
0 0 1
0 1

b3,i

b2,i
b3,i

 Bi =

 0
0(

βi(t)Ri
3FALiεam,iεi

)
1

b3,i


[

cs,i
c̄i

]
=

[
a0,i a1,i a2,i
a0,i a0,ib2,i a0,ib3,i

]
xi

φi =Ui(cs,i)−ηi(cs,i,βi(t)u)−Rc,iβi(t)u (4)

The Pade approximation yields the constants a and b, which
are functions of the diffusion coefficient and characteristic
length (particle radius for spherical diffusion). The linear
combination of the states gives either the surface concentra-
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tion, cs,i, or the bulk concentration, c̄i. The surface or bulk
SOC of each particle is then obtained by:

SOCi =
cs,i

cmax,i
SOCi =

c̄i

cmax,i
(5)

where cmax,i is the saturation concentration of the electrode
material. Choosing the number of states resulting from each
Pade approximation represents a tradeoff between higher ac-
curacy and faster computation. A third order approximation
of each spherical diffusion equation is used (resulting in 6
total states for the composite positive electrode), since it
shows good accuracy in the frequency range typically seen
in an automotive application [8], [13], [14]. The nonlinear
output equation governing potential, φi, is equal to the
open circuit voltage (OCV), Ui, minus the charge transfer
overpotential, ηi, and an ohmic loss. The output potentials
from each sub-model (positive, negative, and liquid) are then
summed to obtain the total cell potential:

φcell = φp −φn −φliq (6)

B. Solution Method

For the negative electrode and liquid phase sub-models,
the state solution can be obtained in discrete time using the
forward Euler method; however, for the positive electrode
sub-model the current input is multiplied by a time varying
current split factor, βi. Since βi is unknown, an additional
constraint must be imposed that the currents through each
particle sum to the total current, i.e. β1+β2 = 1. Due to this
constraint, the state solution for the positive electrode can
only be obtained through iteration, which is problematic if
the model is to be used for dynamic state estimation. Instead,
a method is presented that approximates the current split at
each time step by linearizing the output equation.

To quickly obtain the state solution for the positive elec-
trode, the assumption is made that the diffusion dynamics are
slow compared to changes in charge transfer overpotential,
ηi, and current [13]. The output equation (4) can then be
linearized at each time step, according to the following
procedure:

1) At each time step, k, the surface concentration of each
particle is fixed to its value at the previous time step,
making Ui,k a constant.

2) Since the surface concentration is fixed, ηi,k is a non-
linear function of current only. It is then linearized for
each particle using a Taylor-series expansion about its
value at the previous time step, ηi,k−1:

βi,kIk ≈ gi,k +hi,k(ηi,k −ηi,k−1) (7)

where gi,k and hi,k are the resulting constants.
3) The output equation for each particle is now linear, and

with the additional constraint that the two current splits
sum to 1, the following matrix equation can be solved
directly by matrix inversion to obtain the current splits

β1 and β2:Rc,1 +
1

h1,k
0 1

0 Rc,2 +
1

h2,k
1

1 1 0


β1,kIk

β2,kIk
φ̃p,k



=

 U1,k +
g1,k
h1,k

−η1,k−1

U2,k +
g2,k
h2,k

−η2,k−1

I


(8)

Although the linearized positive electrode potential,
φ̃p,k, is also obtained from the matrix inversion, it is
discarded at this point; instead, the original nonlinear
potential equations are used to predict the output. In
other words, the positive electrode sub-model is still
treated as a nonlinear system, but with a time varying
parameter, βi, whose value is obtained at each time step
through the linearization process. Once βi is obtained,
it is substituted into the state dynamics and the solution
can be obtained using the forward Euler method.

C. Observability Analysis

For any observer design, including the EKF, the system
must be observable (or at least detectable) to ensure that the
state estimate converges to the true state. Local observability
of a nonlinear system is typically shown with the use
of Lie derivatives to form a gradient operator that must
have a rank equal to the number of states [23]. However
due to the highly nonlinear nature of the MPRO model
output equation, evaluating the Lie derivatives becomes
computationally intractable. For this reason, studying the
observability of reduced order electrochemical models is
still a topic of investigation. We present an approach to
prove global observability under certain assumptions for the
multiple particle sub-system. Subscript p is dropped in this
section for clarity.

