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Abstract:  Real world systems are inherently subject to aging. Aging is the reduction in performance, availability, 

reliability, and life span of a system or component. The generation of long-term predictions describing the evolution 

of the aging in time for the purpose of predicting the Remaining Useful Life  (RUL) of a system may be understood 

as Prognosis. The field of prognosis has seen progress with respect to model based and data driven algorithms to 

model aging and estimate RUL of components. However, in real world applications components are interconnected 

and aging propagates. Aging propagation from component to others exhibits itself in a reduced system life. 

Propagation of aging has a profound effect on the accuracy of system SOH assessment and prognosis. This paper 

introduces a systematic methodology for modeling the propagation of aging in engineering systems, based on the 

interaction between dynamic system models and dynamic models of damage propagation. The approach is to model 

the degradation propagation among subsystems that are highly interconnected and tightly integrated within a system.  

The proposed methodology is applied to advanced automotive battery packs for which different topologies are 

analyzed and compared in terms of system life. 
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1. INTRODUCTION 

The supervision of complex engineering systems and 

processes requires the presence of a variety of diagnostic and 

prognostic functions to insure three important system 

properties: 1) availability– that is the ability to retain critical 

system functionality at all times; 2) safety– that is the 

guarantee that under faulty conditions the system will 

continue to operate in a safe manner, or in compliance with 

existing regulations; and 3) serviceability, that is the 

assurance that the system can be rapidly serviced or re-

configured in the event of one or more malfunctions; this 

latter property can be of critical importance in the cost-

effective operation of a complex network of systems, whether 

interconnected or individually operated. The three properties 

are intimately connected to the subject of system prognosis. 

Real world systems are inherently subject to aging. Aging is 

the reduction in performance, availability, reliability, and life 

span of a system or component. Aging originates from a 

number of different case-dependent mechanisms and their 

interaction. These mechanisms are enhanced by stress 

factors such as load intensity, environmental conditions, and 

usage patterns. For example, in a battery cell, aging includes 

capacity decrease and increase in cell impedance; which 

produce capacity fade and power fade respectively reducing 

battery performance. Among the micro-mechanisms of 

battery aging in both positive and negative electrodes, we cite 

active particle loss and metal sediment or SEI film 

accumulation.  A review on today’s knowledge on the 

mechanics of aging in lithium-ion batteries can be found in 

(Vetter et al, 2005). These physical-chemical mechanisms are 

enhanced by stress factors such as current severity (C-rate), 

operating temperature, state of charge (SOC), cycling rates, 

overcharge and over-discharge (Vetter et al, 2005; Onori et 

al, 2012b). 

The state-of-health (   ) of a component, which is used to 

describe its physical condition, is commonly characterized by 

a system parameter that is correlated with its aging. In most 

applications, SOH is correlated with the performance 

requirement. Performance requirements depend on the system 

and its specific application. For example, the requirements 

for advanced automotive batteries may be ability to store 

energy, deliver power or a combination of both depending on 

the intended application. The SOH of a battery cell is 

commonly characterized by loss in capacity, increase in 

internal resistance, or a combination of both (Goebel et al. 

2008; Onori et al, 2012b). 

The generation of long-term predictions describing the 

evolution of the SOH in time for the purpose of predicting 

the Remaining Useful Life  (RUL) of a system may be 

understood as Prognosis. Battery prognosis then refers to the 

generation of long-term predictions of the evolution of the 

battery capacity and/or resistance to predict when it will 

reach a predetermined threshold. Prognosis is one of the key 

enablers for Prognostics and Heath Management (PHM). 

PHM aims to help in making informed and timely life cycle 

management decisions, reducing warranty and maintenance 

costs while improving serviceability, availability and safety.  

The field of prognosis has seen progress with respect to 

model-based and data-driven algorithms to model aging and 

estimate RUL of components. However, in real world 

applications components are interconnected and aging 

propagates from one component to others. In a system, 

propagation of aging from some components to the others has 



 

 

     

 

a profound effect on the accuracy of system SOH assessment 

and prognosis.  

In (Onori et al. 2012a) the preliminary results of a 

prognostics methodology for interconnected systems were 

presented. As a continuation of this work, in this paper a 

methodology for the analysis of aging propagation in 

interconnected system under different configurations is 

proposed and simulation results presented. The methodology 

is based on the interaction between dynamic system models 

and dynamic models of damage propagation. The approach is 

to model the degradation propagation among subsystems that 

are highly interconnected and tightly integrated within a 

system.  The proposed methodology is applied to advanced 

automotive battery packs for which different topologies are 

analyzed and compared in terms of system life.   

The rest of the paper is organized as follows; in section 2, the 

aging modeling for components is described. In sections 3, 

the methodology for the analysis of aging propagation in 

interconnected systems is presented. In section 4, the 

proposed methodology is applied in advanced automotive 

battery packs. In section 5, simulation results and presented 

and discussed. 

2. AGING MODELING AND SOH FOR COMPONENTS 

An engineering component subject to aging can be described 

by the dynamic equations (1) (Serrao et al, 2009), 
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(1) 

      is the set of state variables associated with the fast 

dynamic behaviour of the component; 

     is the set of aging variables, i.e. the system 

parameters that change with the age of the component; 

   is a positive scalar (    ) representing the fact that 

the dynamics of the aging variables are much slower  than 

the dynamics of the fast variables; 

       are the external inputs acting on the component; 

      are the aging factors. The vector p can be 

composed of states and inputs; 

      is the component output vector. 

To facilitate the analysis of the component aging model, and 

to permit defining a scalar RUL, we define a mapping 

function  , named aging measure, which maps the domain 

of the system parameters or aging variables onto the scalar 

domain of aging measure in the interval [0, 1].  For a scalar 

aging variable, the normalized aging measure can be used to 

express the progression of the aging process as (Serrao et al 

2009), 

  
    

     

 
(2) 

where,   is the initial condition of the  aging variable (when 

no aging has taken place) and    is the value of the aging 

variable at the end of life. The     of the component, which 

is used to describe its physical condition, can be 

characterized by the aging measure  . Thus,       at the 

beginning of the component’s life, and       at end of 

life. From now on, the terms aging measure   and     are 

used interchangeably.  A further transformation is needed to 

represent the fact that aging evolves as a function of the 

cycling of the system.  We define the independent variable n 

as follows: 

   
  

 
 

(3) 

where   is the time duration of a cycle. Next, we rewrite the 

aging equation  ̇   (   ) in system (1) in terms of   , with 

n as the independent variable, leading to equation (3): 
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(4) 

where   is the nonlinear map which results from   after the 

coordinate transformations (2) and (3). Now, the evolution of 

  as given by equation (4) depends on the aging factors p and 

on the present age   through the nonlinear function  . It is 

known (Todinov, 2001) that if the aging evolution rate 
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can be factored as the product of a function  ( ) of the 

current age,  , and a function  ( ) of the load, p, that is  
  

  
  ( ) ( ) 

(5) 

then the Palmgren-Miner can be used to predict the evolution 

of aging using the additivity law, which states that aging is 

cumulative , and does not depend on the cycling sequence.  

We call  ( ) the “age function” and  ( ) the “severity factor 

function”. The independent variable n is commonly identified 

with a number of cycles. However, in the case of a battery the 

concept of cycle is not meaningful because every charge and 

discharge event is different. For this reason, in a battery n is 

expressed using the total ampere-hour throughput in both 

charge and discharge, i.e.   ∫ | ( )|
 

 
  , where  ( ) is the 

input current to the battery (Serrao , 2009). The aging 

equation that appears in (1) can be written in terms of   and 

the number of cycles   rather than   and time, using 

equations (3) and  (5). Thus the aging model in (1) can be 

represented by 
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(6) 

It has been shown experimentally (Serrao, 2009; Todeschini, 

2012) that for lithium-ion battery cells equation (5) holds and 

can be used for prognostics purposes. Recently, the 

Palmgren-Miner rule has also been used to model aging of 

electrochemical energy storage by other authors, see for 

example (Safari, 2010). Ongoing research at OSU CAR has 

led to the development of cell-level aging models (Serrao, 

2009; Todeschini, 2012) that will form the basis for 

degradation propagation modeling proposed in this work.  

3. INTERCONNECTED SYSTEMS SUBJECT TO AGING 

3.1 Representation of interconnected systems subject to aging  

Let   be a system composed of   components           , 

which are subject to aging. When the components are isolated 

i.e. not interconnected, each component can be modeled  

according to (6). Therefore, for the i-th component: 
   

  
   (        ) 

 

(7) 



 

 

     

 

      
   

  
   (  )  (  )  

     (        ) 

where,                           ; and     and    

are the state and output nonlinear functions. Upon 

interconnection, The dynamics of   , which depends on the 

system’s topology, can be represented by equation  (9) 
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(8) 

where; 

                   is the set of state 

variables associated with the fast dynamic behavior of 

the interconnected system, i.e. we assume that  the 

subsystems are disjoint. The set   is the union of sets of 

state variables of all subsystems. The set   is therefore 

composed by           ; 

       
      (9) 

      the set of aging measures for the interconnected 

system. The set   is the union of the aging variables of 

all subsystems. The set   is therefore composed by 

           ; 

      
     (10) 

   is a possibly nonlinear function of the interconnected 

system state variables, aging parameters and input that 

depends on the interconnected systems topology; 

      is the set of inputs acting on the interconnected 

system.  

      is the set of  outputs of the interconnected 

system, it depends on a possible nonlinear function of  

the interconnected system state variable and inputs;  

2.2 Aging Propagation 

When an isolated component (i.e. not interconnected) ages its 

dynamics changes affecting its states and outputs, see (6). 