The approach relies on the fact that the two nonlinear
terms in the output equation, Ui and ηi, can be approximated
as linear over operating ranges of SOC and current that are
typically seen in a PHEV application (20 - 90% SOC and
± 10C). The OCV curves for LMO and NMC are roughly
linear over certain SOC ranges, as shown in Figure 3. The
OCV for LMO can be considered linear from 0.22 < SOC1
< 0.91. The OCV for NMC can be split into two linear
regions, one from 0.22 < SOC2 < 0.55 and one from 0.55
< SOC2 < 0.91. After applying linear fits over these regions,
the OCVs can be approximated as a linear combination of
the states:

Ui(x)≈
mia0,i

cmax,i
x1,i +

mia1,i

cmax,i
x2,i +

mia2,i

cmax,i
x3,i +di (9)

where mi and di are the slope and y-intercept of the linear
OCV fit. The charge transfer overpotential, ηi, is a function
of both SOC and current; however over a range of SOC and
currents (20 - 90% SOC and ± 10C), η can be approximated
as a purely ohmic resistance, i.e. a linear function of current
only. This is shown in Figure 4 for the LMO particle. ηi can
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Fig. 4: Variation of η with SOC and current for the LMO particle
(NMC shows a similar result). A linear fit is applied at SOC = 0.5
to approximate η as an ohmic resistance over a reasonable range
of SOC and current.

then be written as:
ηi ≈ RBV,iβiI (10)

where RBV,i is an effective resistance that is calculated by
applying a linear fit of ηi and I at a nominal SOC of 0.5. With
these approximations, the output equation becomes linear,
and it can be written in matrix form:

φi ≈
[mia0,i

cmax,i

mia1,i
cmax,i

mia2,i
cmax,i

]
xi +

[
(RBV,i +Rc,i)βi

]
u+
[
di
]

=Cixi +Diu+di (11)

where Ci and Di are constant matrices. Since the OCV for
NMC is split into two linear regions, a C and D matrix can
be defined for each SOC range. Now the observability matrix

of the linear time invariant system (LTI) can be formed [22]:

θ =

 C
CA
CA3

 (12)

The observability matrix has rank 3 for each particle, and
SOC range considered, therefore the LTI system is globally
observable over these ranges. It should be noted that although
the multiple particle sub-model relies on a time-varying
current split parameter, βi, this parameter does not affect
the system observability since it only appears in the B and
D matrices. Essentially, βi is considered to be an additional
time-varying component of the input u, allowing the system
to be treated as LTI. Although this method does not prove
observability of the original nonlinear system, some conclu-
sions can be inferred. For example, unlike LMO and NMC,
the OCV curve for other cathode materials such as LiFePO4
is very flat [8]. As mi approaches 0, the observability matrix
tends toward losing rank, making observer design more
difficult.

D. Estimation Using an Extended Kalman Filter

The Kalman filter is a well-known tool for state estimation
of dynamic systems, being the optimal state observer for
linear systems with quantifiable process and signal noise
that is uncorrelated, white, and Gaussian [15], [17]. Since
the output voltage equations are nonlinear, an extended
Kalman filter is used, which calculates the feedback gain by
approximating the nonlinear system as a linear time varying
system. The state dynamics are assumed to exhibit some
process noise, that accounts for any disturbances not captured
by the model. Likewise, the measurement is assumed to be
corrupted with sensor noise. During the prediction step, the
model is simulated open loop to obtain a state prediction and
output prediction. During the correction step, a correction is
applied to the state prediction using proportional feedback
from the measured output. The proportional gain is a function
of the process and sensor noise covariances, Q and R,
respectively. If there is large uncertainty in the model (high
Q), the gain will tend to be high, since the state estimate
should rely more on the measurement feedback. Conversely,
if there is large uncertainty in the measurement (high R), the
gain will tend to be low, since more trust should be placed in
the open loop model prediction. In practice, Q and R can be
difficult to quantify and are typically used as tuning factors
to adjust the rate of convergence of the state estimate to the
true state.