Therefore, we can define the aging residual for an isolated 

component as the difference of its output with no aging,   ( ) 

and its output with aging,     ( ), i.e. (Onori, 2012a), 

      ( )      ( )  (11) 

This equation can be expressed in terms of the SOH as 

follows (Onori, 2012a), 

      (        )    (       )    (  ) (12) 

When an isolated component is interconnected to other 

components, the aging residual   (  ) is propagated through 

the system and may affect other components dynamics. 

Therefore, when a component i-th subject to aging is 

interconnected, the operational conditions (i.e. load intensity, 

environmental conditions, etc.) of other components as well 

as the component itself may be affected by the aging of i-th 

through the interconnection. For example, if the output of the 

i-th component is the input to the (i-th)+1 component, the 

aging residual for the downstream component,  (i-th)+1, is 

given by, 

          (               (  ))    (       ) 

   (       ) 

(13) 

and the downstream component aging dynamics are, 
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(14) 

therefore,   the severity factor  function,       , is now a 

function of  the SOH of components i and i+1, i.e. 

    (       ). Meaning, that the aging dynamics of 

component i+1 may be affected by the SOH of component i, 

as well as its own SOH.   

Modelling aging propagation in interconnected systems faces 

several challenges. First, the aging dynamics are usually 

highly nonlinear and may depend of several stress factors. 

Second, within a system, the interconnections may be due to 

multiple physical phenomena simultaneously. For example, 

in a battery pack the interconnections may be electrical, 

thermal, etc. Third, interconnected systems may be composed 

of several components, such as in the case of advanced 

automotive batteries, in which a pack may consist in 

hundreds of battery cells interconnected under different 

topologies.  

2.3 State-of-health of complex systems: A novel approach 

As described in the previous section, the     of a 

component is characterized by its aging measure  , Equation 

(2). Therefore, for the i-th component in an interconnected 

system, the     is given by 

        (15) 

At system level, we propose to model the state-of-health of 

the interconnected system,        , by a function of its 

subsystems state of health. The         is defined based on 

the system’s performance requirement, mode of operation, 

and topology. Therefore,        is a possibly nonlinear 

function of the interconnected components SOH, 

             (          ) (16) 

where           .        is equal to 1 at the beginning of 

its lifespan and reaches 0 when the system gets to its end-of-

life. The task of systematically determine        from its 

components, faces important challenges since the system 

level SOH varies form system to system and it heavily 

depends on the system mode of operation, intended function, 

performance requirements, and systems topology. 

4. CASE STUDY: ADVANCED BATTERY PACKS 

An especially rich example of aging propagation is the case 

of a battery pack.  A battery pack in a hybrid electric vehicle 

is a collection of modules, which are in turn made up of 

series/parallel combinations of individual cells. Cells (or 

modules) are connected in parallel to satisfy high capacity 

requirements and in series to provide the desired system 

voltage. Figure 2 depicts a sketch of two possible electrical 

configurations for a battery module containing the same 

number of cells.  The one on the left is termed “3P8S” 

because consists of 3 parallel strings of 8 cells in series; the 

one on the right is termed “8S3P” because consists of 8 

elements in series, each consisting of 3 cells in parallel.  

Nominally, the two configurations are equivalent in terms of 

module capacity and output voltage. However, within each 

module, each cell behaves differently due to manufacturing 

differences, aging, different operating currents and 

temperatures, etc. For example, in a string of cells in series, 

cells see the same current, but the individual cell voltages and 

states of charge, as well as internal resistance, may vary. 



 

 

     

 

Such imbalances, which are made more pronounced by aging 

effects, will lead to a faster aging of individual cells, possibly 

causing an additional load on the other cells and reducing the 

life of the module and of the pack.  

 
Fig 2. Battery module topologies (Yurkovich, 2010) 

In this section, the proposed methodology for the analysis of 

aging propagation is applied to battery modules. The battery 

modules consist of 10  battery cells. The battery cells are the 

commercially available A123 ANR26650 cylindrical Li-ion 

cells, see Figure 3. The battery module geometry is shown in 

Figure 3. Two equivalent electrical topologies “5S2P” and 

“2P5S” are analyzed and compared in terms of system (and 

components) life. The modules are also analyzed under two 

different applications, power and capacity.  We use cell aging 

models derived from aging experiments on individual cells 

(Todeschini, 2012). Each cell is modeled in terms of its fast 

and aging dynamics.  An interconnected representation that 

accounts for thermal and electrical interconnections is used to 

model the battery modules (system level).  The battery pack 

electro-thermal model is described in the following sub-

sections. 

        
 (a)                                       (b) 

Fig 3. (a) A123 Lithium ion phosphate (LiFePO4) battery 

cell. Dimensions: diameter (D) =26mm, length (l) =65mm. 

(b) Battery module geometry, cell #1 is the one located in the 

top left while cell # 10 is the one located in the bottom right.  

3.1 Battery Module Model  

Electrical model: 

The fast electrical dynamics of each battery cell in the 

module can be modeled by the 1
st
 order Randle equivalent 

circuit shown in Figure 4 (Pett, 2004; Hu, 2010). For the cell 

(index number i), the circuit is composed of an ideal voltage 

source       to model the cell open circuit voltage, a 

resistance    to model the electrolyte resistance and an RC 

circuit in series configuration to model the cell electric 

dynamics (          ). In a cell, the open circuit voltage 

(OCV) is defined as the voltage that is measured with a 

voltmeter at the terminals of a cell, when there is no current 

drawn into the battery.  

The cell electrical model is given by System (17) where   ( ) 

is the cel SoC,   ( ) is the cell capacity,   ( ) is the input 

current,     ( ) is the voltage across the capacitor      and 

      is the OVC. The sign of      is selected based on 

standard current convention (negative current sign for 

charging and positive current for discharging). 

 
Fig 4. Battery cell electrical model 

The OCV is a function of SoC and temperature. All the 

electrical circuit elements depend on operating conditions 

(i.e. current, temperature, SoC, charge/discharge) and, the 

capacity     and resistance    vary with the age of the 

battery.  
     

  
  

 

        

     
  

    

 

   

  
  

  
  

 

                        

 

 

(17) 

The input current    at each cell is calculated using 

Kirchhoff’s voltage and current laws over the module. 

Therefore,  for each electrical topology (“5S2P” and “2P5S”), 

   is calculated in terms of the input current and cells 

parameters. 

Thermal Model: 

The battery cells thermal behaviour is modeled assuming 

each cell as a lumped thermal mass with uniform temperature 

throughout it. The energy balance equation for a cell (index 

number i) is given by  

       ̇                  ∑       

 

 

where,         is the i-th battery cell heat generation,        is  

the  i-th battery surface convection,        is the i-th battery 

cell-to-cell conduction with its direct neighbours. By direct 

neighbours we mean the neighbour cells along the horizontal 

and perpendicular axes only.  Hence,  

       ̇        
  

(         )

    

 ∑
(         )

     
 

 

where, the effective cell heat capacity        is considered 

constant,      and       are convection and conduction 

thermal resistances respectively. The cell energy balance 

accounts for heat generation due to Joule heating, heat 

dissipation from surface convection and heat transfer among 

cells due to conduction. It has been assumed that the internal 

resistance   is solely responsible for Joule heat generation.  

Aging Dynamics: 

Capacity fade: 

The capacity fade can be modeled as (Todeschini, 2012), 

  ( )   (                 )    
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where,  
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where,    is the cell nominal capacity,   ( ) is the i-th cell 

capacity after n cycles, and   ( ) is the capacity degradation 

measure for the i-th cell. Therefore, the damage measure in 

   , is given by   ( ). Thus, the aging dynamics associated 

with the capacity fade are given by 
   

  
  (                 )        

  
 

(19) 

 
Fig 5. Capacity fade of a Li-ion A123 ANR 26650 battery 

cell. The fade depends on aging factors such as: SoC of 

operation, Temperature and C-rate (Todeschini, 2012) 

Power fade: 

The resistance growth can be modeled as  (Todeschini, 2012) 

           (               )    (20) 

 
Fig 6. Resistance growth of a Li-ion A123 ANR 26650 

battery cell as function of  SoC and C-rate. The slope of 

growth depends on aging factors such as: SoC, Temperature 

and C-rate (Onori, 2012a)  

3.1 Battery module state of health: A novel approach 

For electrified vehicles, the battery packs performance 

requirement depends on the intended application. In HEV 

applications high power is required to provide adequate 

boost. In PHEV and EV applications the requirement is 

mileage range and therefore capacity to store energy. At 

component level, based on the performance requirement, the 

    of a battery cell is commonly characterized by loss in 

cell capacity and/or increase in cell internal resistance, 

parameters correlated with capacity fade and power fade 

respectively (Goebel 2008; Onori, 2012b). At pack level, 

however, besides the performance requirement, the system 

topology also plays an important role in determining       . 