As shown in the previous section, each particle sub-system
can be considered observable with knowledge of the sub-
system potential; however the system as a whole is not
observable (or can be considered weakly observable [19])
since only the total cell voltage can actually be measured
in a real vehicle application. In essence, the measured cell
voltage is the sum of each electrode potential and liquid
phase potential, so there is no way to uniquely assign the
contributions of both electrode and liquid potentials to the
overall cell voltage. In light of this, only the positive elec-
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Fig. 5: Model fit to experimental current/voltage data following
the USABC, charge depleting PHEV profile. The cycle shown is
repeated 7 times until the cell SOC reaches approximately 20%.

trode states are estimated using the EKF. The negative and
liquid phase potentials are predicted through an open loop
simulation, and are subtracted from the measured cell voltage
to obtain a pseudo-measurement of the positive electrode
potential, φp. This is not a true measurement, however, so any
model errors in the negative and liquid sub-models will be
projected through to adversely affect the positive electrode
state estimate. The positive electrode is estimated as it is
typically the limiting electrode for instantaneous power, as
well as to demonstrate the application of the EKF on the
multiple particle sub-system.

E. Experimental Data Collection

A 15 Ah automotive grade pouch cell with composite
LMO - NMC cathode and graphite anode is used to generate
cell voltage data typical of a PHEV application. The cell is
subjected to the charge depleting current profile defined by
the United States Advanced Battery Consortium (USABC)
[20], as shown in Figure 5, along with the MPRO model
prediction. This current profile is repeated 7 times until the
cell reaches a SOC of approximately 20%. Parameterization
of the model, including half-cell experiments to identify each
electrode OCV, is discussed in detail in [9].

III. RESULTS

A. EKF Validation with Experimental Data

The MPRO model outlined above is now used in an EKF
to estimate SOC of the positive electrode.

1) EKF Initialization: The sensor noise is quantified by
simulating the MPRO model offline with the charge depleting
PHEV cycle, and subtracting the cell voltage prediction from
the experimental voltage measurement at each time step. The
covariance matrix, R, is treated as a constant equal to the
covariance of the entire sensor noise vector. In reality, the
exact current profile that the vehicle will experience is not
available a priori, so the exact model voltage prediction error
is not known. To account for this, a 10% error is applied to
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Fig. 6: Bulk SOCp estimate compared to SOC from Coulomb
counting. SOC error is the difference between the estimated SOC
and SOC from Coulomb counting. Convergence from incorrect
initialization is shown.

the resulting R matrix. The process noise covariance matrix,
Q, is set to zeros since the open loop model predicts SOC
very well, assuming perfect state initialization.

It has been shown that, over the life of the battery, Li-
consuming side reactions form an inert film at the solid-
electrolyte interface (SEI), contributing to capacity loss and
causing a shift in the resting SOC of each electrode at
a given cell voltage [9]. Therefore, it is important that
SOC estimation be robust to initial condition errors. To
demonstrate this capability, the state vector is initialized with
a 30% error. The state estimate covariance matrix, P+

0 , should
be initialized based on the expected initial condition error.
Since this is not known a priori in a real vehicle application,
it is incorrectly initialized to expect a 1% initial state error.

2) EKF Results: Figure 6 shows the resulting bulk SOCp
estimate compared to the SOC obtained by Coulomb count-
ing (integration of the experimentally measured current).
The SOC estimate quickly overcomes the initialization error
and converges to the true value. The maximum SOC error
after convergence is 0.5%. In addition to bulk SOCp, the
model is able to estimate the bulk and surface concentrations
of each material, as shown in Figure 7, although these
estimates cannot be validated experimentally without the
use of XRD or similar techniques. The ability to estimate
surface concentrations is useful for powertrain control, since
the output voltage, and therefore output power, are functions
of the surface concentration of each material.

IV. CONCLUSIONS AND FUTURE WORK

We present a reduced order, electrochemical model ex-
tended for composite active materials. A solution method is
presented to quickly solve for the current split between the
two positive electrode particles. Global observability of the
multiple particle sub-system is studied by approximating it as
an LTI system over a certain range of operation. The model
is then used to design an EKF to estimate both bulk and
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surface SOC of each material. The bulk positive electrode
SOC estimate is validated against experimental data.

Future work in this area will focus on SOH estimation, uti-
lizing the EKF to estimate model parameters that are known
to change as the battery ages. Changes in these parameters,
such as the total amount of cyclable Li and the active
material volume, can be directly related to capacity loss.
Furthermore, first-principles based models of degradation
mechanisms can add dynamics to the parameter estimation
algorithm, improving robustness. System observability will
be addressed with the addition of parameter estimation.
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