In this section, system level        functions are defined for 

battery modules intended for capacity applications and two 

different electrically equivalent topologies (“5S2P” and 

“2P5S”). Nominally, the capacity of the two battery modules 

(“5S2P” and “2P5S”) is the same (i.e. when all the cells 

behave identical and no aging occurs, meaning that the cells 

capacities are all equal). However, due to aging and pack 

thermal and electrical unbalances, the capacity at each cell is 

different. Therefore, over time each module will have a 

different effective capacity. Meaning, that each module and 

its components will age differently.  

Battery pack state of health  

Topology aSbP: for a battery module composed of series of 

cells in parallel (i.e. a elements in series consisting of b cells 

in parallel) the module capacity is given by 

           
 

(∑     
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(21) 

where,       is the capacity of the cell i-th of  the j-th element. 

Topology aPbS: for a battery module composed of parallel 

strings of cells (i.e. a parallel strings composed of b cells in 

series) the module capacity is given by  

        ∑   
 

      

 

   

 

 

(22) 

      

where,       is the capacity of the cell i-th of  the j-th parallel 

string. Using equations (21) and (22) with the normalized 

capacities   given by equation (2)  (i.e. cells SOH), the 

battery modules        can be define for each topology. 

5.  SIMULATION RESULTS 

In this section simulation results of aging propagation within 

battery packs are presented. In particular, the influence that 

an aged cell has on the aging of other cells as well as in the 

pack life is studied.  Simulators of the two battery packs 

described in the previous section (topologies 5S2P and 2S5P) 

were implemented in MATLAB/Simulink. For each 

topology, an aged cell with an initial capacity loss of ~4%, is 

located in cell position # 3, one of the two cells located at the 

center of the pack (the other one is cell #8, see Figure 3) 

while all the other cells in the pack are fresh (i.e. zero initial 

capacity loss). For each topology, the results obtained with 

the aged cell placed in position #3 are compared with the 

base-line case of the same pack with all fresh cells. For the 

simulations presented in this paper, a square-wave current 

profile of C-rate=2 and period of x seconds, which results in 

a triangular SOC cell profile (where SOCmin= 90% and 

SOCmax =100%), was used as pack current profile.   

 
Fig 7. Capacity loss at cell # 3 for different packs 

In Figure 7, the capacity loss of cell #3 under the 4 scenarios 

is shown (Pack 1: 2P5S all cells are fresh, Pack 2: 2P5S all 

cells are fresh, Pack 3: 2P5S with cell #3 with an initial 

capacity of ~4%, Pack 4: 2P5S with cell #3 with an initial 

capacity of ~4%).  Similarly the, the capacity loss of cells 8 
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and 9 are shown in Figure 8 and 9 respectively.  As shown in 

Figure 7, the end-of-life (EOL) of cell #3 depends on the its 

initial aging as well as on the pack topology. When an aged 

cell is located in position #3, under topology 5S2P the EOL 

of cell #3 as well as the pack EOL is reached considerably 

later that with the 2P5S configuration, (EOL5S2P =1500 Ah,  

EOL2P5S= 950). Meaning that topology 5S2P is more robust 

to aging propagation. 

 
Fig 8. Capacity loss at cell # 8 different packs 

As shown in Figures 8 and 9, the aging in cell #3 affects the 

aging progression of other cells in the pack. The magnitude 

of aging propagation to other cells depends on the initial 

aging at cell #3, the pack topology and the cell position 

within the pack.  For example, under the two configurations, 

the aging of cell #3 propagates to all cells in the pack. 

However, the propagation effect is most severe on the aging 

of cell #8. Moreover, the aging of cell #8, is more affected by 

the aging of cell #3 under the 5S2P topology (see Figure 8). 

Similar considerations can be made for other cells. For 

example, for cell #9, whose degradation is more affected by 

the aging of cell#3 under the 2P5S topology, see Figure 9. 

 
Fig 9. Capacity loss at cell #9 different packs 

6. CONCLUSIONS 

In this paper a methodology for the analysis of aging 

propagation in interconnected systems is presented. The 

proposed methodology shows that the aging progression in a 

component depend not only of its actual aging and external 

operation conditions but also, on the aging of other 

interconnected components. The methodology is applied to 

advanced automotive battery packs for which different 

topologies are analyzed and compared in terms of aging 

propagation and battery pack life.  
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